1977_The sulfophosphovanillin reaction for serum lipids a reappraisal_K. R. Johnson
黄磷生产工艺

黄磷生产工艺编辑:科技博士В.А..叶尔绍夫。
科技副博士B.H.别洛夫列宁格勒,(化学出版社)列宁格勒分社,1979年。
黄磷工艺学,B.H.别洛夫,А. П.博尔莎科娃,Я. Б. 丹尼斯等。
职业编辑:В.А.叶尔绍夫和科技副博士B.H.别洛夫。
1979年,336 页。
本书分析研究了黄磷的物理化学性质,在固相和液相还原磷酸钙的热力学和动力学现代知识,磷矿、硅石共熔体物理化学性质的系统化资料。
详细叙述了黄磷生产的全部过程和主要设备,原料产地与资源,生产废料的利用途径与具体方法。
特别值得注意的是工艺分析,黄磷电炉中的物流状态,炉子结构,电气和工艺指标。
本书可供黄磷生产和加工企业工程技术人员,科研设计院专家使用。
也适用于化工工艺高等院校的教师、研究生和大学生。
336页,99张表,79个插图,316篇参考文献。
编辑:В. А. 斯坦科维奇,技术编辑:3. Е.马尔科夫,校对:Г. А. 列别杰夫,装订:Н. А. 涅菲多夫。
出版:1979年2月16日,Поди, кпеч.:1979年8月3日,纸张规格:60X901/16,Бум.1号字体,高级印刷品. Усл. печ. л. 21,0. Уч.-изд. л. 23,7. 印数3000本。
Зак. № 67。
价格1卢布50k,产品号1650。
化学出版社列宁格勒分社,191186, 列宁格勒, Д-186, Невскийпр., 28。
苏联国家出版委,尤金雄鹰名誉« Союзполиграфпрома», 获得劳动红旗勋章的列宁格勒第二印刷厂,198052, 列宁格勒, Л-52, Измайловскийпр., 29。
版权:化学出版社,1979年。
序言我国黄磷工业在短时间内从小车间发展到现代化的大型工厂。
由于党和政府的关怀爱护,形成了拥有现代技术的工业企业,在黄磷厂建立了大功率的独特装置,能加工处理各种磷矿原料。
目前,科学家、设计师、建筑师及工厂的工程技术人员正在研究改进现有的磷矿处理备料方法,研究黄磷生产新方法和残渣处理利用,自动化的工艺控制系统,建立无废渣的黄磷生产工艺。
你从未见过的美丽化学

你从未见过的美丽化学视频长度在30秒到6'30不等,请在wifi环境下观看《美丽化学》:美丽的化学反应这很可能是有史以来,中国人制作的最酷的关于化学的科学传播作品,纯粹化学,纯粹美丽。
这就是由中国科学技术大学先进技术研究院和清华大学出版社联合制作的一个原创数字科普项目《美丽化学》。
这个9月30日上线英文版的网站,一上线即刻在网络上引起了轰动,短短两周,包括美国《时代周刊》官网等媒体都对他进行了报道和高度评价。
2013年诺贝尔奖和平奖得主“禁止化学武器组织”特别提出希望能在他们的最新纪录片中使用这些视频。
近日,《美丽化学》又成功入围由美国国家科学基金会和美国《大众科学》杂志举办的VIZZIES国际科学可视化竞赛大奖,同时入围“游戏/应用”(Game/App)和“视频”(Video)两个奖项的竞选,截至目前,还没有来自中国大陆的团队在竞赛中取得过名次。
《美丽化学》包括“化学反应”和“化学结构”两部分,分别从宏观和微观两个尺度展现独特的化学之美。
在“化学反应”使用最新的4k高清摄影机捕捉化学反应中的缤纷色彩和微妙细节。
在“化学结构”部分,使用先进的三维电脑动画和互动技术,展示近年来在《自然》和《科学》等国际知名期刊中报道的美丽化学结构。
来自中国科学技术大学科技传播与科技政策系特任副研究员梁琰负责了这个项目。
加入中科大之前,他作为自由职业者为来自世界各地的研究人员提供科学可视化服务,他的作品作为封面发表在《科学》、《自然-材料》、《自然-生物技术》、《自然-光子学》等知名学术刊物。
2012年,他作为科学动画师,参与开发《地球上的生命》,这是一本具有革命意义的基于苹果iBooks平台的数字教科书。
2014年3月,梁琰加入中国科技大学科技传播系,《美丽化学》项目也随之正式启动,首先上线的英文版大概经历了7个月左右。
2014年10月底,中文版网站也顺利上线。
这些精致、美丽的视频,作为中国科学传播最高的制作水平必将更大范围的被人知晓和传播。
酸性离子液体催化一三二羰基化合物与叔醇之间的反应

Bro¨nsted acid ionic liquid-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds with alcohols as well as one-pot synthesis of 4H -chromenesKazumasa Funabiki *,Takuya Komeda,Yasuhiro Kubota,Masaki MatsuiDepartment of Materials Science and Technology,Faculty of Engineering,Gifu University,1-1Yanagido,Gifu 501-1193,Japana r t i c l e i n f oArticle history:Received 14April 2009Received in revised form 3July 2009Accepted 3July 2009Available online 8July 2009Keywords:Ionic Bro¨nsted acid catalyst Substitution1,3-Dicarbonyl compounds Alcohola b s t r a c tRecyclable ionic Bro¨nsted acid was prepared in nearly quantitative yield by reacting 1-butylimidazole with an equimolar amount of 1,3-propanesultone,followed by treatment with an equimolar amount of tri-fluoromethanesulfonic acid.The ionic Bro¨nsted acid-catalyzed direct benzylation,allylation and prop-argylation of 1,3-dicarbonyl compounds with various alcohols in ionic liquid [N -ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf)],at 100 C for 3h proceeded smoothly to give the cor-responding products in good to excellent yields without the use of any hazardous or volatile solvents and without any by-product such as salts.Furthermore,tandem benzylation–cyclization–dehydration of 1,3-dicarbonyl compounds to give functionalized 4H -chromenes was also achieved in this catalytic reaction.