2014人教A版数学必修一1.1.1《集合的含义与表示》(一)学案

合集下载

人教课标A版数学必修一1.1.1集合的含义与表示教案

人教课标A版数学必修一1.1.1集合的含义与表示教案

1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。

[教案精品]新课标高中数学人教A版必修一全册教案1.1.1集合的含义与表示

[教案精品]新课标高中数学人教A版必修一全册教案1.1.1集合的含义与表示
如果 a不是集合 A 的元素,就说 a不属于 的同学”、 “年轻人”、 “接近数
通过讨
A ,记作 a A ,读作“ a 不属于 A ”. 4.集合的元素的基本性质; ( 1)确定性: 集合的元素必须是确定
的.不能确定的对象不能构成集合. ( 2)互异性: 集合的元素一定是互异
的.相同的几个对象归于同一个集合时只 能算作一个元素.
的点的全体构成的集合.
“不属于”关系.
3.元素与集合的关系:
教学环节
教学内容
集合通常用英语大写字母
A 、 B 、 C,
表示,它们的元素通常用英语小写字母
a、
b、 c, 表示.
如果 a是集合 A 的元素,就说 a 属于 A ,
师生互动
设计意图
念 深化
记作 a∈A ,读作“ a属于 A ”. 教师提问: “我们班中高个子
题.
然后,依据元素个数的多少将
通过观 察实例, 发 现集合的 元素个数 具有不同 的类别, 从 而使学生
5.空集: 不含任何元素的集合,
集合分类. 记作
感受到有
让学生指出 ? 哪 些 是 无 限 集、空集存
6.集合的分类: 按所含元素的个数分
为有限集和无限集.
( 3 )平行四边形的全体构成的集
合.
并提问:① 你能指出各个集合的元素 吗?② 各个集合的元素与集合之间
引入 集合 是什么关系?③ 例( 2 )中数 0, –2
语言 描述 是这个集合的元素吗 ?
集合. 学生讨论交流,弄清元素与集
( 4 )平面上与一定点 O 的距离等于 r 合之间是从属关系,即“属于”或
.
3 .情感、态度与价值观
( 1)了解集合的含义,体会元素与集合的

《必修一》1.1.1集合的含义与表示导学案

《必修一》1.1.1集合的含义与表示导学案

高一数学A 1.1集合导学案(一)1.1.1集合的含义与表示编者:刘玉明审核人:王建美使用时间:2014. 10.13学习目标:(1)学生初步理解集合的概念,知道常用数集的概念及其记法。

(2)学生初步了解元素与集合间“属于”、“不属于”关系的意义。

学习重点:集合的基本概念学习过程(一)新知预习(阅读课本21、集合的概念(1)一般地,我们把统称为元素,把一些叫做集合。

练习1 下列各组对象能否构成一个集合并说明理由(1)著名的数学家;(2)某校高一(2)班所有高个子的同学;(3)不超过10的非负数(4) 5 的近似值的全体练习2集合中元素的特征(1);(2);(3)。

2、集合的表示集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……3、元素与集合的关系(1)属于:如果a是集合A的元素,就说,记作。

(2)不属于:如果a不是集合A的元素,就说,记作。

要注意“∈”的方向,不能把a∈A颠倒过来写.练习3(1)给出下面四个关系:2∈R, 0.7∉Q, 0 ∈{0}, 0∉N,其中正确的个数有( )个A.4 B.3 C.2 D.1(2)下面有四个命题:①若-a ∈Ν,则a ∉Ν②若a∈Ν,b ∈Ν,则a+b的最小值是2③集合N中最小元素是1④x2+4=4x的解集可表示为{2,2}.其中正确命题的个数是( ) A.0 B.1 C.2 D.4、常用数集及其表示方法(1)非负整数集(自然数集):记作;(2)正整数集:记作;(3)整数集:记作;(4)有理数集:记作;(5)实数集:记作;(二)课堂小结本节课学习了以下内容:1.集合的有关概念;2.集合元素的性质;3.集合的表示4集合与元素的关系及记法5常用数集的定义及记法;。

