汽车车身设计重点

合集下载

汽车车身设计及制造工艺新技术分析

汽车车身设计及制造工艺新技术分析

汽车车身设计及制造工艺新技术分析随着汽车行业的不断发展,车身设计及制造工艺技术也在不断地更新和升级。

在这篇文章中,我们将对汽车车身设计及制造工艺新技术进行分析,探讨其对汽车行业的影响以及未来的发展趋势。

一、汽车车身设计新技术分析1. 轻量化设计技术随着环保意识的增强和能源危机的加剧,轻量化设计技术成为汽车行业的热门话题。

轻量化设计通过采用更轻、更坚固的材料来减轻车身重量,达到降低燃油消耗、提高能源利用率的目的。

目前,碳纤维复合材料、铝合金和镁合金等新材料的应用成为轻量化设计的主要趋势。

这些新材料具有密度低、强度高的特点,能够在保证车身安全性的前提下显著减少整车重量,提高汽车的动力性能和燃油经济性。

2. 智能化设计技术随着人工智能和大数据技术的快速发展,智能化设计技术也逐渐在汽车行业中得到应用。

智能化设计技术通过借助计算机仿真和虚拟现实技术,实现对车身结构的优化设计和自动化生产。

这种技术能够提高设计效率,降低成本,同时还能够更精确地预测车身在碰撞、扭曲等情况下的变形和破坏情况,为车身设计和工艺提供更科学的依据。

3. 模块化设计技术随着汽车产品线不断丰富和多样化,模块化设计技术成为一种普遍的设计趋势。

模块化设计技术能够将车身结构分割成不同的模块,并且通过标准化和通用化的设计,使得不同车型之间的共用率提高,降低制造成本。

模块化设计技术还能够提高生产效率,减少生产周期,更好地适应市场需求的快速变化。

二、汽车车身制造工艺新技术分析1. 激光焊接技术传统的汽车车身焊接工艺主要采用点焊和焊锡等方式,而激光焊接技术则是一种新型的高效、精确的焊接工艺。

激光焊接技术能够快速并且精确地完成焊接工作,焊接接头的质量更加可靠,焊接变形、气泡等缺陷减少,大大提高了车身的质量和稳定性。

与传统焊接相比,激光焊接技术还可以减少对环境的污染和对工人的伤害,是一种环保型的制造工艺。

2. 涂装技术涂装工艺是汽车制造过程中的重要环节,也是保证汽车外观质量和耐久性的关键。

汽车车身的空气动力学设计

汽车车身的空气动力学设计

汽车车身的空气动力学设计一、引言随着现代汽车技术的不断发展,空气动力学设计已成为汽车设计领域中不可忽视的重要因素。

汽车车身的空气动力学设计能够显著影响车辆的性能和油耗,并调整车辆的稳定性和行驶舒适度。

本文将探讨汽车车身的空气动力学设计要点以及对整体性能的影响。

二、减少空气阻力的设计减少空气阻力是汽车车身空气动力学设计的主要目标之一。

为了降低阻力,设计师需要考虑以下几个方面。

1.车身外形设计车身外形应该尽可能流线型,减少空气流动中的湍流现象。

流线型车身能够使空气更加顺利地流过车辆,减少空气阻力。

设计师通常会借鉴飞机和鱼的形态进行车身外形设计,以减少阻力。

2.车身下部设计车身的底部设计也是关键。

通过优化车底板的设计,可以减少底部空气的湍流,并提高车辆的稳定性。

此外,添加护板、扰流板等装置也能减少车辆底部的阻力,进一步提高车辆的空气动力学性能。

3.车窗、后视镜、轮毂等细节设计车窗、后视镜、轮毂等汽车细节设计也应考虑减少阻力。

