备战2010高考数学――压轴题训练4

合集下载

高考数学概率压轴题

高考数学概率压轴题

高考数学概率压轴题通常比较复杂,需要学生具备扎实的概率论和统计学基础,同时还需要具备一定的分析问题和解决问题的能力。

以下是一个高考数学概率压轴题的示例:
题目:某射手进行射击训练,假设每次射击击中目标的概率为$p$,且每次射击的结果互不影响。

该射手进行射击直到击中目标两次为止,则第一次射击击中目标但第二次射击未击中的概率为____。

解析:设该射手第一次射击击中的事件为A,第二次射击未击中的事件为B。

首先,第一次射击击中的概率为$p$,即$P(A) = p$。

其次,第一次射击击中后,该射手还有两次射击机会。

第二次射击未击中的概率为$1 - p$,即$P(B) = 1 - p$。

由于第一次和第二次射击是独立的事件,根据独立事件的概率乘法公式,第一次射击击中但第二次射击未击中的概率为:
$P(A \cap B) = P(A) \times P(B) = p \times (1 - p) = p - p^2$故答案为:$p - p^2$。

压轴题型04 比大小问题(原卷版)-2023年高考数学压轴题专项训练

压轴题型04 比大小问题(原卷版)-2023年高考数学压轴题专项训练

压轴题04比大小问题函数“比大小”是非常经典的题型,难度不以,方法无常,很受命题者的青睐。

高考命题中,常常在选择题或填空题中出现这类型的问题,往往将幂函数、指数函数、对数函数、三角函数等混在一起,进行排序。

这类问题的解法往往可以从代数和几何来那个方面加以探寻,即利用函数的性质与图象解答。

○热○点○题○型比较大小的常见方法1、单调性法:当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较;2、作差法、作商法:(1)一般情况下,作差或者作商,可处理底数不一样的对数比大小;(2)作差或作商的难点在于后续变形处理,注意此处的常见技巧与方法;3、中间值法或1/0比较法:比较多个数的大小时,先利用“0”“1”作为分界点,然后再各部分内再利用函数的性质比较大小;4、估值法:(1)估算要比较大小的两个值所在的大致区间;(2)可以对区间使用二分法(或利用指对转化)寻找合适的中间值;5、构造函数,运用函数的单调性比较:构造函数,观察总结“同构”规律,很多时候三个数比较大小,可能某一个数会被可以的隐藏了“同构”规律,所以可能优先从结构最接近的的两个数规律(1)对于抽象函数,可以借助中心对称、轴对称、周期等性质来“去除f()外衣”比较大小;(2)有解析式函数,可以通过函数性质或者求导等,寻找函数的单调性、对称性,比较大小。

6、放缩法:(1)对数,利用单调性,放缩底数,或者放缩真数;(2)指数和幂函数结合来放缩;(3)利用均值不等式的不等关系进行放缩;(4)“数值逼近”是指一些无从下手的数据,如果分析会发现非常接近某些整数(主要是整数多一些),那么可以用该“整数”为变量,构造四舍五入函数关系。

一、单选题1.已知函数()f x 满足()()1ln 0f x x f x x '+<(其中()f x '是()f x 的导数),若12e a f ⎛⎫= ⎪⎝⎭,13e bf ⎛⎫= ⎪⎝⎭,14e c f ⎛⎫= ⎪⎝⎭,则下列选项中正确的是()A .643a b c<<B .634a c b<<C .463b a c<<D .436b c a<<2.已知0.01a =,0.1e 1b =-,1ln 0.01c =+,则().A .a c b>>B .a b c>>C .c b a >>D .b a c>>3.设0.25e a =,1b =,4ln 0.75c =-,则()A .a b c<<B .b a c <<C .c<a<bD .b<c<a4.已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a<<B .c a b<<C .c b a<<D .a c b<<5.已知ln 20.69≈,设3ln 8 3.527 3.536,132a b c e ===,则()A .a c b >>B .b c a >>C .a b c>>D .b a c>>6.已知函数()31sin 2f x x x =-,若π0,12θ⎛⎫∈ ⎪⎝⎭,()()sin cos a fθθ=,()()sin sin b f θθ=,12c f ⎛⎫=-- ⎪⎝⎭,则a ,b ,c 的大小关系为()A .a b c >>B .b a c>>C .a c b>>D .c a b>>7.已知定义在R 上的函数()y f x =,当0x >时,()0f x >,()f x '为其导函数,且满足()()f x f x '<恒成立,若01a <<,则()30f ,()f a ,()1af 三者的大小关系为()A .()()()130af f a f >>B .()()()301f f a af >>C .()()()301f af f a >>D .()()()301f a f af >>8.已知a ,b ,()1,c ∈+∞,且ln 2a a -=,1ln 2ln 22b b -=+,sin1ln tan1c c -=+,其中e 是自然对数的底数,则()A .a b c<<B .b a c <<C .a c b<<D .b<c<a9.