抗干扰设计原则
仪器仪表的可靠性分析及抗干扰设计

仪器仪表的可靠性分析及抗干扰设计一、引言仪器仪表在现代工业生产中起着至关重要的作用,它们可以帮助人们监测和控制各种工艺参数,确保生产过程的稳定性和高效性。
仪器仪表一旦出现故障或者受到干扰,就会对生产过程产生不良影响。
保证仪器仪表的可靠性和抗干扰性是非常重要的。
本文将对仪器仪表的可靠性分析和抗干扰设计进行讨论和总结。
二、仪器仪表的可靠性分析1. 可靠性概念可靠性指的是一个系统在规定的时间内,在规定的条件下完成规定的功能的能力。
对于仪器仪表来说,可靠性主要包括其稳定性、准确性和寿命等方面。
2. 可靠性分析方法在对仪器仪表的可靠性进行分析时,可以采用多种方法,如故障模式效应分析(FMEA)、故障树分析(FTA)等。
这些方法可以帮助工程师找出潜在的故障原因,并采取相应的措施加以解决。
3. 评估指标评估仪器仪表的可靠性可以通过多个指标来进行,如平均无故障时间(MTBF)、平均修复时间(MTTR)、故障率(FR)等。
这些指标可以帮助人们了解仪器仪表性能的稳定程度和寿命情况。
4. 提高可靠性的方法为了提高仪器仪表的可靠性,可以采取一些措施,如合理的设计、优质的零部件选择、严格的工艺控制等。
在使用过程中,及时的维护和保养也是非常重要的。
三、仪器仪表的抗干扰设计1. 干扰来源在工业生产中,仪器仪表容易受到各种干扰,如电磁干扰、机械振动、温度波动等。
这些干扰会导致仪器仪表性能下降,甚至出现误差,严重影响生产过程。
2. 抗干扰设计原则要提高仪器仪表的抗干扰能力,需要遵循一些设计原则,如信号处理的合理布局、屏蔽性能的提高、输入端的过滤和滤波等。
3. 抗干扰技术针对不同的干扰,可以采用不同的抗干扰技术。
在电磁干扰方面,可以采用绝缘互感器和屏蔽罩等措施;在机械振动方面,可以采用吸振器和减振骨架等技术。
4. 抗干扰性能测试在设计完成后,需要对仪器仪表的抗干扰性能进行测试。
这可以通过模拟实际场景下的干扰条件,检验仪器仪表的稳定性和准确性。
浅谈印刷电路板的设计原则和抗干扰措施

中图分类号 : M1 T 3
一
文献标识码 : A
文章编号 : 6 2 3 9 ( 0 8 1 () 0 8 0 l 7 — 7 1 2 0 ) 0b一 0 卜 1 易受 温度 影响 的器件 ( 电解 电容等 ) 采 用 如 ; 全 译 码 比线 译 码 具 有 较 强 的 抗 干 扰 性 。 为 扼 制 大 功 率 器 件 对 微 控 制 器部 分数 字 单 元 电路 的干 扰 及数 字 电路 对 模 拟 电路 的 干扰 ,数 字地 、模 拟 地 在 接 向 公 共接 地 点 时 ,要 用高 频 扼 流 环 。 这 是 一 种 圆柱 形 铁 氧体 磁性 材料 ,轴 向上 有几 个 孔 ,用较 粗 的铜 线 从 孔中 穿过 , 上 一两 圈 , 绕 这种 器 件 对 低 频 信号 可以 看 成 阻 抗 为 零 ,对 高 频信 号 干扰 可以 看成 一 个电 感( 由于 电感 的直 流 电 阻较 大 , 能用 电 感作 为高 频扼 流 圈 ) 不 。 当印刷电路板 以外的信号线 相连时 , 通 常采 用屏 蔽 电缆 。 对 于 高 频信 号 和 数 字 信 号 ,屏蔽 电缆 的两 端 都接 地 , 频模 拟信 低 号 用 的屏 蔽 电缆 , 端 接 地 为好 。 一 对 噪 声 和 干 扰 非 常 敏 感 的 电路 或 高 频 噪 声 特 别 严 重的 电路 ,应 该 用 金 属 罩 屏蔽 起 来。铁 磁屏蔽 对 5 0 KH Z的高频 噪声效 0 果 并 不 明 显 ,薄铜 皮 屏 蔽 效 果 要 好 些 。 使 用 镙 丝 钉 固 定 屏蔽 罩 时 ,要 注 意 不 同材 料 接触时引起的电位差造成的腐蚀。
