八年级数学下册第十九章一次函数19.1函数19.1.1变量与函数导学案新版新人教版
人教版数学八年级下册《一次函数》19.1.1 函数的概念

y 与x的关系为y =
−
.
应用概念
(3)变量x、y满足|y|=x,则y是x的函数. (×)
当x=1时, =1,∴ y=±1.
应用概念
(4)在 =
中, 是常量,π和r是自变量,
V是r的函数. (× )
π是常量.
应用概念
例2. 汽车的油箱中有汽油50 升,如果不再加油,那
数),相对应的收费为y(元).
(2)并直接写出当x=2和x=6时,对应的y值.
解:当x=2时, y=8;
当x=6时, y= 1.8×6+2.6=13.4.
巩固练习
练习2. 某地白天乘坐出租车收费标准如下:乘坐里程不超
过3公里,一律收费8元;超过3公里时,超过3公里的部分,
每公里加收1.8元;设乘坐出租车的里程为x(公里)(x为整
么油箱中的油量y(单位:升)随行驶里程x(单位:
千米)的增加而减少,汽车行驶过程中的平均耗油量
为0.1 升/千米.
(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)汽车行驶200 千米时,油箱中还有多少油?
应用概念
例2. 解:
(1) y与x的函数关系为 y = 50 − 0.1x .
w t
(3) = π
π
S r
>
10 -1
y x
0<x<10的整数
y n
n为正整数
(4) y = 10 – x
(5) =
的整数
【问题3】 在每个变化过程中,对每个变量的取
值范围有限制吗?
关系式
《19.1 变量与函数》课件(含习题)

讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
初中数学第十九章 一次函数教案人教版

目录第十九章一次函数19.1 函数/4719.1.1 变量与函数/47第1课时变量/47第2课时函数/4919.1.2 函数的图象/5119.2 一次函数/5419.2.1 正比例函数/5419.2.2 一次函数/56第1课时一次函数/56第2课时求一次函数的表达式/59 19.2.3 一次函数与方程、不等式/61 19.3 课题学习选择方案/63第十九章一次函数知识结构课题变量与函数课时第1课时上课时间教学目标1.知识与技能(1)认识变量、常量.(2)学会用含一个变量的代数式表示另一个变量.2.过程与方法(1)经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己的观点.(2)逐步感知变量间的关系.3.情感、态度与价值观(1)积极参与数学活动,对数学产生好奇心和求知欲.(2)形成实事求是的态度以及独立思考的习惯.教学重难点重点:(1)认识变量、常量.(2)用式子表示变量间关系.难点:用含有一个变量的式子表示另一个变量.教学活动设计二次设计课堂导入情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t 小时.1.请同学们根据题意填写下表:t/小时12345s/千米2.在以上这个过程中,变化的量是.不变的量是.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究探究内容设计:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm,每1 kg重物使弹簧伸长0.5 cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?教师:引导学生通过合理、正确的思维方法探索出变化规律.学生:在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.续表探索新知合作探究通过上述探究活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量,那么数值始终不变的量称之为常量.教师指导1.归纳小结:在某一变化过程中,可以取不同数值的量,叫做变量,数值保持不变的量叫做常量.2.方法规律:(1)变量和常量往往是相对的,相对于某个变化过程,在不同研究过程中,作为变量与常量的身份是可以相互转换的.(2)常量、变量与字母的指数没有关系,如S=πr2中,不能说自变量是r2.当堂训练1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=πr2;(2)正方形的周长:l=4a;(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额y的关系为y=2.5x.2.写出下面问题的关系式,并指出常量和变量.如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.板书设计变量1.什么是常量2.什么是变量3.常量与变量的区分教学反思课题变量与函数课时第2课时上课时间教学 1.知识与技能目标(1)经过回顾思考认识变量中的自变量与函数.(2)进一步理解掌握确定函数关系式.(3)会确定自变量取值范围.2.过程与方法(1)经历回顾思考过程、提高归纳总结概括能力.(2)通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.3.