设计师可以采用更小的车窗、更小的后视镜,以及流线型的轮毂设计,来减少空气阻力的产生。

三、增加空气附着力的设计除了减少空气阻力外,增加空气附着力也是汽车车身空气动力学设计的重要目标。

通过增加空气附着力,可以提高汽车的操控性和行驶的稳定性。

1.扰流板设计扰流板的设计可以帮助车辆在高速行驶时增加空气附着力。

扰流板的位置和形状是关键,设计师需要根据车辆的具体情况进行合理设计,以提高车辆在高速行驶时的稳定性。

2.车顶翼设计车顶翼是一种常见的增加空气附着力的装置。

它可以改变车辆后部的气流流向,增加下压力,提高车辆行驶时的稳定性。

3.侧裙设计侧裙是装在车辆两侧下部的附着装置,可以减少空气从侧面流入车辆底部的湍流,增加车辆的空气附着力,提高行驶的稳定性和安全性。

四、提高行驶舒适度的设计除了影响性能和油耗外,汽车车身的空气动力学设计也可以调整车辆的行驶舒适度。

1.减少噪音汽车在行驶时产生的风噪和空气流动噪音会影响驾驶舒适度。

汽车车身结构及安全设计

汽车车身结构及安全设计

汽车车身结构及安全设计一、引言在现代社会中,汽车已成为人们生活中不可或缺的交通工具。

保证汽车乘坐安全的关键在于其车身结构和设计。

本文将重点探讨汽车车身结构及安全设计的重要性和相关策略。

二、汽车车身结构汽车车身结构是指车辆的外部组成部分,它直接关系到车辆的安全性和整体性能。

一个合理且坚固的车身结构能够在碰撞和侧翻等事故中提供更好的保护。

1. 车身材料车身主要由钢材和铝合金构成。

钢材具有高强度和抗冲击性能,并且成本较低,因此广泛应用于车身结构中。

而铝合金则较轻,可以减轻整车重量,提升燃油效率。

同时,为了提高车辆的安全性能,一些高端汽车还采用了碳纤维等先进材料。

2. 车身类型常见的车身类型包括轿车、SUV、MPV等。

不同类型的车身在结构上有所不同,因此安全设计也会有所差异。

例如,SUV通常具有更高的承载能力和抗侧翻性能,而轿车则更注重碰撞保护。

三、安全设计策略针对汽车车身的安全设计,制造商采用了多种策略来最大限度地确保车辆乘坐安全。

1.碰撞安全设计为了降低碰撞力对车辆内部乘坐者的伤害,汽车采用了多层面、可吸能的结构设计。

这种设计能够减少撞击时产生的冲击力,保护车内人员的安全。

此外,车身还配备了气囊、安全带等保护装置,以进一步降低碰撞损伤。

2.侧翻保护设计侧翻是导致汽车事故的一种常见原因。

为了提高车辆的侧翻稳定性,制造商在车身结构设计上考虑了重心的布置以及底盘和悬挂系统的调整。

此外,也通过在车身侧面设置加固材料和增加车身刚性来增强车辆的侧翻抗性。

3.防撞装置为了在发生碰撞时最大限度地减少乘坐者的伤害,现代汽车配备了多种防撞装置。

如安全气囊、ABS防抱死系统、电子稳定控制系统等。

这些装置能够监测车辆状态并及时采取措施来保证车辆的稳定和乘坐者的安全。

四、未来汽车安全设计趋势未来,随着科技的不断进步和消费者对安全性的需求不断提高,汽车安全设计也将继续发展和进化。

1.智能安全系统随着人工智能技术的发展,智能安全系统将逐渐应用于汽车安全设计中。

汽车整车参数设计完整

汽车整车参数设计完整