设实数,,a b c满足 1.0011.001e e , 1.001 1.001a b c ==-=,则()A .b c a<<B .b a c<<C .c b a <<D .a c b <<10.已知 1.4a =,0.41.1e b =,0.5e c =,则,,a b c 的大小关系是()A .a b c <<B .a c b <<C .b c a<<D .c b a<<11.设130121,sin ,e 124330a b c ===-,则a ,b ,c 的大小关系是()A .b a c>>B .a b c>>C .a c b >>D .c a b>>12.已知0.1e a =,1110b =,c =,则()A .c b a>>B .b a c >>C .a b c>>D .a c b>>13.已知0.992sin1,2a b c ===,则,,a b c 的大小关系是()A .c b a <<B .a c b <<C .c a b<<D .a b c<<14.已知 1.01 1.03 1.021.03, 1.01, 1.02a b c ===,则a ,b ,c 的大小关系是()A .c b a<<B .c<a<bC .b<c<aD .a c b<<15.已知函数()ex x b f x -=,且e ln ba c ==,则()A .()()()f a f b f c <<B .()()()f b f c f a <<C .()()()f a f c f b <<D .()()()f c f b f a <<16.若 1.1ln1.1a =,0.10.1e b =,110c =,则a ,b ,c 的大小关系为()A .a b c<<B .c a b<<C .b a c<<D .a c b<<17.已知12,ln3e 3a b c ===-,则,,a b c 的大小关系为()A .a b c <<B .b<c<aC .a c b<<D .b a c<<18.实数x ,y ,z 分别满足2022e x =,20222023y =,20222023z =,则x ,y ,z 的大小关系为()A .x y z >>B .x z y >>C .z x y >>D .y x z >>19.已知27a =,ln1.4b =,0.2e 1c =-,则()A .a b c <<B .a c b<<C .c<a<b D .c b a<<20.设1111ln ,tan ,101011a b c ===,则()A .a b c <<B .c b a <<C .a c b<<D .c<a<b二、多选题21.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:[](1)()()0x f x f x -'->,()()222exf x f x --=,则下列判断一定不正确的是()A .(1)(0)f f <B .()()22e 0f f >C .33e 0f f >()()D .()()44e 0f f <22.已知函数()x x xf x a b c =+-,其中a ,b ,()0,c ∈+∞,()20f =,则下列结论正确的是()A .102f ⎛⎫> ⎪⎝⎭B .()30f <C .()f x 在R 上单调递减D .()()11f f -最大值为4-23.若ln1.1a =,111b =,sin 0.1c =,21220d =,则().A .a b<B .b c <C .a d<D .c d<24.设 2.983.02a =, 2.993.01b =, 3.013c =,则()A .c b>B .0.013ab<C .b c >D .0.013ab>25.下列不等关系中成立的有()A .()ππsin *n nn>∈N B .2log 3>C .3e ln 3<D .e ln 9>26.已知当关于x 的不等式21e 0x λλ-≥在()1,+∞上恒成立时,正数λ的取值范围为集合D ,则下列式子的值是集合D 的元素的是()A .ln 2ln 3B .5131log log 53-C .3π2tan 5e D .22cos 1sin 1-27.已知定义域为R 的函数()f x 在(]1,0-上单调递增,()()11f x f x +=-,且图像关于()2,0对称,则()f x ()A .()()02f f =B .周期2T =C .在(]1,2单调递减D .满足()()()202120222023f f f >>三、填空题28.已知sin13a =,b =π9c =,则,,a b c 的大小关系是___________.29.设191e 10a =,19b =,32ln 2c =,则____>______>______(填a ,b ,c ).四、解答题30.已知函数()y f x =的定义域为D ,区间M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()y f x =为M 上的t -增长函数.(1)已知()f x x =,判断函数()y f x =是否为区间[]1,0-上的32-增长函数,并说明理由;(2)已知0n >,设()2g x x =,且函数()y g x =是区间[]4,2--上的n -增长函数,求实数n 的取值范围;(3)如果函数()y h x =是定义域为R 的奇函数,当0x ≥时,()22h x x a a =--,且函数()y h x =为R 上的4-增长函数,求实数a 的取值范围.。