抗干扰设计原则

抗干扰设计原则1.电源线的设计(1)选择合适的电源(2)尽量加宽电源线(3)保证电源线、底线走向和数据传输方向一致(4)使用抗干扰元器件(5)电源入口添加去耦电容(10~100uf)2.地线的设计(1)模拟地和数字地分开(2)尽量采用单点接地(3)尽量加宽地线(4)将敏感电路连接到稳定的接地参考源(5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开(6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积3.元器件的配置(1)不要有过长的平行信号线(2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件(3)元器件应围绕核心器件进行配置,尽量减少引线长度(4)对pcb板进行分区布局(5)考虑pcb板在机箱中的位置和方向(6)缩短高频元器件之间的引线4.去耦电容的配置(1)每10个集成电路要增加一片充放电电容(10uf)(2)引线式电容用于低频,贴片式电容用于高频(3)每个集成芯片要布置一个0.1uf的陶瓷电容(4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容(5)电容之间不要共用过孔(6)去耦电容引线不能太长5.降低噪声和电磁干扰原则(1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合)(2)用串联电阻的方法来降低电路信号边沿的跳变速率(3)石英晶振外壳要接地(4)闲置不用的们电路不要悬空(5)时钟垂直于IO线时干扰小(6)尽量让时钟周围电动势趋于零(7) IO驱动电路尽量靠近pcb的边缘(8)任何信号不要形成回路(9)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略(10)通常功率线、交流线尽量在和信号线不同的板子上6.其他设计原则(1)CMOS的未使用引脚要通过电阻接地或电源(2)用RC电路来吸收继电器等原件的放电电流(3)总线上加10k左右上拉电阻有助于抗干扰(4)采用全译码有更好的抗干扰性(5)元器件不用引脚通过10k电阻接电源(6)总线尽量短,尽量保持一样长度(7)两层之间的布线尽量垂直(8)发热元器件避开敏感元件(9)正面横向走线,反面纵向走线,只要空间允许,走线越粗越好(仅限地线和电源线)(10)要有良好的地层线,应当尽量从正面走线,反面用作地层线(11)保持足够的距离,如滤波器的输入输出、光耦的输入输出、交流电源线和弱信号线等(12)长线加低通滤波器。
新能源汽车功率电子系统的电磁辐射与抗干扰设计

新能源汽车功率电子系统的电磁辐射与抗干扰设计随着全球对环境保护和能源危机的关注日益增加,新能源汽车作为解决问题的重要手段之一,正逐渐走进人们的生活。
新能源汽车功率电子系统是其核心部件之一,其电磁辐射与抗干扰设计是确保其正常运行和安全的关键要素。
本文将对新能源汽车功率电子系统的电磁辐射与抗干扰设计进行探讨。
一、电磁辐射的影响与问题新能源汽车功率电子系统的运行过程中,会产生一定的电磁辐射。