汽车整车参数设计完整一、车身尺寸:车身尺寸是汽车整车参数设计中最基本的部分,包括车长、车宽、车高和轴距。

车长一般指车辆整体长度,车宽指车辆侧视时的最大宽度,车高指车辆顶部到地面的垂直距离,轴距指前后轮中心之间的距离。

车身尺寸是衡量汽车空间利用率和外观特点的重要指标。

二、车辆重量:车辆重量是指整车在空载状态下的重量,包括车身重量、发动机重量、底盘重量等。

车辆重量不仅是影响汽车性能和燃油经济性的重要指标,也是制定汽车安全标准和交通法规的基础。

三、发动机参数:发动机参数包括最大功率、最大扭矩、排量、气缸数、气门数等。

最大功率和最大扭矩是衡量发动机性能的重要指标,排量和气缸数决定了发动机的功率和扭矩输出水平,气门数影响发动机的进、排气效率。

四、动力系统参数:动力系统参数包括传动方式、变速器类型和挡位数等。

传动方式有前驱、后驱和四驱等,不同的传动方式对于车辆的操控性和动力分配有着不同的影响。

变速器类型一般有手动和自动两种,手动变速器具有操控性好和燃油经济性高的特点,而自动变速器则更加方便和舒适。

挡位数决定了车辆的加速性和换挡平顺性。

五、悬挂系统参数:悬挂系统参数包括前悬挂类型、后悬挂类型和悬挂方式等。

前悬挂类型有麦弗逊式、双叉臂式和横臂式等,后悬挂类型有多连杆式和扭力梁式等,不同的悬挂类型对于车辆的操控性、稳定性和舒适性有着不同的影响。

悬挂方式通常有独立悬挂和非独立悬挂两种,独立悬挂具有更好的路感和操控性,非独立悬挂则更加简单和经济。

六、制动系统参数:制动系统参数包括制动器类型和制动器尺寸等。

制动器类型一般有盘式和鼓式两种,盘式制动器具有散热性好和制动效果稳定的特点,鼓式制动器则更加经济和简单。

制动器尺寸决定了制动器的制动力大小,较大的制动器尺寸通常意味着更好的制动性能。

综上所述,汽车整车参数设计是衡量汽车性能和功能的重要部分,包括车身尺寸、车辆重量、发动机参数、动力系统参数、悬挂系统参数和制动系统参数等。

车身设计文档

车身设计文档

车身设计1. 简介车身设计是指在汽车设计中,对车辆外观和结构进行规划和设计的过程。

车身设计不仅仅关注汽车外观的美观性,还需要考虑车辆的空气动力学性能、安全性、舒适性等因素。

一个成功的车身设计能够提升汽车的品牌形象,并且满足用户的需求和期望。

2. 设计原则2.1 美观性车身设计的首要任务是让汽车美观动人。

一辆外观吸引人的汽车能够吸引消费者的眼球,并且提升品牌形象。

在车身设计中,设计师通常会运用流线型、曲线美、比例协调等原则来打造出具有视觉冲击力的外观。

2.2 空气动力学性能车身设计中的空气动力学性能是非常重要的。

通过对车身进行流线型设计,能够减少风阻,降低油耗,提升操控性能。

此外,合理的车身设计还能够减少风噪和飘移现象,提高汽车的稳定性和舒适性。

2.3 安全性在车身设计中,安全性是一个不可忽视的因素。

合理的车身结构和材料选择能够提供更好的碰撞保护,保障乘车人员的生命安全。

例如,采用高强度钢材料来构建车身能够提高车辆的抗碰撞能力。

2.4 实用性车身设计需要满足用户的实际需求和使用习惯。

设计师要注重车门开启角度、车身高度、车厢宽度等细节,以提升乘坐空间和使用便利性。

此外,车身设计还需要考虑到用户对于储物空间、行李箱容量等方面的需求。