2010届高三高考必备:模拟试题压轴大题选编(三)

2010届高三高考必备:模拟试题压轴大题选编(三)

2010届高三高考必备:模拟试题压轴大题选编(三)1.(市东城区示X 校2009—2010学年度第一学期联考)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,某某数a 的值;(Ⅱ)若函数()()xg x e f x =在[02],上是单调减函数,某某数a 的取值X 围.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=, 所以1a =.经检验,当1a =时,2x =是函数()y f x =的极值点. 即1a =.…………………6分(Ⅱ)由题设,'322()(336)xg x e ax x ax x =-+-,又0xe >,所以,(0,2]x ∀∈,3223360ax x ax x -+-≤,这等价于,不等式2322363633x x x a x x x x++≤=++对(0,2]x ∈恒成立. 令236()3x h x x x+=+((0,2]x ∈), 则22'22223(46)3[(2)2]()0(3)(3)x x x h x x x x x ++++=-=-<++, 所以()h x 在区间0,2](上是减函数, 所以()h x 的最小值为6(2)5h =. 所以65a ≤.即实数a 的取值X 围为6(,]5-∞.…………………13分 2.(某某中学2010届高三12月月考)已知0a >且1a ≠,函数()log (1)x a f x a =-。

(1)求()f x 的定义域,并判断()f x 的单调性;(2)若n N *∈,求()lim f n n n a a a→∞+(3)当a e =(e 为自然对数的底数),设()2()(1)(1)f x h x e x m =-⋅-+,若()h x 有极值。

湖北省实验中学2010届高考数学考前冲刺试题理旧人教版

湖北省实验中学2010届高考数学考前冲刺试题理旧人教版

3 1 D. 2
31
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分,请将答案填在答题卡对应题号的位置
上,一题两空的题,其答案按先后次序填写
.
11. 设集合 A y y 2x 1,x R , B y y x2 , x R ,则集合 A B

12.在二项式 (1 3x) n 的展开式中,若所有项的系数之和等于

.
-2-
15. 设 x 表示不超过 x 的最大整数,如 1.5 1, 1.5
2 . 若函数 f (x)
ax 1 ax
( a 0, a 1 ),则 g x
1 fx
2
f x 1 的值域为 __________. 2
三、解答题:本大题共 6 小题,共 75 分,解答应写出文字说明、证明过程或演算步骤
.
10
张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”
(世博会吉祥物)图案,
参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.
(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从
盒中抽两张都不是“海宝”卡的概率是 (Ⅱ) 现有甲乙丙丁四人依次抽奖,
2 ,求抽奖者获奖的概率; 15
3x0 2 a 2 x0
2 y0 ,即 x0
bx0 (2 x0) 2 y0 (2 x0)( a 1) , x0 2
bx0 2 y0 (a 1) 0
a10
因为上式对任意 x0, y0 成立,故
b0
所以对称点为定点 Q ( 1,0) .
20.
21.
-7-
-8-
联立方程组
a
bc
4( 2

2010年广东省高三数学训练题(四)

2010年广东省高三数学训练题(四)