人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案

人教A版必修一 第一章  1.1.1集合的含义与表示方法 教案

1.1.1 集合的含义与表示方法教案教学目标:1,集合的概念,怎样判断一句自然语言所说的对象构不构成集合?关键是“元素的确定性”。

2,元素与集合的关系,属于与不属于(注意集合的元素本来就是集合的情况) 3,集合中元素的性质,确定性,互异性(出题较多),无序性。

4,常用数集的表示符号,课堂检验是否记住,练习元素与集合的属于与不属于关系。

5,集合的表示,(一)自然语言(二)列举法(三)描述法,其中描述法最难是初中到高中思维能力提升,需要高度的抽象概括能力。

(四)图像法(Venn 图)6,集合语言的运用与解读:教学难点:描述法:按代表元素分类教学过程(一)引入事实上我们已接触过“集合”这一概念。

比如:在对数分类时,就用到“正数的集合”,“负数的集合”;“奇数集”,“偶数集”。

此外,在解不等式时,可能会得到一些数,这些数放到一起就构成不等式的解的集合,称为不等式的解集。

在学习圆的时候,说圆是到定点距离等于定长的点的集合,到一条线段两个端点距离相等的点的集合(即这条线段的垂直平分线),直线可以看成点的集合。

我们一口气说了这么多集合,我们仔细来分析一下。

①所有正数②所有奇数③x-7<3的解④x-7=3的解⑤到定点o距离等于定长d的所有点⑥隆回一中高一班的所有学生集合的含义是什么呢?例①中,我们把每一个正数作为研究对象,称它为元素,这些元素的全体就是一个集合。

同样的例②中,我们把每一个奇数作为研究对象,也就是元素,所有的奇数构成一个集合。

谁来说下下面几个集合的例子中,它们的元素分别是什么?集合的定义:一般地,我们把研究对象称为元素,把一些元素组成的总体叫做集合。

(二)如何判断元素的全体是否构成集合呢?关键看什么?给定的集合,它的元素必须是确定的。

也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了。

这就是集合的确定性。

这是判断是不是集合最关键的第一步。

看几个例子:玩一个是不是的游戏,我说一句话,如果你觉得你是在我所说的研究对象内,你就举手①我们班所有的学生②我们班所有男生③我们班所有高个子男生④我们班所有身高超过1米6的超级爱好DOTA 游戏的男生。

人教版高中数学必修1-1.1《集合的含义与表示》导学案

人教版高中数学必修1-1.1《集合的含义与表示》导学案

1.1.1 集合的含义与表示【学习目标】(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性,互异性,无序性;(4)会用集合语言表示有关数学对象.【预习指导】对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.阅读教材,并思考下列问题:(1)有哪些概念?(2)有哪些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?【课堂探究】一、问题1:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.观察上面的例子,指出这些实例的共同特征是什么?(分组讨论,得出集合的概念)问题2:你还能给出一些集合的例子吗?(学生自己举例子,得出集合元素的特性)二、1、任意给定一个对象和一个集合,它们之间有什么关系?用符合如何表示?2、常用的数集(自然数集、整数集、正整数集、有理数集、实数集)的专用符号你记住了吗?3、要表示一个集合共有几种方式?4、试比较自然语言、列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?5、如何根据问题选择适当的集合表示法?【课堂练习】1.下列说法正确的是( )A.{}1,2,{}2,1是两个集合B.{}(0,2)中有两个元素C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}2|20x Q x x ∈++=且是空集 2.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是( )A.{}3,2,1,0,1,2,3---B.{}2,1,0,1,2--C.{}0,1,2,3D.{}1,2,33.给出下列4{},0.3,0,00R Q N +∉∈∈其中正确的个数是( )A.1个B.2个C.3个D.4个4.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为_______________.5.已知集合A ={}20,1,x x -,则x 在实数范围内不能取哪些值_____________.6.(创新题)已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【尝试总结】1.本节课我们学习过哪些知识内容?2.选择集合的表示法时应注意些什么?。