情感、态度与价值观(1)积极参与活动、提高学习兴趣.(2)形成合作交流意识及独立思考的习惯.教学重难点重点:1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.难点:认识函数、领会函数的意义.教学活动设计二次设计课堂导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化;随着半径的确定而确定.在上述例子中,每个变化过程中的两个变最.当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?从今天开始,我们就研究和此有关的问题——函数.探索新知合作探究自学指导自学课本,尝试完成课本练习合作探究我们来看下面的问题,通过观察、思考、讨论后回答:如图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?探索新知合作探究我们通过观察不难发现在上述问题的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x 是自变量,心脏部位的生物电流y是x的函数.教学活动设计二次设计课堂导入在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐.如图是我国某港某天0时到24时的实时潮汐图.图中的平滑曲线,如实记录了当天每一时刻的潮位,揭示了这一天里潮位y(m)与时间t(h)之间的函数关系.本节课我们就研究函数图象.探索新知合作探究自学指导我们先来看这样一个问题:正方形的边长x与面积S的函数关系是什么?其中自变量x的取值范围是什么?计算并填写表格:x0.51 1.52 2.53 3.5S独立思考一下,表示x与S的对应关系的点有多少个?如果全在坐标中指出的话是什么样子?可以讨论一下,然后发表你们的看法,建议大家不妨动手画画看.得出结论:这样的点有无数多个,如果全描出来太麻烦,也不可能.我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来.这样我们就得到了一幅表示S与x关系的图.图中每个点都代表x的值与S的值的一种对应关系.如点(2,4)表示x=2时S=4.续表探索新知合作探究一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.函数图象可以通过数形结合来研究函数,给我们带来便利.合作探究探究一:如图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?教师引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….学生在教师引导下,积极探寻,合作探究,归纳总结.探究二:如图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y 表示小明离他家的距离.根据图象探究下列问题:(1)菜地离小明家多远?小明走到菜地用了多少时间?(2)小明给菜地浇水用了多少时间?(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?(4)小明给玉米地锄草用了多长时间?(5)玉米地离小明家多远?小明从玉米地走回家平均速度是多少?教师引导学生分析图象、寻找图象信息,特别是图象中有两段平行于x轴的线段的意义.学生在教师引导下,积极思考、大胆参与、探求答案.探究三:我们通过以上两个活动已学会了如何观察分析图象信息,那么已知函数关系式,怎样画出函数图象呢?例:在下列式子中,对于x的每个确定的值,y有唯一的对应值,即y是x的函数.请画出下列函数的图象.(1)y=x+0.5;(2)y=错误!未找到引用源。
人教版数学八年级下册 变量(导学案)

第十九章一次函数灵师不挂怀,冒涉道转延。
——韩愈《送灵师》汪村学校钱少华19.1 函数19.1.1 变量与函数第1课时变量一、导学1.导入课题汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h.在这个过程中,哪些量变化,哪些量不变?这些量之间有什么关系?这就是我们今天要学习的“变量”(板书课题).2.学习目标(1)知道常量、变量,会用式子表示两个变量之间的变化关系.(2)通过分析探索生活实例理解常量、变量之间的关系,理解它们的相对性.3.学习重、难点重点:理解变量的实际意义.难点:能判断常量和变量,感知两个变量之间的变化关系.4.自学指导(1)自学内容:P71的内容.(2)自学时间:6分钟.(3)自学方法:仔细阅读教材内容,关键词语、重点内容做上记号.(4)自学参考提纲:①指出教材四个问题中的变量和常量.②在同一个问题中,如果存在两个变量,那么这两个变量之间应存在什么关系?③完成P71练习.④上面这些问题中的两个变量都有什么样的关系?⑤在圆的面积S和半径r中,r每取一个值,S都有唯一值与它对应吗?二、自学学生可参考自学参考提纲进行自学.三、助学1.师助生:(1)明了学情:关注学生对同一个问题中的两个变量的相关联系和一一对应关系的理解.(2)差异指导:对个性和共性问题进行分类指导.2.生助生:小组研讨,帮助解决疑难问题.四、强化1.强调常量与变量的意义.2.组织学生交流练习中的问题的答案.3.