电磁辐射对于电子设备的正常工作和周边环境的影响是不可忽视的。
首先,电磁辐射会对周围的电子设备和通信系统产生干扰,导致其正常工作受到影响。
其次,较强的电磁辐射还可能对人体健康造成潜在的危害。
因此,为了保证新能源汽车功率电子系统的正常运行和人体健康安全,需要进行电磁辐射的抑制与控制。
二、电磁辐射的原因与分析新能源汽车功率电子系统产生电磁辐射的主要原因是电流的快速变化和频繁切换。
功率半导体器件在工作时会产生高频、高电流的电磁信号,而这些信号在导线、线圈和元件上传导引起电磁辐射。
此外,供电电路的布局和接地等问题也会增加电磁辐射的风险。
针对电磁辐射的原因,需要对新能源汽车功率电子系统进行合理的布局和设计,减少电流快速变化和频繁切换的情况。
优化供电电路的设计,合理选择元件和材料,采取屏蔽和过滤措施等都可以有效降低电磁辐射的产生。
三、抗干扰设计的原则与方法为了减少电磁辐射对其他电子设备和通信系统的干扰,以及对人体健康的潜在危害,需要进行抗干扰设计。
抗干扰设计的原则如下:1. 电源线和信号线分离:将功率电子系统的电源线和信号线进行分离,避免干扰信号对正常信号的干扰。
2. 优化电路布线:合理布置电路板、导线和线圈的走向和位置,减少电磁辐射的产生。
3. 选择合适的材料:选择具有良好屏蔽性能的材料,如金属外壳和导电胶囊,以降低电磁辐射的传播。
4. 过滤和抑制措施:在电源线和信号线上设置滤波器、抑制器等器件,以减少电磁辐射的干扰。
5. 引入抑制技术:采用引入抑制技术,如差模传输线、差模驱动电路等,进一步减少电磁辐射的影响。
Alitum designer-电子设计基础知识

Altium Designer——电子设计基础知识一.印制电路板(PCB)的设计流程:1.利用EDA工具设计PCB;基本流程:(1)原理图表达电路设计方案;(2)网表是原理图与印制板直接的纽带;(忽略)(3)PCB工厂加工制作的基础;2.印制板总体设计流程:低速板:<50Mhz3.原理图的一般设计流程:4.PCB设计的一般流程:5.印制电路的技术发展水平:6.国内生产厂商的加工水平:7.PCB设计基本概念:8.PCB线宽与电流的关系:9.印制板的基本设计准则:(1)抗干扰设计原则;①电源线的设计:a.选择合适的电源;b.尽量加宽电源线;c.保证电源线、底线走向和数据传输方向一致;d.使用抗干扰元器件(磁珠、电源滤波器等);e.电源入口添加去耦电容(10-100uf);②电线的设计:a.模拟地和数字地分开;b.尽量采用单点接地;c.尽量加宽地线;d.将敏感电路连接到稳定的接地参考源;e.对PCB板进行分区设计,把高带宽的噪声电路与低频电路分开;f.尽量减少接地环路的面积;③元器件的配置:a.不要有过长的平行信号线;b.保证PCB的时钟发生器、晶振、CPU的时钟输入端尽量靠近,同时远离其他低频器件;c.元器件应围绕核心器件进行配置,尽量减小引线长度;d.对PCB进行分区布局;e.考虑PCB板在机箱中位置和方向;f.缩短高频元器件之间的引线;④去耦电容的配置:a.每十个集成电路要加一片充放电电容;b.引线式电容用于低频,贴片式电容用于高频;c.每个集成芯片要布置一个0.1uf的电容;d.要对抗噪声能力弱、关断时电源变化大的器件要加高频去耦电容;e.电容之间不要共用过孔;f.去耦电容引线不能太长;⑤降低噪声和电磁干扰的原则:a.尽量采用45°(?)折线而不是90°折线;b.用串联电阻的方法来降低电路信号边沿的跳变速率;c.