人教版数学高一A版必修一学案 1.1.1.1集合的含义

人教版数学高一A版必修一学案 1.1.1.1集合的含义

§1.1 集 合1.1.1 集合的含义与表示 第1课时 集合的含义学习目标 1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题. 3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一 集合的概念 元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母a ,b ,c ,…表示.(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母A ,B ,C ,…表示. 知识点二 元素与集合的关系思考 1是整数吗?12是整数吗?有没有这样一个数,它既是整数,又不是整数?答案 1是整数;12不是整数.没有.梳理 元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为∈、∉. 知识点三 元素的三个特性思考 某班所有的“帅哥”能否构成一个界限清楚的群体?某班身高高于175厘米的男生呢?答案 某班所有的“帅哥”不能构成界限清楚的群体,因“帅哥”无明确的标准,难以判定该班某男生是否属于“帅哥”这一群体.高于175厘米的男生能构成一个界限清楚的群体,因为标准确定.梳理 元素的三个特性是指确定性、互异性、无序性.知识点四常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R1.y=x+1上所有点构成集合A,则点(1,2)∈A.(√)2.0∈N但0∉N*.(√)3.由形如2k-1,其中k∈Z的数组成集合A,则4k-1∉A.(×)类型一判断给定的对象能否构成集合例1考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某班的所有高个子同学;(4)3的近似值的全体.考点集合的概念题点集合的概念解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合;(2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C .平面直角坐标系内第一象限的一些点D .所有小的正数 考点 集合的概念 题点 集合的概念 答案 B解析 A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“平面直角坐标系内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合. 类型二 元素与集合的关系 命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N , 其中正确的个数为( ) A .1 B .2 C .3 D .4 考点 常用的数集及表示 题点 常用的数集及表示 答案 B解析 12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3是无理数,④错; 0是自然数,⑤错.故选B.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号 “∈”或“∉”填空. -2________R ;-3________Q ; -1________N ;π________Z . 考点 常用的数集及表示 题点 常用的数集及表示 答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.考点 元素与集合的关系 题点 伴随元素问题 答案 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素为0,1,2.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( ) A .a >-4 B .a ≤-2 C .-4<a <-2 D .-4<a ≤-2考点 元素与集合的关系题点 由元素与集合的关系求参数的值 答案 D解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2.又∵2∈A ,∴2×2+a >0,a >-4,∴-4<a ≤-2. 类型三 元素的三个特性的应用例4 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x .(1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值; (3)是否存在实数a ,x ,使A =B . 考点 元素与集合的关系题点 由元素与集合的关系求参数的值 解 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. (3)显然a 2+1≠0.由集合元素的无序性, 只可能a -3=0或2a -1=0. 若a -3=0,则a =3, A ={a -3,2a -1,a 2+1} ={0,5,10}≠B .若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1} =⎩⎨⎧⎭⎬⎫0,-52,54≠B .故不存在这样的实数a ,x ,使A =B .反思与感悟 元素的无序性主要体现在:①给出元素属于某集合,则它可能等于集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等. 跟踪训练4 已知集合M 中含有三个元素:2,a ,b ,集合N 中含有三个元素:2a,2,b 2,且M =N ,求a ,b 的值. 考点 元素与集合的关系题点 由元素与集合的关系求参数的值 解 方法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧ a =b 2,b =2a ,解得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.方法二 ∵两个集合相等,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2,a ·b =2a ·b 2,即⎩⎪⎨⎪⎧a +b (b -1)=0, ①ab ·(2b -1)=0, ②∵集合中的元素互异, ∴a ,b 不能同时为零.当b ≠0时,由②得a =0或b =12.当a =0时,由①得b =1或b =0(舍去). 当b =12时,由①得a =14.当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.1.下列给出的对象中,能组成集合的是( )A .一切很大的数B .好心人C .漂亮的小女孩D .清华大学2018年入学的全体学生 考点 集合的概念 题点 集合的概念 答案 D2.下面说法正确的是( ) A .所有在N 中的元素都在N *中 B .所有不在N *中的数都在Z 中 C .所有不在Q 中的实数都在R 中 D .方程4x =-8的解既在N 中又在Z 中 考点 常用的数集及表示 题点 常用的数集及表示 答案 C3.由“book ”中的字母构成的集合中元素个数为________. 考点 集合中元素的特征 题点 集合中元素的个数 答案 34.下列结论不正确的是________.(填序号) ①0∈N; ②13∈Q; ③0∉Q; ④-1∈Z .考点 元素与集合的关系 题点 判断元素与集合的关系 答案 ③5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值. 考点 元素与集合的关系题点 由元素与集合的关系求参数的值解 由元素互异性知m ≠0,m 2-3m +2≠0.由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3, 当m =0时,与m ≠0相矛盾,当m=3时,此时集合A中的元素为0,3,2,符合题意.故实数m=2.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.。