强调同一问题中的两个变量之间的对应关系.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己本节课的学习收获和存在的疑惑.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的态度、学习方法、学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时内容是学生的认知由常量到变量的一个飞跃,教学时应根据学生的认知基础,创设丰富的现实情境,使学生感知变量存在的意义,体会变量间的相互依存关系和变化规律.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)某人要在规定的时间内加工100个零件,则工作效率p与时间t之间的关系,下列说法正的是(C)A.数100和p,t都是变量B.数100和p都是常量C.p和t是变量D.数100和t都是常量2.(10分)圆的周长公式为C=2πr,下列说法正确的是(C)A.常量是2B.变量是C,π,rC.变量是C,rD.常量是2,r3.(15分)在下表中,设x表示乘公共汽车的站数(站),y表示应付的票价(元).上表中的变量(C)A.仅有一个,是站数B.仅有一个,是票价C.有两个,一个是站数,一个是票价D.一个也没有4.(10分)多边形内角和α与边数n之间的关系式是α=180(n-2).5.(10分)小明带着10元钱去文具商店买日记本.已知每本日记本售价2元,则小明剩余的钱数y(元)与所买日记本的本数x(本)之间的关系可表示为y=10-2x.在这个关系式中,x、y是变量,0,-2是常量.二、综合运用(15分)6.(15分)根据条件写出下列关系式:(1)购买50个羽毛球,羽毛球的价y(元)与单价x(元)之间的关系;(2)周长为60cm的等腰三角形的腰长y(cm)与底边长x(cm)之间的关系;(3)矩形的面积为36,矩形的长y与宽x之间的关系.解:(1)y=50x;(2)y=30-12x;(3)y=36x.7.如图,在一个半径为18 cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、函数各是什么?答案:小圆半、圆环面积.(2)如果挖去的圆半径为x(cm),那么圆环的面积y(cm2)与x的关系式是y=324π-πx2;(3)当挖去圆的半径由1 cm变化到9 cm时,圆环面的面积由323πcm2变化到243πcm2.三、拓展延伸(15分)8.从甲地到乙地的路程为300km.一辆汽车从甲地到乙地,每小时行驶50km.回答下列问题:(1)汽车行驶1h后,距离乙地 250 km,距离甲地 50 km.(2)设汽车行驶时间为t(h),与乙地的距离为s(km).用含t的式子表示s;其中哪些是变量?哪些是常量?(3)这辆汽车行驶多长时间可到达乙地?解:(2)s=300-50t.其中s,t是变量,300,-50是常量.(3)300÷50=6(h)【素材积累】1、冬天是纯洁的。
人教版八年级数学下册教案第十九章一次函数19.1

备课人:黄慧敏韦小丽审核人:黄亚明第十九章一次函数19.1 变量教学过程设计板书设计19.1.2 函数2、通过以上几个问题,你能说出在这几个问题中存在的共同点吗?上面每个问题中的两个变量互相联系,当其中的一个变量取一定的值时,另一个变量就___________。
3、如何确定自变量的取值范围?4、什么叫函数值,如何确定函数值?举例说明。
如果当x =a 时y =b ,那么b 叫做当自变量x 的值为a 时的函数值.5、出示教材中的探究。
在计算器上按照下面的程序进行操作:填表:x 13-4 0101 y 显示的数y 是输入的数x 的函数吗?如果是,写出它的关系表达式.归纳:每给出一个自变量的值x ,y 有唯一的值和它对应。
三、例题讲解(一)一辆汽车油箱现有汽油50L ,如果再加油,那么油箱中的油量y (L )随行驶里程x (km )的增加而减小。
平均耗油量为0.1L/km 。
1、 写出表示y 与x 的函数关系式。
2、 指出自变量x 的取值范围。
33、 汽车行驶200km 时,油箱中还有多少汽油。
分析:(1)油箱中的油量y 随行驶里程x 的增加而减少,所以x 是自变量,y 是x 的函数,y 与x 的函数解析式是x y 1.050-=;(2)自变量x 的取值,首先要考虑其表示的意义,即x表示行驶里程,因此x ≥0;其次要考虑本题的实际情况,必须保证50-0.1x ≥0,所以自变量x 的取值范围是5000≤≤x .是否答出每个问题中的两个变量的单值对应。
师生共同归纳之后教师给出函数的概念并板书。
教师强调:确定自变时,不仅要考虑函数关系式有意义,而且注意问题实际意义。
以例他s 和它对应。
让学生细心阅读计算交换意见、讨论结果。
教师引导学生分析题意,学生写出表达式。
注意际意义确定自变量取值范围为负。