石英晶振的外壳要接地;d.闲置不用的门电路不用悬空(运放:正输入端接地,负输入端接输出端);e.时钟线垂直于IO线时干扰小;f.尽量让时钟线周围的电动势趋于零;g.IO驱动电路尽量靠近PCB边缘;h.任何信号不要形成环路;i.对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略;j.通常功率线、交流线尽量布置在和信号线不同的板子上;⑥其他设计原则:a.CMOS的未使用引脚要通过电阻接地或接电源(悬空很危险??);b.用RC(R:1-2K;C:2.2-47uf)电路来吸收继电器等元件的放电电流;c.总线上加10K左右的上拉电阻有助于抗干扰;d.采用全译码有更好的抗干扰性;e.元器件不用引脚通过10K电阻接电源;f.总线尽量短,尽量保持一样长度;g.两层之间的布线尽量垂直;h.发热元器件尽量避开敏感元件;(2)热设计原则;(3)抗振设计原则;(4)可测试型设计原则;(5)其他:。
抗干扰设计的基本原则

抗干扰设计的基本原则
抗干扰设计的基本任务是使系统或装置既不因外界电磁于扰的影响而误动作或丧失功能:
也不向外界发送过大的噪声干扰,以免影响其他系统或装置正常工作,所以其设计主要遵循下列三个原则:
(1)抑制噪声源,直接消除干扰产生的原因:
(2)切断电磁干扰的传递途径,或者提高传递途径对电磁干扰的衰减作用,以消除噪声源和受扰设备之间的噪声耦合;
(3)加强受扰设备抵抗电磁干扰的能力,降低其噪声敏感度。
为实现上述原则,对于具体电磁环境的噪声与干扰的物理性质、噪声产生的机理、噪声的频谱特性、噪声的传递方式、受扰设备本身的抗扰性能等,不仅要有定性了解,还要有定量分析,这样才能得到好的效果。
目前国内外在这方面虽然已有大量实验经验,但在定量方面具体的测试、试验方法还是较少的。
许多问题尚有待进一步研究。
抗干扰设计原则大全

抗干扰设计原则大全一电源线布置:1、根据电流大小,尽量调宽导线布线。
2、电源线、地线的走向应与资料的传递方向一致。
3、在印制板的电源输入端应接上10~100μF的去耦电容。
二地线布置:1、数字地与模拟地分开。
2、接地线应尽量加粗,致少能通过3倍于印制板上的允许电流,一般应达2~3mm。
3、接地线应尽量构成死循环回路,这样可以减少地线电位差。
三去耦电容配置:1、印制板电源输入端跨接10~100μF的电解电容,若能大于100μF则更好。
2、每个集成芯片的Vcc和GND之间跨接一个0.01~0.1μF 的陶瓷电容。
如空间不允许,可为每4~10个芯片配置一个1~10μF的钽电容。
3、对抗噪能力弱,关断电流变化大的器件,以及ROM、RAM,应在Vcc和GND间接去耦电容。
4、在单片机复位端“RESET”上配以0.01μF的去耦电容。
5、去耦电容的引线不能太长,尤其是高频旁路电容不能带引线。
四器件配置:1、时钟发生器、晶振和CPU的时钟输入端应尽量靠近且远离其它低频器件。
2、小电流电路和大电流电路尽量远离逻辑电路。
3、印制板在机箱中的位置和方向,应保证发热量大的器件处在上方。
五功率线、交流线和信号线分开走线功率线、交流线尽量布置在和信号线不同的板上,否则应和信号线分开走线。
六其它原则:1、总线加10K左右的上拉电阻,有利于抗干扰。
2、布线时各条地址线尽量一样长短,且尽量短。
3、PCB板两面的线尽量垂直布置,防相互干扰。
4、去耦电容的大小一般取C=1/F,F为数据传送频率。