3. 设计流程3.1 概念设计概念设计是车身设计的第一步。

在这个阶段,设计师会收集市场调研和用户需求,并且进行创意构思。

通过手绘或计算机辅助设计工具,设计师将自己的想法转化为初步的车身设计方案。

3.2 三维建模在确定了初步设计方案后,设计师会使用CAD软件进行车身的三维建模。

通过将设计方案转化为三维模型,设计师能够更加直观地观察和修改设计细节。

三维建模还能够帮助工程师进行工艺分析和生产准备。

3.3 动态仿真动态仿真是车身设计的重要环节之一。

通过运用流体力学和结构分析原理,设计师能够预测并优化汽车的空气动力学性能、悬挂系统、刹车系统等方面。

动态仿真可以帮助设计师找出设计中存在的问题,并进行改进。

(汽车行业)汽车车身设计基础知识

(汽车行业)汽车车身设计基础知识

(汽车行业)汽车车身设计基础知识汽车车身设计基础知识车门、车窗及其附件和密封车门是车身上重要部件之壹。

按其开启方式可分为顺开式、逆开式、水平移动式、上掀式和折叠式等几种。

顺开式车门即使在汽车行驶时仍可借气流的压力关上,比较安全,而且便于驾驶员在倒车时向后观察,故被广泛采用。

逆开式车门在汽车行驶时若关闭不严就可能被迎面气流冲开,因而用得较少,壹般只是为了改善上下车方便性及适于迎宾礼仪需要的情况下才采用。

水平移动式车门的优点是车身侧壁和障碍物距离较小的情况下仍能全部开启。

上掀式车门广泛用作轿车及轻型客车的后门,也应用于低矮的汽车。

折叠式车门则广泛应用于大、中型客车上。

在有些大型客车上,仍备有加速乘客撤离事故现场以及便于救援人员进入的安全门。

轿车、货车驾驶室的车门以及客车驾驶员出入的车门通常由门外钣、门内钣、窗框(有的车上仍装有三角窗)等组成。

门内钣是各种附件的安装基体。

在其上装有:门铰链、升降玻璃及其导轨、玻璃升降器、门锁、车门开度限位器等附件。

有的轿车门内仍布置有暖气通风管道和立体声收放音机的扬声器等等。

车门借铰链安装在车身壳体上。

在汽车行驶时,车身壳体将产生反复扭转变形。

为避免在此情况下车门和门框摩擦产生噪声,车门和门框之间留有较大的间隙,靠橡胶密封条将间隙密封。

汽车的前、后窗通常采用有利于视野而又美观的曲面玻璃,借橡胶密封条嵌在窗框上或用专门的粘合剂粘贴在窗框上。

为便于自然通风,汽车的侧窗玻璃通常可上、下或前、后移动。

在玻璃和导轨之间装有呢绒或植绒橡胶等材料的密封槽。

某些汽车的侧窗仍采用有利于汽车布置的圆柱面玻璃。

侧窗玻璃采用茶色或降热层可使室内保温且具有安闲宁静的舒适感。

具有完善的冷气、暖气、通风及空调设备的高级客车常常将侧窗玻璃设计成不可移动的,以提高车身的密封性。

汽车车身造型的演变从19世纪末到20世纪初期,汽车设计师把主要精力都用在了汽车的机械工程学的发展和革新上。

到了20世纪前半期,汽车的基本构造已经全部发明出来后,汽车设计者们开始着手从汽车外部造型上进行改进,且相继引入了空气动力学、流体力学、人体工.程学以及工业造型设计(工业美学)等概念,力求让汽车能够从外形上满足各种年龄、各种阶层,甚至各种文化背景的人的不同需求,使汽车成为真正的科学和艺术相结合的最佳表现形象,最终达到最完善的境界。