2010年广东省高三数学训练题(四)D(A) 1-13n1-13 (B)1-13 n + 11-13(C) 1-13 n -11-13 (D) 11-13(1)已知数列{a n }满足a 1 =0,a n +1 =a n +2n ,那么a 2005的值是(A)2003×2004 (B)2004×2005 (C)20052(D) 2005×2006(2)已知数列 {a n }(n N )中,a 1 = 1,a n +1 =a n2a n + 1,则a n 为(A) 2n -1 (B) 2n + 1 (C) 12n -1 (D)12n + 1(3)在等比数列 {a n } 中, a 7 a 11 =6,a 4 +a 14 =5, 则a 20a 10=(A)23 (B) 32(C) 23 或 32(D) -23 或-32(4)lim n3+C 1n +C 2n +…+C nn2n=(A)0 (B)32(C)1(D) 不存在 (5)小丁储备2008年赴京观看奥运会的费用,他从2001年起到2007年,每年元旦到银行存入a 元一年定期储蓄,若年利率r 保持不变,且每年存款到期自动转存新的一年定期. 到2008年元旦将所有的存款和利息悉数取出,可提取(A) a (1+r )8元 (B) ar[(1+r )7-(1+r )]元(C) a r[(1+r )8-1]元(D) a r[(1+r )8-(1+r )]元 (6)已知{a n }是等差数列,{b n }是正项等比数列,其公比q ≠1,若a 1 = b 1,a 11 =b 11,则(A) a 6<b 6 (B) a 6 >b 6 (C) a 6≤ b 6 (D) a 6≥b 6 (7) 等差数列{a n }的前n 项和为S n ,若a 1 >0,S 4 =S 8,则当S n 取得最大值时,n 的值为 (A) 5 (B)6(C) 7(D) 8(8)数列{}na 的前n 项和为121n nS+=-,那么该数列前2n 项中所有奇数位置的项的和为(A )2(41)3n- (B )211(21)3n ++ (C )1(41)3n- (D )4(41)3n-(9)等差数列{},{}nna b 的前n 项的和分别为,nnS T ,若231nnSn Tn =+,则lim n →∞ n nab= (A )1 (B)63 (C)23(D)49二、填空题:本大题共4小题,每小题3分,共12分.把答案填在题中横线上.(10) 已知{a n }为等差数列,a 1 =2, S 10=110. 设a n =log 0.5b n ( n ∈ N*),则{b n }的各项和为 .(11) 微处理器在诞生后的25年之内,非常准确地遵循“摩尔定律”:半导体芯片每18个月集成度翻番,价格减半. 半导体芯片价格降低,必然导致电脑价格降低. 若每4年电脑的价格降低三分之一,则现价为8100元的电脑12年后价格可能降为 .(12) 在等比数列中,a 9 + a 10 = a (a ≠ 0), a 19 + a 20 = b ,则a 99 + a 100等于 . (13) 对于n ∈ N*,若{a n }是等差数列,则数列{a 1 + a 2 +…+ a n n}也是等差数列.类比上述性质,相应地,若{b n }是正项等比数列,则数列也是等比数列.三、解答题:本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分8分)设数列{}na 是等比数列,121(1)2n n nT na n a a a -=+-+++,已知121,4T T==, (1)求数列{}n a 的首项和公比;(2)求数列{}nT 的通项公式。

2010年高考模拟试题压轴大题选编(四)

2010年高考模拟试题压轴大题选编(四)

2009—2010年高考模拟试题压轴大题选编(四)2009-12-262.(广东省东华高级中学2010届高三上学期摸底考试)1.已知22()()2x af x x R x -=∈+在区间[1,1]-上是增函数 (I )求实数a 的取值范围;(II )记实数a 的取值范围为集合A ,且设关于x 的方程1()f x x=的两个非零实根为12,x x 。

①求12||x x -的最大值;②试问:是否存在实数m ,使得不等式2121||m tm x x ++>-对a A ∀∈及[1,1]t ∈-恒成立?若存在,求m 的取值范围;若不存在,请说明理由.1.解:(1)2222(2)()(2)x ax f x x ---'=+ ……………………………………………1分 ()f x 在[1,1]-上是增函数()0f x '∴≥即220x ax --≤,在[1,1]x ∈-恒成立 …………① …………3分设 2()2x x ax ϕ=--,则由①得(1)120(1)120a a ϕϕ=--≤⎧⎨-=+-≤⎩解得11a -≤≤所以,a 的取值范围为[1,1].-………………………………………………………6分 (2)由(1)可知{|11}A a a =-≤≤由1()f x x =即2212x a x x-=+得220x ax --=280a ∆=+> 12,x x ∴是方程220x ax --=的两个非零实根12x x a ∴+=,122x x =-,又由(1)11a -≤≤12||3x x ∴-==≤……………………………9分于是要使2121||m tm x x ++≥-对a A ∀∈及[1,1]t ∈-恒成立即213m tm ++>即220m tm +-≥对[1,1]t ∀∈-恒成立 ………②………11分设22()2(2)g t m tm mt m=+-=+-,则由②得22(1)20(1)20g m mg m m⎧-=-->⎪⎨=+->⎪⎩解得2m>或2m<-故存在实数(,2)(2,)m∈-∞-+∞满足题设条件…………………………14分2. 设21081207M a a=++,2P a=+,Q=262a-;若将lg M,lg Q,lg P适当排序后可构成公差为1的等差数列{}na的前三项(I)在使得lg M,lg Q,lg P有意义的条件下,试比较,,M P Q的大小;(II)求a的值及数列{}na的通项;(III)记函数212()2(*)n n nf x a x a x a n N++=++∈的图象在x轴上截得的线段长为nb,设122311()4n n nT b b b b b b-=++⋅⋅⋅+,求nT.2解:(1)由210812070202620M a aP aQ a⎧=++>⎪=+>⎨⎪=->⎩得213a-<<……………2分2110831810(0)M Q a a-=++>∆<………………………3分2210802050(0)M P a a-=++>∆<………………………4分M Q∴>,M P>又当213a-<<时,243P Q a-=-+,当28a-<<时,即P Q<,则P Q M<<………………………5分当8a=时,P Q=,则P Q M=<当813a<<时,P Q>,则Q P M<<(2)依题lg1lglg1lgP QM Q+=⎧⎨=+⎩即1010P QM Q=⎧⎨=⎩∴226210(2)108120710(262)a aa a a-=+⎧⎨++=-⎩解得12a=,从而lg(1)12lg2na P n n=+-⨯=-………………………9分(3)1122n na a a++=+,设()f x与x轴交点为12(,0),(,0)x x∴当()f x =0时有2(1)()0n n x a x a +++=21221,n n n na a x x a a ++∴==-=-………………………………………11分 1222|||1|||n n n n a b x x a a +∴=-=-+= 又2lg 20n a n =->,2n nb a ∴=11122114()n n n n n nb b a a a a ---∴=⨯=- 1223111111114[()()()]4n n nT a a a a a a -∴=⨯-+-++- 11111112l g 22l g 2(12l g 2)(2l g 2)nn a a n n -=-=-=----…………14分 3.(上海市十三校2010届高三第一次联考)1已知函数)0,(1222)(2≠∈--+=x R x a a x f x x ,其中a 为常数,且.0<a (1)若)(x f 是奇函数,求a 的取值集合A ; (2)当a=-1时,设)(x f 的反函数为)(1x f-,且函数)(x g y =的图像与)1(1+=-x fy的图像关于x y =对称,求)1(g 的取值集合B 。