19.1.3函数的图象s… 0.25 1 2.25 4 6.25 9 … 自变量X 的一个确定值与它所对应的唯一的函数值S 是否确定一个点(X,S)呢?把x 的值作为横坐标, S 的对应值作为纵坐标在平面直角坐标系中, 将上面表格中各对数值所对应的点画出来.即描点.按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来.即连线.归纳:描点法画函数的图象一般步骤: 1、列表:列出自变量与函数的对应值表.注意:自变量的值(满足取值范围),并取适当.2、描点:建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.3、连线:按照横坐标从小到大的顺序把描出的点用平滑曲线依次连接起来. (三)、识函数的图象1.这个图是自动测温仪记录的图象,它反映了我们地区春季某天气温 T 随时间 t 变化而变化的规律.你从图象中能得到什么信息? 学生回答: (1)这一天中凌晨4时气温最低为-3℃,14时气温最高为8℃. (2) 从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态. (3)一天中每时刻t 都有唯一的气温T与之对用描点法画函数的图象一般步骤和体现数形结合思想师板书步认识函数意义.观性、趋势找出一天内最高、低气温及时间;些时间段的变化趋势;性及优缺点;化规律.应.可以认为,气温T是时间t 的函数. (4)我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少. (5)气温为0℃时大约是哪一时刻. 三、课堂训练(一).下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x 表示时间,y 表示小明离他家的距离.根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?归纳解答函数图象题主要步骤如下:1. 了解横、纵轴的意义2. 从函数图象上判定函数与自变量的关系3. 抓住特殊点的实际意义一看坐标轴,二看特殊点,三看变化趋势;四看如果有两个图象就看交点。
人教版八年级数学册下第十九章;一次函数单元教学设计

函数概念单元教学设计一、教材版本章节:人民教育出版社八年级下册第十九章一次函数19.1函数 二、单元内容分析:1.单元核心内容是函数的概念、函数的三种表示方法. 本章是结合实际问题,对事物的运动变化进行数量化讨论,引出常量和变量的意义,再从描述变量之间对应关系的角度刻画了一般函数的基本特征,从而初步建立函数的概念,并介绍、归纳表示函数的三种方法(解析式法、列表法和图象法),为今后继续研究各类具体的函数进行必要的准备. 2.单元核心思想方法:运动变化思想、建模思想、函数思想、数形结合思想 3.单元核心素养:数学建模 4.单元教学整体规划:三、单元学习主题:“函数概念”函数是中学数学中的重要内容.函数概念的引入是由常量数学进入变量数学的转折点,由此确立起运动变化的观念,并为研究两个变量间的相互依赖的变化规律建立起一套基本理论的基本方法.《一次函数》一章是学生中学函数学习的起始课,本单元的知识及其思想是高中学习函数概念,以及后续学习一次函数、反比例函数、二次函数和其它函数的基础. (1)单元的知识的可持续性 本单元知识的可持续性体现在两方面,一是对函数概念理解的可持续性,二是对函数性态研究的可持续性.函数描述了自然界中变化的量之间的依存关系,反映了一个事物随着另一个事物变化的关系和规律.学生在不同阶段对函数的概念有不同的理解.学生对函数概念的理解经历了“关系说→变量说→映射说”不断深入的过程.小学学生对函数的理解是,函数反映了一个变化过程中两个变量x ,y 之间的相依关系;初中学生对函数的理解是,函数指在一个变化过程中,有两个变量x ,y ,如果y 随x 的变化而变化,那么称y 是因变量,x 是自变量,因变量就称为函数.高中学生对函数的理解是把映射作为已定义概念,把函数视为一种特殊(数集之间)的映射,揭示的是两个数集M 与数集N 之间的某种对应关系.中小学关于函数概念本质的理解定位在:函数是一种相依关系的反映,是相依关系的数学表示.进而上升到函数是一种对应关系,一种映射.在函数概念的扩张过程中,函数思想也不断更新.除了基本的从运动变化和联系的观点看问题,建立函数关系解决问题外,函数思想也是一种对应思想或一种映射思想.对函数的研究就是对函数性态进行研究.随着对函数的不断学习,学生对函数性态的研究角度更加多元.研究途径从最初的多依赖于图象直观,逐渐过渡到解析式的深入研究.研究对象从初等研究的定义域、值域、单调性、奇偶性、周期性、有界性、特殊点处的函数值、函数图象的变化趋势、函数图象的凸性、函数图象的某种对称性等,到高等研究的连续性、微分、积分、极值等. (2)单元的研究方法、学习方法的可迁移性 在本章学习函数概念的过程中,形成对函数研究的一般方法:−−−−−→−−−−→−−−−→−−−−−−→发现和提出问题建立模型求解模型检验结果和完善模型生活实际问题函数函数的性态解决实际问题学生后续学习的几类典型的常用函数,如一次函数、反比例函数、二次函数以及高中的其它函数,都是遵循这一过程、体现函数思想的载体.四、单元学习目标(一)单元总目标1.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立函数模型表示变量之间的单值对应关系,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要的数学模型.2.结合实例,了解常量、变量的意义,函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法,能结合图象数形结合地分析简单的函数关系.3.