车身设计重要知识点总结

车身设计重要知识点总结

车身设计重要知识点总结一、设计原则1、空气动力学原理:车身设计中的一个重要方面就是空气动力学,它涉及到车身的气流分析、气动风洞试验以及降低风阻的设计等方面。

这些知识点对于汽车的燃油经济性和性能有着重要的影响。

2、结构设计原则:车身的结构设计是非常重要的,它直接关系到了车身的强度、稳定性和安全性。

因此,在车身设计中需要考虑到各种受力情况,以及选用合适的材料和结构形式。

3、美学原则:车身设计中的美学原则是至关重要的,因为一个好的外形设计可以提高车辆的吸引力和辨识度。

因此,在车身设计中需要注重对比度、曲线美学和比例等方面的设计原则。

4、人机工程学原则:车身设计需要考虑到人机工程学,以保证驾驶员的舒适性和便利性。

这包括对座椅、操纵件和仪表板等方面的设计。

二、设计流程1、概念设计:车身设计的第一步是概念设计,这包括对外形、尺寸和结构等方面的初步设想。

在这一阶段需要考虑到市场需求和设计趋势。

2、方案设计:在概念设计确定后,需要进行方案设计阶段,这包括对车身线条、面板和细节设计的深入研究和反复修改。

3、模型制作:设计师需要根据方案设计来制作车身模型,以便进行视觉和实物检验。

4、评估和修改:制作车身模型后,需要进行评估和修改,以保证车身设计符合产品要求。

5、工程设计:在车身设计确定后,需要进行工程设计,这包括对车身结构和材料等方面的细节设计。

6、工艺设计:最后需要进行工艺设计,以保证车身设计的可生产性和可维护性。

三、材料选择1、钢材:钢材是汽车车身中最主要的材料之一,它的强度和成型性能都比较好,而且成本较低。

2、铝合金:铝合金是轻量化材料的首选,它的密度比钢材小,但强度却很高,而且具有优异的耐腐蚀性和成型性能。

3、碳纤维复合材料:碳纤维复合材料是新型的轻量化材料,它具有密度小、强度高和刚性好的特点,但成本较高。

4、塑料材料:塑料材料适用于车身零部件的生产,它具有成型性好、重量轻和耐腐蚀性强的特点。

四、制造工艺1、冲压成型:冲压是车身成形中常用的工艺,它可以有效地提高产能和成本效益,而且成形精度较高。

汽车设计基础复习资料

汽车设计基础复习资料

汽车设计基础复习资料学习汽车设计需要有一定的专业知识和技能。

在这篇文章中,我们将分享一些汽车设计的基础知识和复习资料。

1.汽车设计的基本概念和原则汽车设计的基本概念包括汽车的结构、功能、美学和实用性。

在设计汽车时要遵循的原则有以下几点:•一致性:车身各部分应达到协调一致,车辆的整体感应当有一个和谐的视觉效果。

•比例:车体各部分的尺寸、长度、宽度、高度的比例应该合理,不应显得突兀或不协调。

•平衡:车身前后、左右应均衡,既能满足美学需求,又能保证车体稳定性。

•舒适性:车内空间布局合理,舒适性好,驾驶员的视角宽广,角度适合。

•安全性:车身结构强度要足够强,以确保在碰撞时尽量减弱颠簸的力道。

安全带、气囊、抗侧倾装置是必不可少的。

2.汽车设计中的主要元素在汽车设计中,影响美感的因素有很多,以下是我们列出的一些关键元素:•车灯:车灯是整个车身较为显著的部分,起到了很重要的美化作用。

车前大灯、日间行车灯、动态车尾灯,每个部分注重在构造中掌握设计感。

•车轮:车轮是车身的重要组成部分,它的造型很大程度上影响车辆的视觉效果和稳定性。

合理设置轮缘和轮胎,本体和轮边应有着良好的比例。

•车漆:汽车的色彩外观对品牌媒介、美感塑造影响巨大。

由于色彩对驾驶员的心理产生直接影响,需要好的设计色彩。

•车身线条:车身线条是设计中必不可少的元素,不同的车身线条会给人带来不同的视觉效果和感受。

3.汽车设计的艺术模式汽车设计是一项技术与艺术相结合的工程。

与其他艺术品一样,汽车设计需要独具特色的风格和技巧。

以下是几种主流的汽车设计模式:•流线型:采用流线型设计可以使车辆变得更加光滑、空气阻力更小,这是为了提高汽车速度和燃油效率的一种模式。

•方盒型:方盒模式适用于今日的城市远距离行驶。

它强调可扩展性和功能性。

为了满足乘客的日常需求,内部空间通常是平面化的,有一个方便的进出口。

•包容性:消费者倾向于更符合自己的情感模式,包容性模式是一种在设计中充分考虑消费者需求的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车车身设计重点1.汽车车身设计要考虑三大主题:节能,环保,安全。