Ó2009Elsevier Ltd.All rights reserved.1.IntroductionThe alkylation of 1,3-dicarbonyl compounds usually requires not only the transformation of 1,3-dicarbonyl compounds into more re-active species,such as enolates by reacting the 1,3-dicarbonyl com-pounds with base,but also the use of alkyl halides,since the hydroxyl group is not a good leaving group and 1,3-dicarbonyl compounds do not have high nucleophilicity.However,these requirements are limitations,as is the production of a salt as a by-product.From the standpoint of atom-economical and environmentally friendly chemistry,the catalytic direct carbon–carbon bond formation of 1,3-dicarbonyl compounds using alcohols in place of alkyl halides is one of the most ideal and salt-free reactions in organic synthesis,since steps are not needed for the generation of reactive enolate or for pre-conversion to the alkyl halides,and only water is generated as a by-product.Although some excellent catalysts,such as indium trichloride,1proton-exchanged montmorillonite,2trifluoromethanesulfonic acid,3p -toluenesulfonic acid,3,4polymer-supported p -toluenesulfonic acid,4metal triflate,5iron(III)chloride 6and hetropolyacid 7have recently been examined for catalytic direct carbon–carbon bond formation in active methylene compounds using alcohols as alkylating reagents,most of the reported reactions require hazardous or volatile solvents,such as nitromethane,dichloromethane,acetonitrile and toluene,and the re-covery and reuse of the catalysts far are still limited.2,4,5b Therefore,thedevelopment of a much more convenient,reusable,environmentally friendly system for the catalytic alkylation of 1,3-dicarbonyl com-pounds without the use of any hazardous or volatile solvents is needed.In this report,for the first time,we present our recyclable Bro¨nsted acid-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds with various alcohols as well as the tan-dem benzylation–cyclization–dehydration of 1,3-dicarbonyl com-pounds to give functionalized 4H -chromene in an ionic liquid system.2.Results and discussion2.1.Preparation of Bro¨nsted acid ionic liquid catalyst 1Recyclable Bro¨nsted acid ionic liquid catalyst 1,which was used for esterification,was prepared by modification of the method reported by Forbes et al.8as shown in Scheme 1.1-ButylimidazoleNNn -Bu SO 2O TfO 150°C,5hNN 3H n -Bu rt,20min 1(97%)CF 3SO 3H (1equiv.)NN SO 3n-Bu(98%)Scheme 1.Preparation of Bro¨nsted acid ionic liquid catalyst 1.*Corresponding author.Tel.:þ812932599;fax:þ812932794.E-mail address:funabiki@gifu-u.ac.jp (K.Funabiki).0040-4020/$–see front matter Ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.tet.2009.07.012Tetrahedron 65(2009)7457–7463Contents lists available at ScienceDirectTetrahedronjournal homepage:www.elsevie /locate/tetwas allowed to react with an equimolar amount of 1,3-propane-sultone at room temperature to produce zwitterionic imidazolium salt in quantitative yield.Treatment of this