能确定简单的实际问题中函数自变量的取值范围,并会求函数值.4.学生形成自我研究问题的意识,能够将研究函数的方法进行迁移,体会函数的研究方法策略.六、学习课例学习主题:函数性质的初步探究(一)学情分析学生结束了一次函数整章的学习,学习了函数的概念、函数的三种表示方法、一次函数的定义和性质.函数概念的学习、一次函数定义及性质的学习,提供了研究函数问题的一般方法.但学生对函数的认识往往停留在用规律性结论解决具体问题的层面上,缺乏方法和能力上的提炼与提升.学生学习积极性高,探索欲望强烈,因此可以通过小组交流、合作探究函数的性质.(三)教学重点与难点(四)教学过程设计下列表示中y是x的函数吗?如果是,你能分析出这个函数可能具有的性质吗?(1)(2)(3)y=√xx y31-12O。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章 函数19.1 函数 19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: .二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 . 3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ;(2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.四、我的疑惑____________________________________________________________ ____________________________________________________________一、要点探究探究点1:常量与变量问题1:一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.(1)请同学们根据题意填写下表:(2)试用含t的式子表示s,则s= ;(3)在以上这个过程中,变化的量有,不变化的量有__________.问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.(1)请同学们根据题意填写:早场电影的票房收入为元;日场电影的票房收入为元;晚场电影的票房收入为元;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.(3)试用含x的式子表示y,则y= ;这个问题反映了票房收入____随售票张数_____的变化过程.问题3:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面积S分别为多少?(1)填空:当圆的半径为10cm时,圆的面积为 cm2;当圆的半径为20cm时,圆的面积为 cm2;当圆的半径为30cm时,圆的面积为 cm2;当圆的半径为r时,圆的面积S= ;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.要点归纳:在一个变化过程中,数值发生变化的量为,数值始终不变的量为 .例1 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a千橘子的总价为m元,其中常量是________,变量是________;(2)周长C与圆的半径r之间的关系式是C=r2π,其中常量是________,变量是________;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式52y h=中,其中常量是________,变量是________.变式题阅读并完成下面一段叙述:(1)某人持续以a米/分的速度用t分钟时间跑了s米,其中常量是________,变量是________.(2)s米的路程不同的人以不同的速度a米/分各需跑的时间为t分,其中常量是________,变量是________.(3)根据上面的叙述,写出一句关于常量与变量的结论:_________________________.方法总结:区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.探究点2:确定两个变量之间的关系例2.弹簧的长度与所挂重物有关.如果弹簧原长为10cm,每1kg重物使弹簧伸长0.5cm,试填下表:怎样用含重物质量m(kg)的式子表示受力后的弹簧长度 L(cm)?变式题:如果弹簧原长为12cm,每1kg重物使弹簧压缩0.5cm,则用含重物质量m(kg)的式子表示受力后的弹簧长度 L(cm)为________. .写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x吨,月应交水费为y元.(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t分钟,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径的比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.1.