2.车身的腐蚀形式:孔洞腐蚀,间隙腐蚀,端部腐蚀,积存腐蚀,机能腐蚀。

3.车身轻量化前提:车身本体通常由纵梁,横梁,立柱,加强板等车身结构件和车身覆盖件焊合而成为车身壳体。

4.眼椭圆:即是用来描述汽车驾驶员以正常驾驶姿态就坐在座椅上时,眼睛在车身坐标中的活动范围。

5.主动安全性:也称为行驶安全性,它是由汽车的结构、工艺和管理上各种措施的总和来保证的。

6.如果将作用在汽车外表面上的压力合成,就得到作用在汽车上的合力F。

这个合力是由于空气的相对运动而产生的,称为气动力。

7.非承载式车身的优点:1)由于车身与车架的连接使用了弹性橡胶垫,可以适当吸收车架的扭转变形和降低噪声,同时还可起到辅助缓冲作用,因此既延长了车身的使用寿命,又提高了乘坐舒适性。

2)发生撞车事故时,车架对车身起到一定的保护作用。

3)简化了装配工艺,便于组织专业化协作。

这是因为底盘和车身可以分开装配,然后总装在一起的缘故。

4)由于有车架作为整车的基础,便于汽车上各总成和部件的安装,同时也易于更改车型和改装成其他用途的车辆。

非承载式车身的缺点:1)由于车身基本不参与整车承载,故必须保证车架有足够大的刚度和强度,从而导致整车的自重增大。

2)由于底盘和车身之间装有车架,所以使整车的高度较大。

3)车架纵梁的生产必须具有大型的压床与焊接、检验设备,故设备投资和基础建设费用较高。

8.承载式车身的优点:1)无车架,减轻整车质量;2)地板高度降低,上下车方便;3)适合轿车、小车,以及城市SUV这种混种车,比较轻、省油。

4)公路行驶平稳,整体式车身比较安全。

承载式车身的缺点:1)传动系统和悬架的震动和噪音会直接传入车内,需采取防震和隔声措施;2)底盘强度远不如大梁结构的车身,当四个车轮受力不均匀时,车身会发生变形;3)制造成本偏高。

9.车身总体布置设计的性能要求:1)乘坐舒适性,2)车身的密封、隔热和隔声性能,3)安全性,4)视野性,5)上下车方便性,6)操纵方便性。

10.车身轻量化的途径:1)整车造型与总布置对轻量化的影响。

2)汽车造型与车身轻量化。

3)缩小整车尺寸而使车身轻量化。

4)车身板件合理分块,尽可能设计成大型冲压件。

5)选择合适的轻质材料制造车身达到轻量化。

6)采用先进的设计方法。

11.如何改善货车的气动力特性:1)装载货物尽量靠近车厢板前部。

2)在驾驶室顶部安装导流罩,使驾驶室涡流区减弱或消失。

气流平顺地流至车身尾部,可使俯仰力矩减小。

3)对于牵引车拖挂挂车时,可在牵引车驾驶室上安装气动力附加装置,以控制牵引车顶部与两侧气流的流动,减少涡流产生。

4)在设计时,使驾驶室与车身等宽,对驾驶室前后转角部分进行处理,同时减小驾驶室后围与车箱之间的间隙。

5)尽量缩短牵引车驾驶室和挂车(封闭车箱和货箱)间的距离。

6)对具有一定高度的挂车,应尽可能地降低挂车的质心高度,并对封闭式车箱或挂车的侧面形状进行最佳化设计。

7)减少车身表面的外凸件,并使车身表面平整光滑。

8)在货车前部加装合适的阻风板,以降低底部气流的速度,达到减阻的目的。

9)利用导流罩与隔离装置的组合使空气阻力减小。

12.涡旋的形成过程随着物体横截面的减小,沿气流方向会发生静压力升高,在边界层中,同样必须用速度降来客服静压力的不断升高,而且一部分动能还要消耗在克服摩擦所做的功上。