2010年高考数学押题及答案(二)

2010年高考数学押题及答案(二)

2010年高考数学预测系列试题·押题卷2适用:全国各地区2010年高考数学临考模拟试题全国卷(2)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (理科)设集合2{|1,},{|1,}M y y x x R N y y x x R ==+∈==+∈,则M N =( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{|1y y =或2}y =D .{|1}y y ≥答案:D(文科)已知集合}{11A x x x =<->或,}{2log 0B x x =>,则A B ⋂=( )A .}{1x x > B .}{0x x > C .}{1x x <- D .}{11x x x <->或答案:A 2. (理科)如果1(,,1abi a b R i i=-∈+表示虚数单位),那么a b +=( ) A .9 B .3 C .9- D .3-答案:B(文科)函数1x y e-=的反函数是( )A .()1ln 0y x x =+>B .()1ln 0y x x =-+>C .()1ln 0y x x =->D . ()1ln 0y x x =-->答案:A3. 不等式210x x-<成立的一个充分不必要条件是( ) A .10x -<<或1x > B .1x <-或01x <<C .1x >-D . 1x >答案:D .原不等式()21010x x x ⇔->⇔-<<或1x >(*),显然1x >⇒(*),但(*)⇒/1x >.4. 已知点(1,0)M ,直线:1l x =-,点B 是l 上的动点, 过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,则点P 的轨迹是( )A. 抛物线B. 椭圆C. 双曲线的一支D. 直线答案:A.5. ( 理科) .若曲线43,y x x P y x =-=在点处的切线平行于直线则点P 的坐标是( )A .(1,3)B .(-1,3)C .(1,0)D .(-1,0) 答案: C.'3'41,3,1y x y x =-== 当时可解出,此时点为(1,0)点. (文科)某地居民的月收入调查所得数据画的样本的频率分布直方图如图,居民的月收入中位数大约是( ) A.2100 B. 2300 C. 2500 D. 2600答案:B 从频率分布直方图,可以知道要使得两边的面积相等, 平分面积的直线应该在2000~2500之间,设该直线为a x =,则)0004.00002.0(500+⨯+)2000(0005.0-⨯a =)2500(0005.0a -⨯+)0001.00003.00005.0(500++⨯,解得2300=a ,即居民的月收入中位数大约是2300.6. 已知向量)4tan(//),1,(sin ),2,(cos πααα-=-=,则且b a b a 等于( )A .3B .-3C .31D .31-答案:D7. 已知两条直线m n ,,两个平面αβ,.给出下面四个命题: ①,m n αα⇒⊥⊥//m n ;②//αβ,m α⊂,//n m n β⊂⇒; ③//m α,,//n m n βαβ⊥⊥⇒;④//αβ,//m n ,m n αβ⇒⊥⊥. 其中正确命题的是( )A. ①④B. ②④C. ②③D. ①③答案:A 由线面垂直的性质定理知①是正确的;两平面平行,则分别在两平面内的两条直线没有公共点,这两条直线可能平行也可能异面,所以②错误;由,n βαβ⊥⊥知,//n α或n α⊂,当//n α时,又//m α,则m 与n 可能相交、异面、平行;当n α⊂时,又//m α,则m 与n 可能异面或平行,所以③错误;由//m n ,m α⊥知n α⊥,又//αβ,由性质元)yX定理知n β⊥,所以④正确.故正确命题的序号是①④. 8.直线a y x =+ 与圆),,(),,(1221122y x B y x A y x 交与不同的两点=+若1212x x y y a +=,则实数a 的值是( )A .251± B.251- C.251+答案:B9. 已知二次曲线2214x y λ+=,当离心率e ∈时,则实数λ的取值范围是A .[2,0]-B .[3,1]-C .[2,1]-- D .[2,1]--答案:C. 因为1e >,所以方程2214x y λ+=表示的曲线为双曲线,可以转化为2214x y λ-=-,于是2e =,所以222≤≤[2,1]λ∈--.10. 将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是( )Aπ125 B π125- C π1211 D 1112π- 答案:A .由题意知平移后的解析式为:3sin()33y x πθ=--+,因它的对称轴是直线4x π=,所以()432k k Z πππθπ--=+∈,即7()12k k Z θππ=--∈,令1k =-,则512θπ=.11. 某单位需同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法有( )A.1260种B.2025种C.2520种D.5040种 答案:C. 法一:从10人中选派4人有410C 种,进而对选出的4人具体安排会议,有1224C C 种,由分步计数原理得不同的选派方法为1224410C C C =2520种.法二:据分步计数原理,不同选法种数为210C ·18C ·17C =2520种.12. (理科)已知()f x 是定义在[],a b 上的函数,其图像是一条连续的曲线,且满足下列条件:① ()f x 的值域为G ,且[],G a b ⊆;② 对任意的[],,x y a b ∈,都有()()f x f y x y -<-. 那么,关于x 的方程()f x x =在区间[],a b 上根的情况是( )A .没有实数根 B. 有且仅有一个实数根 C. 恰有两个实数根 D. 有无数个不同的实数根 答案:B. 设()()g x f x x =-.()()0g a f a a =-≥,()()0g b f b b =-≤, 所以()0g x =在[],a b 有实数根若有两个不同的实数根,x y ,则(),()f x x f y y ==,得()()f x f y x y -=-,这与已知条件()()f x f y x y -<-相矛盾. 故选B.(文科)已知直线2x =及4x =与函数2log y x =图像的交点分别为,A B ,与函数lg y x =图像的交点分别为,C D ,则直线AB 与CD ( ) A .相交,且交点在第I 象限 B .相交,且交点在第II 象限 C .相交,且交点在第IV 象限 D .相交,且交点在坐标原点答案:D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡相应位置上.)13. 在61x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数为_______________(用数字作答).答案:15. 由6216r r r T C x -+=,得622r -=,2r =,所以2x 的系数为2615C =.14. 在右面的数阵里,每行、每列的数依次均成等比数列, 111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭其中222a =,则所有数的乘积为_______. 答案:512. 利用等比中项公式,得2222113121123222133323212322,,,a a a a a a a a a a a a ====,于是,所有数的乘积为99222512.a ==15.2,则该长方体外接球的表面积是______.答案:5π. 长方体一顶点出发的三条棱长的长分别为,,a b c ,则 2222223,5,4a b b c c a +=+=+=, 得 2226a b c ++=.于是,球的直径2R 满足()22222426R R a b c ==++=.