若球体体积为V ,半径为R ,则33V R π=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a (元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行使时间t (小时)的关系是________,其中的常量是________,变量是________.5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式.完成上表,并写出瓶子总数y 与层数x 之间的关系式.第十九章 函数19.1 函数 19.1.1 变量与函数 第2课时 函数学习目标:1.了解函数的相关概念,会判断两个变量是否具有函数关系.2.能根据简单的实际问题写出函数解析式,会根据函数解析式求函数值.3.会确定自变量的取值范围.重点:掌握函数的概念,能根据简单的实际问题写出函数解析式. 难点:会确定自变量的取值范围.一、知识链接1.什么叫常量、变量?2.代数式的意义是什么?如何求一个代数式的值?二、新知预习1.汽车离开A 站5千米以后,以40千米/时的平均速度行驶了t 小时,汽车离开A 站所走的路程为s 千米,请先填写下表: 观察填出的表格,会发现:每当行驶时间t 取定一个值,汽车离开A 站所走的路程s 就________________.2.李老师用100元购买7元/件的某种商品,观察他剩余的钱y(元)与购买这种商品的数量x(x ≤14)之间的关系:当x=5时,y=____;当x=12时,y=____.从中可以看出:每当李老师购买这种商品数量x(x ≤14)取定一个值时,他剩余的钱y(元)就_________________. 3.自主归纳:(1)函数的概念:在某个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有 与它对应,那么我们就说 是自变量, 是 的函数.(2)函数值: 如果当x=a 时y=b ,那么 叫做当自变量的值为 时的函数值. 三、自学自测1.下列变量间具有函数关系的是: .(填序号)①正方形的周长与边长;②等腰三角形的底边长与面积;③电费单价一定,居民某天的电费与用电量;④北京某天的气温与时间.2.下列式子中:y 是x 的函数的有 .(填序号)①y=|x|;②x+1=|y|;③y=x 2-2;④3.已知函数y=2x 2-1.(1)求出当x=2时y 的值;(2)求出当y=3时x 的值.四、我的疑惑______________________________________________________________________________________________________________________________________________________二、要点探究探究点1:函数的概念 问题1:填表并回答问题:(1)对于x 的每一个值,y 都有唯一的值与之对应吗? (2)y 是x 的函数吗?为什么?问题2:如何判断两个变量间具有函数关系?例1.下列关于变量x ,y 的关系式:y =2x+3y =x 2+3y =2|x|;④y=⑤y 2-3x=10,其中表示y 是x 的函数关系的是 .方法总结:判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有唯一确定的值与它对应.例2.已知函数421x y x -=+. (1)求当x=2,3,-3时,函数的值; (2)求当x 取什么值时,函数的值为0.方法总结:求函数值,直接把自变量的值带入函数关系式中计算即可;求自变量的值,需把函数值带入函数关系式中,得到关于自变量的方程,然后解方程.探究点2:自变量的取值范围问题3:请用含自变量的式子表示下列问题中的函数关系: (1)汽车以60 km/h 的速度匀速行驶,行驶的时间为 t (单位:h ),行驶的路程为 s (单位:km );(2)多边形的边数为 n ,内角和的度数为 y .问题4:问题3(1)中,t 取-2 有实际意义吗?(2)中,n 取2 有意义吗?例3.下列函数中自变量x 的取值范围是什么?(1)y=3x+1;(2)12y x =+;(3)y =4)y =.1.下列说法中,不正确的是( )A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数 2.下列各表达式不是表示y 是x 的函数的是( )3.设路程为s ,时间为t ,速度为v ,当v=60时,路程和时间的关系式为 ,这个关系式中, 是常量, 是变量, 是 的函数.4.油箱中有油30kg,油从管道中匀速流出,1h 流完,则油箱中剩余油量Q (kg )与流出时间t (min )之间的函数关系式是 ,自变量t 的取值范围是 .5.求下列函数中自变量x 的取值范围:2(1)2y x x =--;3(2)48y x =+;(3)y =;1(4)1y x -.6. 我市白天乘坐出租车收费标准如下:乘坐里程不超过3公里,一律收费8元;超过3公里时,超过3公里的部分,每公里加收1.8元;设乘坐出租车的里程为x (公里)(x 为整数),相对应的收费为y (元).(1)请分别写出当0<x ≤3和x >3时,表示y 与x 的关系式,并直接写出当x=2和x=6时对应的y 值;(2)当0<x ≤3和x >3时,y 都是x 的函数吗?为什么?。