因此,在边界层内部,气体的运动速度迅速减小以致滞止下来。

当静压力足够大时,在离物体表面某一距离处的流速为零,而更近的距离内气流方向变成负值,即空气倒流,形成一个分里面离面,在这个分里面的后部,空气的运动形式发生了变化,产生了一个涡旋。

13.汽车碰撞安全性的设计原则:汽车碰撞安全法规是指导汽车碰撞安全性设计与改进的依据。

为了确保达到碰撞安全法规所规定的人员伤害评价指标的要求,以减少乘员伤害,做到车毁人不亡,车伤人不伤。

在车身设计时,必须坚持两点:一是车身结构必须具有缓冲变形功能,以吸收碰撞能量,降低碰撞加速度和撞击力;二是应为车内人员提供生存空间,即车身整体的刚度分布应合理且能够控制,以保证乘坐室撞击时的完整性。

道路上的车辆碰撞事故主要是正面碰撞和侧面碰撞。

因此,车身设计时,正面碰撞的碰撞变形区域要尽可能多地吸收撞击能量,并使其变形形式以及变形特性满足一定的要求,即低速碰撞时从车辆的前端到保险杠之间,其车辆的变形以及变形力值要小,以保护行人和车辆自身;当发生中等速度碰撞是,从保险杠到悬置前端为相容区要求变形力值应尽量均匀,以最大限度地降低加速峰值;当发生高速碰撞时,为了阻止变形扩展到乘坐室,从悬置到车身前围之间的变形及变形力值应急剧上升,形成自身保护区。

其特性即为理想的正面碰撞变形特性。

总之,在车身设计时,应使车身前部与后部均为弹性结构而中部乘坐室应具有大的刚性。

(汽车结构缓冲与吸能措施:针对汽车前撞和尾撞的缓冲吸能机构,一般多采用不同截面形状的金属薄壁吸能管,如:矩形截面点焊式,矩形截面缝焊式,三角形截面缝焊式。

对于侧撞而言,缓冲吸能结构的设计相对麻烦,其中最大的问题在于即使有足够好的材料来制作缓冲吸能结构,但能用于缓冲和吸能的区间却十分有限。

合理设计汽车的结构,以使乘员安全区在变形尽可能小的情况下获得优良的缓冲与吸能性能,是汽车碰撞安全性设计与改进的基本目标。

车内乘员保护措施:为减轻“二次碰撞”给人体造成的伤害,车内乘员碰撞保护措施越来越被重视,且其性能也在不断提高。

车内乘员碰撞保护措施主要包括安全带、安全气囊、安全转向系统、安全座椅和仪表板等。

)14.如何设计提高汽车碰撞安全性:要使乘员室的结构刚度大于前部变形区域的刚度,并要达到一定的指标限值,这可通过整车结构的刚柔匹配以及采用特殊的传力路径等来实现。

对于碰撞变形区域,设计相对复杂,因为除了要尽可能多的吸收撞击能量外,其变形形式以及变形特性等还要满足一定的要求,即低速碰撞时,车辆的变形以及变形力值都较小,以保护行人或车辆自身;当发生中等速度碰撞时,变形力值应尽量均匀,以最大限度的降低撞击加速度峰值;当发生高速碰撞时,为了阻止变形扩展到乘员室,从悬架到车身前围钣金之间的变形力值应急剧上升。