5、不用的管脚通过上拉电阻(10K左右)接Vcc,或与使用的管脚并接。
6、发热的元器件(如大功率电阻等)应避开易受温度影响的器件(如电解电容等)。
7、采用全译码比线译码具有较强的抗干扰性。
为扼制大功率器件对微控制器部分数字元元电路的干扰及数字电路对模拟电路的干扰,数字地`模拟地在接向公共接地点时,要用高频扼流环。
这是一种圆柱形铁氧体磁性材料,轴向上有几个孔,用较粗的铜线从孔中穿过,绕上一两圈,这种器件对低频信号可以看成阻抗为零,对高频信号干扰可以看成一个电感..(由于电感的直流电阻较大,不能用电感作为高频扼流圈). 当印刷电路板以外的信号线相连时,通常采用屏蔽电缆。
PCB抗干扰设计原则

PCB抗干扰设计原则抗干扰是PCB设计过程中的一个重要方面,它能够提高电路板的稳定性和可靠性。
下面是PCB抗干扰设计的原则:1.高频信号引脚的设计:高频信号的传输需要注意信号的完整性,因此,设计时应将高频信号引脚与其他引脚分开布局,减少干扰。
同时,应尽量使用短而粗的跨地引脚,以减少电磁干扰(EMI)。
2.地线的设计:地线在PCB设计中起到了较大的作用,对抗干扰设计来说尤为重要。
因此,在设计过程中要注意减少地线的回路面积,缩短地线的长度,以减小地线的电感。
此外,为了提高抗干扰能力,尽量将地线压印在整个PCB板的一端,以减小传导电磁干扰的机会。
3.电源的设计:电源是电路工作的基础,因此在设计中应尽量减小电源线的电感和电阻。
为了减少电源的电磁辐射,可以采用地线反向的方式,将地线与电源线相互交叉布局。
此外,在PCB板上使用陶瓷电容器来去除高频噪声,还可以使用电源滤波器减小电源中的干扰。
4.信号线的设计:在布线过程中,要注意避免信号线与电源线、高频线等产生相互干扰。
这可以通过增加信号层间引线的间隔、增加层间间距、并避免信号线垂直穿越分界线来实现。
另外,还可以通过正确的布线方法,如降噪和阻抗匹配,来提高信号线的抗干扰能力。
5.屏蔽的设计:在PCB设计中,可以使用屏蔽罩、屏蔽墙或金属壳等方法来有效地抑制电磁辐射和干扰。
屏蔽罩通常用于高频电路设计中,能够有效地隔离电磁波和电磁噪声。
屏蔽墙可以将电路分成几个部分,从而减小干扰的传播。
金属壳可以用于对敏感电路的保护,阻止外部电磁场的侵入。
6.地线平面的设计:地线平面的设计是PCB抗干扰设计中非常重要的一环。
通过在PCB的每一层上布置地线平面,可以形成一个良好的电磁屏蔽结构,减小信号线和地线之间的干扰。
此外,地线平面的设计还可以缩短地线的长度,减小地线电感,提高信号的完整性。
7.综合布线的设计:在整个布线过程中,还要考虑信号线和地线之间的距离、平行度和角度等因素,以减小互相干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
>
抗干扰设计原则
1.电源线的设计
(1)选择合适的电源
(2)尽量加宽电源线
(3)保证电源线、底线走向和数据传输方向一致
(4)使用抗干扰元器件
(5)电源入口添加去耦电容(10~100uf)
2.[
3.地线的设计
(1)模拟地和数字地分开
(2)尽量采用单点接地
(3)尽量加宽地线
(4)将敏感电路连接到稳定的接地参考源
(5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开
(6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积
3..