故外接球的表面积为246.S R ππ==16. (理科)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 _____________. 答案:47(文科)已知,,R y x ∈且满足不等式组⎪⎩⎪⎨⎧≤≤≥+756y x y x ,则22y x +的最大值是 . 答案:74 注意到目标函数所表示的几何意义是动点到原点的距离的平方,作出可行域. 易知当为B 点时取得目标函数的最大值可知B 点的坐标为(5,7),代入目标函数中,可得22max 5774z =+=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 请把解答过程写在答题卡相应位置上.)17. (本小题满分10分)已知ABC ∆的周长为1),且sin sin B C A +=.(I) 求边长a 的值;(II) 若3sin ABC S A ∆=,求cos A 的值.答案: (I)根据正弦定理,sin sin B C +=可化为b c +=. ………2分联立方程组1)a b c b c ⎧++=+⎪⎨+=⎪⎩,解得4a =.所以,边长4a =. …………………………5分(II)3sin ABC S A ∆= ,∴1sin 3sin 62bc A A bc ==,. …………………………7分又由(I)可知,b c +=∴22222()21cos 223b c a b c bc a A bc bc +-+--===. …………………………10分 18. (本小题满分12分)(理科)从四名男生和三名女生中任选3人参加演讲比赛. (Ⅰ)求所选3人中至少有一名女生的概率;(Ⅱ)ξ表示所选参加演讲比赛的人员中男生的人数,求ξ的分布列和数学期望. 答案:(Ⅰ)记事件A 为“所选3人中至少有一名女生”,则其对立事件A 为“所选的3人全是男生”.∴3447431()1()113535C P A P A C =-=-=-=. ------------6分 (Ⅱ)ξ的可能取值为:0,1,2,3.33371(0)35C P C ξ===,12433712(1)35C C P C ξ===,21433718(2)35C C P C ξ===,4(3)35P ξ==. ----------8分 ∴ξ的分布列为:012335353535E ξ=⨯+⨯+⨯+⨯. ------------12分 (文科)某班级有数学、自然科学、人文科学三个兴趣小组,各有三名成员,现从三个小组中各选出一人参加一个座谈会.(I )求数学小组的甲同学没有被选中、自然小组的乙同学被选中的概率; (II )求数学组的甲同学、自然小组的乙同学至少有一人不被选中的概率.答案:我们把数学小组的三位成员记作123,,S S S ,自然小组的三位成员记作123,,Z Z Z ,人文小组的三位成员记作123,,R R R ,则基本事件是111112113121122123(,,),(,,),(,,),(,,),(,,),(,,)S Z R S Z R S Z R S Z R S Z R S Z R ,131132133(,,),(,,),(,,)S Z R S Z R S Z R ,然后把这9个基本事件中1S 换成23,S S 又各得9个基本事件,故基本事件的总数是27个.以1S 表示数学组中的甲同学、2Z 表示自然小组的乙同学.----------2分(I )甲同学没有选中、自然小组的乙同学被选中所含有的基本事件是上述基本事件中不含1S 、含有2Z 的基本事件,即221222223321322323(,,),(,,),(,,),(,,),(,,),(,,)S Z R S Z R S Z R S Z R S Z R S Z R 共6个基本事件,故所求的概率为62279=. ----------6分 (II )“数学组的甲同学、自然小组的乙同学至少有一人不被选中”的对立事件是“数学组的甲同学、自然小组的乙同学都被选中”,这个事件所包含的基本事件是121122123(,,),(,,),(,,)S Z R S Z R S Z R ,共3个基本事件,这个事件的概率是31279=. ----------10分根据对立事件的概率计算方法,所求的概率是18199-=.----------12分 19. (本小题满分12分)如图,侧棱垂直底面的三棱柱111ABC A B C -的 底面ABC 位于平行四边形ACDE 中,2AE =, 14AC AA ==,60E ∠=︒,点B 为DE 中点.(Ⅰ)求证:平面1A BC ⊥平面11A ABB . (Ⅱ)设二面角1A BC A --的大小为α,直线AC 与平面1A BC 所成的角为β,求sin()αβ+的值.答案:(Ⅰ)法一、在平行四边形ACDE 中, ∵2AE =,4AC =,60E ∠=︒,点B 为DE 中点.∴60ABE ∠=︒,30CBD ∠=︒,从而90ABC ∠=︒,即AB BC ⊥.----------3分 又1AA ⊥面ABC ,BC ⊂面ABCAD CB A 1 B 1C 1A EDCBA 1B 1C 1F ∴1AA BC ⊥,而1AA AB A = , ∴BC ⊥平面11A ABB .∵BC ⊂平面1A BC ∴平面1A BC ⊥平面11A ABB .----------6分 法二、∵2AE =,4AC =,60E ∠=︒,点B 为DE ∴2AB =,BC =22216AB BC AC +==, ∴AB BC ⊥. ----------3分又1AA ⊥面ABC ,BC ⊂面ABC ,∴1AA BC ⊥, 而1AA AB A = ,∴BC ⊥平面11A ABB ∵BC ⊂平面1A BC ,∴平面1A BC ⊥平面11A ABB . ----------6分 (Ⅱ)方法一、由(Ⅰ)可知1A B BC ⊥,AB BC ⊥ ∴1A BA ∠为二面角1A BC A --的平面角,即1A BA ∠=α, 在1Rt A AB ∆中,112,4,AB AA AB ===111sin sin 5AA A BA A B α=∠==,1cos 5AB A B α==.----------8分 以A 为原点,建立空间直角坐标系A xyz -如图所示,其中1(0,0,4)A ,,0)B ,(0,4,0)C ,(0,4,0)AC =, 1,4)A B =- ,(BC =, 设(,,)n x y z =为平面1A BC 的一个法向量,则100n A B n BC ⎧⋅=⎪⎨⋅=⎪⎩,∴4030y z y+-=+=⎪⎩即x z y ⎧=⎪⎨=⎪⎩ ----------10分 令1y =,得平面1A BC的一个法向量,1)n =, 则||sin ||||AC n AC n β⋅===又02πβ<<, ∴cos 5β=,∴sin()sin cos cos sin 15555αβαβαβ+=+=+=, 即sin()1αβ+=. ----------12分 方法二、由(Ⅰ)可知1A B BC ⊥,AB BC ⊥∴1A BA ∠为二面角1A BC A --的平面角,即1A BA∠=α, 在1Rt A AB ∆中,112,4,AB AA AB ===111sin sin 5AA A BA A B α=∠==,1cos 5AB A B α==.----------8分过点A 在平面11A ABB 内作1AF AB ⊥于F ,连结CF , 则由平面1A BC ⊥平面11A ABB ,且平面1ABC 平面111A ABB A B =,得AF ⊥平面1A BC∴ACD ∠为直线AC 与平面1A BC 所成的角,即ACD β∠=. ----------10分在Rt ACF ∆中,11AA AB AF A B ⋅==, sin AF AC β==cos β==∴sin()sin cos cos sin 15555αβαβαβ+=+=+=,即sin()1αβ+=. ----------12分20. (本小题满分12分)(理科)在等比数列{a n }中,首项为1a ,公比为q ,n S 表示其前n 项和.(I )记n S =A ,2n n S S -= B ,32n n S S -= C ,证明A ,B ,C 成等比数列; (II )若111[,]20101949a a =∈,639SS =,记数列2{log }n a 的前n 项和为n T ,当n 取何值时,n T 有最小值.