高一数学人教A版必修一学案1.1.1集合的含义与表示(一)

高一数学人教A版必修一学案1.1.1集合的含义与表示(一)

集合的含义与表示(一)一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。

二、自学导引:.集合的含义:一般的,我们把研究统称为;把叫做集合(简称集).集合的相等关系:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

.如果是集合的元素,就说集合,记作:如果不是集合的元素,就说集合,记作:.常用数集及表示符号.注意:自然数集与非负整数集是相同的,即自然数集包括数;集合还可以用文氏图来表示。

常用数集属于()集元素与集合的关系合不属于()确定性互异性无序性.集合元素的三个性质:()确定性:设是一个给定的集合,是某一具体对象。

则或者是的元素,或者不是的元素,两种情况必有一种且只有一种情况成立。

()互异性:“集合的元素必须是互异的”,就是说“对于一个给定集合,它的任何两个元素都是不同的”。

如方程的解构成的集合为而不能记为()无序性:集合与它的元素的排列顺序无关,如集合与是同一集合。

三、典例剖析例.考察下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校年在校的所有高个子同学;(3)不超过的非负数;(4)方程在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)的近似值的全体。

变式训练.下列各组对象:①接近于的数的全体;②某一班级内视力较好的同学;③平面内到点的距离等于的点的全体;④所有锐角三角形;⑤太阳系内的所有行星。

其中能构成集合的组数是(). 组. 组. 组. 组例.()已知∈,∈,()∈吗?()已知∈,∈,()∈吗?变式训练:.已知∈,∈,试判断元素与集合,的关系。

人教A版数学必修一教案:集合的含义与表示

人教A版数学必修一教案:集合的含义与表示

第一章集合與函數概念一. 課標要求:本章將集合作為一種語言來學習,使學生感受用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言描述數學對象,發展學生運用數學語言進行交流的能力 .函數是高中數學的核心概念,本章把函數作為描述客觀世界變化規律的重要數學模型來學習,強調結合實際問題,使學生感受運用函數概念建立模型的過程與方法,從而發展學生對變數數學的認識 .1. 瞭解集合的含義,體會元素與集合的“屬於”關係,掌握某些數集的專用符號.2. 理解集合的表示法,能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用.3、理解集合之間包含與相等的含義,能識別給定集合的子集,培養學生分析、比較、歸納的邏輯思維能力.4、能在具體情境中,瞭解全集與空集的含義.5、理解兩個集合的並集與交集的含義,會求兩個簡單集合的交集與並集, 培養學生從具體到抽象的思維能力.6. 理解在給定集合中,一個子集的補集的含義,會求給定子集的補集 .7. 能使用Venn圖表達集合的關係及運算,體會直觀圖示對理解抽象概念的作用 .8. 學會用集合與對應的語言來刻畫函數,理解函數符號y=f(x)的含義;瞭解函數構成的三要素,瞭解映射的概念;體會函數是一種刻畫變數之間關係的重要數學模型,體會對應關係在刻畫函數概念中的作用;會求一些簡單函數的定義域和值域,並熟練使用區間表示法 .9. 瞭解函數的一些基本表示法(列表法、圖象法、分析法),並能在實際情境中,恰當地進行選擇;會用描點法畫一些簡單函數的圖象.10. 通過具體實例,瞭解簡單的分段函數,並能簡單應用.11. 