对于尾部碰撞的情况,虽然其理想碰撞特性应与前部相同,但考虑到现实情况一般是相对碰撞速度较低,并且尾部一般也有足够多的碰撞吸能区间,所以车辆尾部的吸能设计远不如前部重要。

尾部碰撞时车辆乘员受到的最主要伤害形式时颈部冲击损伤,因此,车辆尾部区段应尽量软化,同时,座椅头枕要起到很好的保护作用。

15.什么是气动升力:汽车在行驶时,由于上部和下部空气流速以及压力差别而产生的升力。

气动升力的作用方向垂直于运动方向。

16.对汽车有什么影响:气动升力为正时,将减小车轮上的载荷。

汽车前轴载荷减小,将不利于操纵性;后轴载荷减小,将因减小驱动轮上的附着力而影响动力性。

另外,由于升力作用在车身断面的气压中心上,此中心与汽车的质心一般不相重合,所以在升力作用下,相对于横向轴线将产生一纵倾向力。

升力还可能引起诱导阻力,同时还间接地影响汽车承受各种侧向力的能力。

特别对于速度较高,质量较轻的汽车升力将产生重大影响17.如何减小升力:1)使汽车前部低矮,并使尾部肥厚向上翘,便可获得较大的负迎角。

2)采用后置发动机或中置发动机的总布置方案,也可使汽车前部变得十分低矮。

3)在结构设计时,使前风窗玻璃与水平面的夹角减小。

4)在轿车设计时,应使轿车上半部高度减小。

5)使汽车底部更平滑,减小底部外凸的零部件,也能减小升力。

6)在轿车上采用附加的翼片较小升力。

18.怎样进行汽车车身的防腐蚀设计:一)结构设计时的防腐蚀措施:1)使车身结构避免水,污泥的存积,在闭口截面和凹洼处设置排水孔。

2)去掉顶盖周围的流水槽,防止顶盖端部腐蚀。

3)为避免底板和板件搭接处的腐蚀,应减少存积泥水之处,尽量减少凹凸表面,特别要消除凹部,并在最低部位设置流水孔。

4)对车身骨架进行防腐处理。

二)车身材料选择因考虑防腐蚀:1)多选用镀锌钢板,镀合金钢板,或涂防腐材料。

2)采用耐腐蚀材料铝。

3)尽可能采用塑料件,尤其是外部装饰。

三)确保表面涂装性能:尽量选用先进的工艺和严格的质量管理技术,确保涂料的良好的附着力和防腐作用。

19.气动阻力对空气动力学的影响:汽车的气动阻力是与汽车运动方向相反的空气阻力,它取决于汽车的正面投影面积和气动阻力系数。

气动阻力影响汽车的燃油消耗,加速性能和最高车速。

要减小气动阻力,往往要集中在减小气动阻力系数上。

D=1/2C小Drouv的平方A;A=0.81BH。

20.车身轻量化的目的是在确保车身等部件的强度、刚度的前提下,减轻车身的质量,达到使整车的整备质量降低、改善汽车有关性能的目的。

21.气动力作用在汽车上的作用点称为气动压力中心,简称气压中心。

22.悬置点:车身与车架的固定点,布置在车身横向刚度最大的地方。

23:汽车上的三大总成:发动机、底盘、车身。

24.车身的定义:运送人、货物或各种生产、生活资料的具有特定形状的结构。

25.车身对整车性能的影响:1)决定整车装载质量的大小——运输能力的高低。

2)决定整车的整备质量Go(自重)和造价。

3)影响整车的动力性和燃油经济性。

4)车身形状与汽车的气动阻力密切相关。

5)车身形状影响汽车高速行驶的稳定性;①车身形状决定汽车的侧向几何中心,②车身形状决定汽车迎风风压中心。

6)影响客车的乘卧舒适性、操纵舒适性。

7)与行驶安全密切相关。

8)与整车宜人性密切相关(除舒适性外)。

9)影响整车的通过能力.。

相关文档
最新文档