答案:(I )当1q =时,1A na =,1112B na na na =-=,11132C na na na =-=,可见A ,B ,C 成等比数列; ————2分当1q ≠时,1(1)1n a q A q -=-,1(1)1n n a q B q +-=-,21(1)1n n a q C q+-=-.故有11nn a B q A a +==,21111n n n n n n a a q C q B a a ++++===.可得B C A B =,这说明A ,B ,C 成等比数列.综上,A ,B ,C 成等比数列. ————6分(II )若1q =,则61316293S a S a ==≠,与题设矛盾,此情况不存在; 若1q ≠,则6361331(1)1(1)S a q q S a q -==+-,故有319q +=,解得2q =. ——8分 所以12-⋅=n n a a ,可知22log 1log n a n a =-+.所以数列2{log }n a 是以2log a 为首项,1为公差的等差数列.令2log 0n a ≤,即221log 01log n a n a -+≤⇔≤-. 因为11[,]20101949a ∈,所以222log [log 2010,log 1949]a ∈--, ————10分 即得2221log [1log 1949,1log 2010]a -∈++, 可知满足2log 0n a ≤的最大的n 值为11.所以,数列2{log }n a 的前11项均为负值,从第12项开始都是正数.因此,当11n =时,n T 有最小值. ————12分(文科)已知数列{}n a 的首项为1,前n 项和为n S ,且满足13n n a S +=,*N n ∈.数列{}n b 满足4log n n b a =.(I ) 求数列{}n a 的通项公式;(II ) 当2n ≥时,试比较12n b b b +++ 与()2112n -的大小,并说明理由. 答案:(I) 由n n S a 31=+… (1) , 得123++=n n S a … (2), 由 (2)-(1) 得 1123+++=-n n n a a a , 整理,得412=++n n a a ,*N n ∈. 所以,数列2a ,3a ,4a ,…,n a ,…是以4为公比的等比数列. 其中,333112===a S a , 所以 2*1,1,34,2,Nn n n a n n -=⎧=⎨⋅≥∈⎩. (II )由题意,*40,1,log 3(2),2,N n n b n n n =⎧=⎨+-≥∈⎩. 当2n ≥时,()()()1234440log 30log 31log 32n b b b b n ++++=+++++++-()()()411log 3212n n n =-+-- []412log 31(1)2n n -=-+-()()24119log 1242n n n --⎡⎤=+->⎢⎥⎣⎦, 所以 ()212312n n b b b b -++++> .21. (本小题满分12分)已知椭圆 C 的焦点在 x 轴上,一个顶点的坐标是(0,1),离心率等于 552. (Ⅰ)求椭圆 C 的方程;(Ⅱ)过椭圆 C 的右焦点F 作直线 l 交椭圆 C 于,A B 两点,交 y 轴于M 点,若AF MA 1λ=,BF MB 2λ=,求证: 21λλ+ 为定值.答案:(Ⅰ)设椭圆 C 的方程为)0(12222>>=+b a by a x ,则由题意知1=b . ∴ 552222=-ab a .即552112=-a .∴ 52=a . ∴ 椭圆 C 的方程为1522=+y x . ---------------5分 (Ⅱ)方法一:设,,A B M 点的坐标分别为11220(,),(,),(0,)A x y B x y M y ,又易知F 点的坐标为(2,0).∵ 1λ=,∴110111(,)(2,)x y y x y λ-=--. ∴ 11112λλ+=x ,1011λ+=y y . ----------------7分 将A 点坐标代入到椭圆方程中得:1)1()12(51210211=+++λλλy , 去分母整理,得0551020121=-++y λλ. ---------------10分同理,由2λ=可得:0551020222=-++y λλ.∴ 1λ,2λ是方程05510202=-++y x x 的两个根,∴ 1021-=+λλ. -----------------12分方法二:设,,A B M 点的坐标分别为11220(,),(,),(0,)A x y B x y M y ,又易知F 点的坐标为(2,0).显然直线 l 存在斜率,设直线 l 的斜率为 k ,则直线 l 的方程是 )2(-=x k y . 将直线 l 的方程代入到椭圆 C 的方程中,消去 y 并整理得052020)51(2222=-+-+k x k x k . ------------8分∴ 22215120k k x x +=+,222151520kk x x +-=. 又 ∵ 1λ=,2λ=, 将各点坐标代入得1112x x -=λ,2222x x -=λ.---------10分 10)(242)(22221212121221121-==++--+=-+-=+ x x x x x x x x x x x x λλ.------12分 22. (本小题满分12分)(理科)设函数∈-=-m x ex f m x 其中,)(R .(I )求函数)(x f 的最值; (II )给出定理:如果函数)(x f y =在区间[b a ,]上连续,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间),(b a 内有零点,即存在0)(),,(00=∈x f b a x 使得.运用上述定理判断,当1>m 时,函数)(x f 在区间)2,(m m 内是否存在零点. 答案:(I )∵- ()-()-1x m f x f x e'∞+∞=在(,)上连续,, 令.,0)(m x x f =='得 ……………………3分;1)()(.)(,,.0)(,1,),(;0)(,1,),(min m m f x f x f m x x f e m x x f e m x m x m x -==∴=>'>+∞∈<'<-∞∈--取极小值也是最小值时当所以时当时当 由(*)知f (x )无最大值.……………………6分(II )函数f (x )在[m ,2m]上连续, (*)(2)2,()2,()2,1,()20,m m m f m e m g m e m g m e m g m e =-=-'=->'∴>-> 而令则∴()1g m +∞在(,)上递增. ……………………8分由(1)20,()(1)0,(2)0,g e g m g f m =->>>>得即……………………10分又,0)2()(,01)(<⋅∴<-=m f m f m m f 根据定理,可判断函数f (x )在区间(m ,2m )上存在零点. …………12分 (文科)已知函数b ax x x f ++-=23)((a 、b ∈R ).(I )若函数4,0)(==x x x f 在处取得极值,且极小值为-1,求f(x)的解析式;(II )若]1,0[∈x ,函数)(x f 图象上的任意一点的切线斜率为k ,当k ≥-1恒成立时,求实数a 的取值范围.答案:(I )由ax x x f 23)(2+-=' 得.320a x x ==或 ∴432=a 得a =6. ……………………………………3分 当x <0,.0)(,40.0)(>'<<<'x f x x f 时当故当)(,0x f x 时=达到极小值.1,)0(-=∴=b b f∴f(x)=-x 3+6x 2-1…………6分(II )当123)(,]1,0[2-≥+-='=∈ax x x f k x 时恒成立,即令0123)(2≤--=ax x x g 对一切]1,0[∈x 恒成立, …………9分 只需.1,022)1(,01)0(≥⎩⎨⎧≤-=≤-=a a g g 即所以,实数a 的取值范围为[).,1+∞………………………………12分。