結合熟悉的具體函數,理解函數的單調性、最大(小)值及其幾何意義,瞭解奇偶性和週期性的含義,通過具體函數的圖象,初步瞭解中心對稱圖形和軸對稱圖形.12. 學會運用函數的圖象理解和研究函數的性質,體會數形結合的數學方法.13. 通過實習作業,使學生初步瞭解對數學發展有過重大影響的重大歷史事件和重要人物,瞭解生活中的函數實例.二. 編寫意圖與教學建議1. 教材不涉及集合論理論,只將集合作為一種語言來學習,要求學生能夠使用最基本的集合語言表示有關的數學對象,從而體會集合語言的簡潔性和準確性,發展運用數學語言進行交流的能力. 教材力求緊密結合學生的生活經驗和已有數學知識,通過列舉豐富的實例,使學生瞭解集合的含義,理解並掌握集合間的基本關係及集合的基本運算.教材突出了函數概念的背景教學,強調從實例出發,讓學生對函數概念有充分的感性基礎,再用集合與對應語言抽象出函數概念,這樣比較符合學生的認識規律,同時有利於培養學生的抽象概括的能力,增強學生應用數學的意識,教學中要高度重視數學概念的背景教學.2. 教材儘量創設使學生運用集合語言進行表達和交流的情境和機會,並注意運用Venn圖表達集合的關係及運算,幫助學生借助直觀圖示認識抽象概念. 教學中,要充分體現這種直觀的數學思想,發揮圖形在子集以及集合運算教學中的直觀作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省衡水中学高一数学必修一学案:1.1.1集合的含义与表示(一)
一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。

二、自学导引:
1.集合的含义:
一般的,我们把研究
统称为 ;把 叫做集合(简称集)
2.集合的相等关系:只要构成两个集合的元素是一样的,我们就称这两个集合是 相等的。

3.如果a 是集合A 的元素,就说a 集合A,记作:
如果a 不是集合A 的元素,就说a 集合A,记作:
4.常用数集及表示符号
0;集合还可以用文氏图来表
示。

集合的概念
常用数集 属于(a A ∈)
集 元素与集合的关系
合 不属于(a A ∉)
确定性
集合种元素的性质 互异性
无序性
6.集合元素的三个性质:
(1)确定性:设A 是一个给定的集合,x 是某一具体对象。

则x 或者是A 的元素,x 或者不
是A 的元素,两种情况必有一种且只有一种情况成立。

(2)互异性:“集合的元素必须是互异的”,就是说“对于一个给定集合,它的任何两个元
素都是不同的”。

如方程012=-x 的解构成的集合为{},1而不能记为{}1,1
(3)无序性:集合与它的元素的排列顺序无关,如集合{
}c b a ,,与{}a c b ,,是同一集合。

三、典例剖析
例1.考察下列每组对象能否构成一个集合:
(1) 著名的数学家;
(2) 某校2007年在校的所有高个子同学;
(3) 不超过20的非负数;
(4) 方程092=-x 在实数范围内的解;
(5) 直角坐标平面内第一象限的一些点;
(6) 3的近似值的全体。

变式训练
1.下列各组对象:①接近于0的数的全体;②某一班级内视力较好的同学;③平面内到点O 的距离等于2的点的全体;④所有锐角三角形;⑤太阳系内的所有行星。

其中能构成集合的组数是 ( )
A. 2组
B. 3组
C. 4组
D. 5组
例2.(1)已知a ∈N ,b ∈N ,(a+b )∈N 吗?
(2)已知a ∈N ,b ∈Z ,(a+b )∈Z 吗?
变式训练:
2.已知a ∈Q ,b ∈R ,试判断元素a+b 与集合Q ,R 的关系。

例3。

已知}{12,52,22a a a A +-=,且A ∈-3,求实数a 的值。

变式训练:
3.已知{x,x 2-x,0}表示一个集合,求实数x 的范围。

相关文档
最新文档