4.元器件的配置
(1)不要有过长的平行信号线
(2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件(3)元器件应围绕核心器件进行配置,尽量减少引线长度
(4)对pcb板进行分区布局
(5)考虑pcb板在机箱中的位置和方向
(6)缩短高频元器件之间的引线
4.】
5.去耦电容的配置
(1)每10个集成电路要增加一片充放电电容(10uf)
(2)引线式电容用于低频,贴片式电容用于高频
(3)每个集成芯片要布置一个的陶瓷电容
(4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容
(5)电容之间不要共用过孔
(6)去耦电容引线不能太长
5.—
6.降低噪声和电磁干扰原则
(1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合)
(2)用串联电阻的方法来降低电路信号边沿的跳变速率
(3)石英晶振外壳要接地
(4)闲置不用的们电路不要悬空
(5)时钟垂直于IO线时干扰小
(6)尽量让时钟周围电动势趋于零
(7)IO驱动电路尽量靠近pcb的边缘
(8)-
(9)任何信号不要形成回路
(10)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略
(11)通常功率线、交流线尽量在和信号线不同的板子上
6.其他设计原则
(1)CMOS的未使用引脚要通过电阻接地或电源
(2)用RC电路来吸收继电器等原件的放电电流
(3)总线上加10k左右上拉电阻有助于抗干扰
(4)采用全译码有更好的抗干扰性
(5)~
(6)元器件不用引脚通过10k电阻接电源
(7)总线尽量短,尽量保持一样长度
(8)两层之间的布线尽量垂直
(9)发热元器件避开敏感元件
(10)正面横向走线,反面纵向走线,只要空间允许,走线越粗越好(仅限地线和电源线)(11)要有良好的地层线,应当尽量从正面走线,反面用作地层线
(12)保持足够的距离,如滤波器的输入输出、光耦的输入输出、交流电源线和弱信号线等(13)长线加低通滤波器。
走线尽量短截,不得已走的长线应当在合理的位置插入C、RC、或LC低通滤波器。
(14)>
(15)除了地线,能用细线的不要用粗线。
7.布线宽度和电流
一般宽度不宜小于(8mil)
在高密度高精度的pcb上,间距和线宽一般(12mil)
当铜箔的厚度在50um左右时,导线宽度1~(60mil) = 2A
公共地一般80mil,对于有微处理器的应用更要注意
8.}
9.电源线尽量短,走直线,最好走树形,不要走环形
9.布局
10.首先,要考虑PCB尺寸大小。
PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。
在确定PCB尺寸后.再确定特殊元件的位置。
最后,根据电路的功能单元,对电路的全部元器件进行布局。
在确定特殊元件的位置时要遵守以下原则:
(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。
易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。
(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。
带高电压的元器件应尽量布置在调试时手不易触及的地方。
(3)重量超过15g的元器件、应当用支架加以固定,然后焊接。
那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。
热敏元件应远离发热元件。
(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。
若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。
(5)应留出印制扳定位孔及固定支架所占用的位置。
—
根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:
(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(2)以每个功能电路的核心元件为中心,围绕它来进行布局。
元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。
(3)在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件平行排列。
这样,不但美观.而且装焊容易.易于批量生产。
(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。
电路板的最佳形状为矩形。
长宽比为3:2成4:3。
电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。
10.布线
布线的原则如下:
(1)输入输出端用的导线应尽量避免相邻平行。
最好加线间地线,以免发生反馈藕合。
(2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。
当铜箔厚度为、宽度为 1 ~ 15mm 时.通过 2A的电流,温度不会高于3℃,因此.导线宽度为可满足要求。
对于集成电路,尤其是数字电路,通常选~导线宽度。
当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。
导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。
对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。
(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。
此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生铜箔膨胀和脱落现象。
必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。
11.焊盘
12.焊盘中心孔要比器件引线直径稍大一些。
焊盘太大易形成虚焊。
焊盘外径D一般不小于(d+mm,其中d为引线孔径。
对高密度的数字电路,焊盘最小直径可取(d+mm。
13.
14.PCB及电路抗干扰措施
15.印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。
16.13.电源线设计
17.根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。
同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。
18.
14.地线设计
地线设计的原则是:
(1)数字地与模拟地分开。
若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。
低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。
高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。
(2)接地线应尽量加粗。
若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。
因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。
如有可能,接地线应在2~3mm以上。
(3)接地线构成闭环路。
只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。
15.退藕电容配置
PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。
退藕电容的一般配置原则是:
(1)电源输入端跨接10 ~100uf的电解电容器。
如有可能,接100uF以上的更好。
(2)原则上每个集成电路芯片都应布置一个的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1 ~ 10pF的但电容。
(3)对于抗噪能力弱、关断时电源变化大的器件,如 RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。
(4)电容引线不能太长,尤其是高频旁路电容不能有引线。
此外,还应注意以下两点:
(1)在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用附图所示的 RC 电路来吸收放电电流。
一般 R 取 1 ~ 2K,C取 ~ 47UF。
(2)CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。