压轴题04 函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04  函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2x x>,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.17.(2023·山东德州·统考一模)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121nk n k=-<<+∑,其中*N n ∈且2n ≥.18.(2023·江西吉安·统考一模)已知函数()()ln ,e e x xf x xg x -=-=-.(1)若[]()()0,1,x g x f a ∃∈>成立,求实数a 的取值范围;(2)证明:()()πcos 2e x h x f x =+有且只有一个零点0x,且20π1e cos e 2e x g -⎛⎫<< ⎝⎭19.(2023·河南·郑州一中校联考模拟预测)已知函数()1ln m f x m x x x+=++.(1)求函数()f x 的单调区间;(2)当1m =时,证明:()23e x xf x x <+.20.(2023·陕西渭南·统考二模)已知函数()()1ln e ,xxf xg x m x+==-.()m ∈R (1)证明:()1f x x ≥+;(2)若()()f x g x ≥,求实数m 的取值范围;(3)证明:11e e 1knk k =⎛⎫< ⎪-⎝⎭∑.()N n +∈21.(2023·全国·东北师大附中校联考模拟预测)已知函数()()ln 10f x x ax a =-->.(1)当1a =时,求过原点且与()f x 相切的直线方程;(2)若()()()e 0ax g x x f x a =+⋅>有两个不同的零点()1212,0x x x x <<,不等式212e mx x ⋅>恒成立,求实数m 的取值范围.22.(2023·青海·校联考模拟预测)已知函数()()21e xf x ax x =+-.(1)当12a =-时,讨论函数()f x 在()0,∞+上的单调性;(2)当0x >时,()1f x <,求实数a 的取值范围.23.(2023·天津·校联考一模)设函数()()()21e 2,R x f x x m x m =+++∈.(1)讨论()f x 的单调性;(2)若当[2,)x ∈-+∞时,不等式()()213e f x m x x -≥+-恒成立,求m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2010高考数学――压轴题跟踪演练系列四1.(本小题满分14分)已知f(x)=222+-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x 1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x)=x 2-ax -2,方法一:ϕ(1)=1-a -2≤0,① ⇔ ⇔-1≤a ≤1,ϕ(-1)=1+a -2≤0.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0∴A={a|-1≤a ≤1}. 方法二:2a ≥0, 2a <0, ①⇔ 或ϕ(-1)=1+a -2≤0 ϕ(1)=1-a -2≤0⇔ 0≤a ≤1 或 -1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0∴A={a|-1≤a ≤1}.(Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,∴ 从而|x 1-x 2|=212214)(x x x x -+=82+a .x 1x 2=-2,∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt+(m 2-2),方法一:g(-1)=m 2-m -2≥0,② ⇔g(1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.方法二:当m=0时,②显然不成立;当m ≠0时,m>0, m<0,②⇔ 或g(-1)=m 2-m -2≥0 g(1)=m 2+m -2≥0⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.2.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ① 得y '=x.∴过点P 的切线的斜率k 切= x 1, ∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1), 方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点x 0=221x x +=-11x , ∴y 0=21x 12-11x (x 0-x 1). 消去x 1,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+2021x +1(x ≠0). 方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +, 得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x , ∴x 1=-01x , 将上式代入②并整理,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+2021x +1(x ≠0).(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b).分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'. y=21x 2 由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③y=kx+by 1+y 2=2(k 2+b),则y 1y 2=b 2.方法一:∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b =2. ∵y 1、y 2可取一切不相等的正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2bb k +. 当b>0时,||||||||SQ ST SP ST +=b 22)(2bb k +=b b k )(22+=b k 22+2>2;当b<0时,||||||||SQ ST SP ST +=-b 22)(2b b k +=b b k -+)(22. 又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b.所以||||||||SQ ST SP ST +>b b b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法三:由P 、Q 、T 三点共线得k TQ =K TP ,即22x b y -=11x b y -. 则x 1y 2-bx 1=x 2y 1-bx 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b=122212122121x x x x x x -⋅-⋅=-21x 1x 2. ∴||||||||SQ ST SP ST +=||||||||21y b y b +|1|21x x -|1|21x x -||12x x +||21x x ≥2. ∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 3.(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用...=采取预防措施的费用+发生突发事件损失的期望值.)本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分.解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元);②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元)③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.4.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列 (I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示); (II )设;)(:,,2,1,1A b A b b n A a b n n n n n +-==-=+证明 (III )若 ,2,121||=≤n b nn 对都成立,求a 的取值范围. 本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分. 解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→ .24,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得 (II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由 都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b A b A A b A a b n n n n n n n n (III ).21|)4(21|,21||21≤++-≤a a ab 得令.,2,121||,23.23,14.21|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n (i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(k k b k k n ≤≥= k k k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+ 故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k .212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a a a a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b n n 5.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知a R ∈,函数2()||f x x x a =-.(Ⅰ)当2a =时,求使()f x x =成立的x 的集合;(Ⅱ)求函数()y f x =在区间[12],上的最小值. 本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力. 满分14分. 解:(Ⅰ)由题意,2()2f x x x =-.当2x <时,2()(2)f x x x x =-=,解得0x =或1x =;当2x ≥时,2()(2)fx x x x =-=,解得1x =.综上,所求解集为{011,,.(Ⅱ)设此最小值为m .①当1a ≤时,在区间[12],上,32()f x x ax =-. 因为22()323()03f x x ax x x a '=-=->,(12)x ∈,, 则()f x 在区间[12],上是增函数,所以(1)1m f a ==-. ②当12a <≤时,在区间[12],上,2()()0f x x x a =-≥,由()0f a =知 ()0m f a ==.③当2a >时,在区间[12],上,23()f x ax x =-. 22()233()3f x a x x x a x '=-=-. 若3a ≥,在区间(12),内()0f x '>,从而()f x 为区间[12],上的增函数, 由此得 (1)1m f a ==-.若23a <<,则2123a <<. 当213x a <<时,()0f x '>,从而()f x 为区间2[1]3a ,上的增函数; 当223a x <<时,()0f x '<,从而()f x 为区间2[2]3a ,上的减函数. 因此,当23a <<时,(1)1m f a ==-或(2)4(2)m f a ==-.当723a <≤时,4(2)1a a -≤-,故(2)4(2)m f a ==-; 当733a <<时,14(2)a a -<-,故(1)1m f a ==-. 综上所述,所求函数的最小值111274(2)23713a a a m a a a a -≤⎧⎪<≤⎪⎪=⎨-<≤⎪⎪->⎪⎩,当时;0,当时;,当时;,当时. 6.(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,,,且 1(58)(52)123n n n S n S An B n +--+=+= ,,,,,其中A B ,为常数. (Ⅰ)求A 与B 的值;(Ⅱ)证明:数列{}n a 为等差数列;(Ⅲ)1对任何正整数m n ,都成立.本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力.解:(Ⅰ)由已知,得111S a ==,2127S a a =+=,312318S a a a =++=.由1(58)(52)n n n S n S An B +--+=+,知2132372122S S A B S S A B --=+⎧⎨-=+⎩,, 即 28248A B A B +=-⎧⎨+=-⎩,, 解得 20A =-,8B =-.(Ⅱ)方法1由(Ⅰ),得 1(58)(52)208n n n S n S n +--+=--, ①所以 21(53)(57)2028n n n S n S n ++--+=--. ②②-①,得 21(53)(101)(52)20n n n n S n S n S ++---++=-, ③所以 321(52)(109)(57)20n n n n S n S n S ++++-+++=-. ④④-③,得 321(52)(156)(156)(52)0n n n n n S n S n S n S ++++-+++-+=.因为 11n n n a S S ++=-,所以 321(52)(104)(52)0n n n n a n a n a ++++-+++=.又因为 520n +≠,所以 32120n n n a a a +++-+=,即 3221n n n n a a a a ++++-=-,1n ≥.所以数列{}n a 为等差数列.方法2由已知,得111S a ==,又1(58)(52)208n n n S n S n +--+=--,且580n -≠,所以数列{}n S 是唯一确定的,因而数列{}n a 是唯一确定的.设54n b n =-,则数列{}n b 为等差数列,前n 项和(53)2n n n T -=.于是 1(1)(52)(53)(58)(52)(58)(52)20822n n n n n n n T n T n n n +++---+=--+=--, 由唯一性得 n n b a =,即数列{}n a 为等差数列.(Ⅲ)由(Ⅱ)可知,15(1)54n a n n =+-=-.要证 1,只要证 51mn m n a a a >++.因为 54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++,故只要证 5(54)12520()mn mn m n ->+-+++即只要证 202037m n +->因为 558m n a a m n +=+-558(151529)m n m n <+-++-202037m n =+-, 所以命题得证.选校网 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库 (按ctrl 点击打开)。

相关文档
最新文档