zwitterionic imidazo-lium salt with an equimolar amount of trifluoromethanesulfonicacid at 150 C gave the Bro¨nsted acid ionic liquid catalyst 1in quantitative yield.2.2.Bro¨nsted acid ionic liquid 1-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds 2with alcohols 3The reaction of 2,4-pentanedione (2a )with 1-phenylethanol (3a )was conducted in the presence of 5mol %of the prepared Bro¨nsted acid ionic liquid catalyst 1in a commercially available ionic liquid,N -ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf),at 100 C for 3h.After the mixture was allowed to cool to room temperature,repeated extraction with a mixed solvent of diethyl ether and hexane (v/v ¼1:1)from EMIOTf,evaporation under vacuum,and chromatography with silica gel gave 3-(1-phenyl-ethyl)pentane-2,4-dione (4aa )in 77%yield,together with a small amount (7%)of (E )-but-1-ene-1,3-diyldibenzene (5)(styrene dim-mer)(Table 1,entry 1).Other ionic liquids carrying other counter anions,such as N -butyl-N -methylimidazolium tetrafluoroborate (BMIBF 4)and N -butyl-N -methylimidazolium hexafluorophosphite (BMIPF 6),were used (entries 2and 3).As a result,in the case of BMIBF 4,only trace amount of the product 4aa was formed,and 1,10-oxybis-(ethane-1,1-diyl)dibenzene (bis(1-phenylethyl)ether)was obtained as a main product (33%yield,dr ¼50:50)(entry 2).The reaction in BMIPF 6proceeded smoothly to give 4aa in 94%yield (entry 3).Surprisingly,when the ionic liquid catalyst 1was not added,the reaction of diketone 2a with alcohol 3a also proceeded to give the corresponding product 4aa in lower yield (61%),to-gether with styrene dimmer 5(20%yield)(entry 4).9The use of an equimolar amount of diketone 2a resulted in significant decrease of the yield (39%)of 4aa (entry 5).Employing trifluoromethansulfonicacid in place of the Bro¨nsted acid ionic liquid catalyst 1gave the similar yield (74%)of 4aa ,together with styrene dimmer 5(8%)as well as 4-phenylpentan-2-one (20%)(entry 6).The results of the Bro¨nsted acid ionic liquid 1-catalyzed reaction of 1,3-diketones 2,such as 2,4-pentanedione (2a )and 1,3-diphenyl-propane-1,3-dione (2b ),with various alcohols,such as 1-phenyl-ethanol (3a ),diphenylmethanol (3b ),(E )-1,3-diphenylprop-2-en-1-ol (3c ),(E )-pent-3-en-2-ol (3d ),and 1,3-diphenylprop-2-yn-1-ol (3e )in EMIOTf,are summarized in Table 1.In the case of diphenylmethanol (3b ),the reaction also proceeded smoothly to give 3-benzhy-drylpentane-2,4-dione (4ab )in 94%yield (entry 7).Allylation and propargylation using (E )-1,3-diphenylprop-2-en-1-ol (3c ),(E )-pent-3-en-2-ol (3d )and 1,3-diphenylprop-2-yn-1-ol (3e )also proceeded to give the corresponding allylated and propargylated diketones 4ac ,4ad and 4ae in 47–90%yields (entries 8–10).1,3-Diphenylpropane-1,3-dione (2b )participated well in the reaction with 1-phenylethanol (3a )and diphenylmethanol (3b )to produce the corresponding ben-zylated diketones 4ba and 4bb in 81–98%yields,without formation of the styrene dimer 5(entries 11and 12).The results of the Bro¨nsted acid ionic liquid-catalyzed reactions of ethyl 3-oxobutanoate (2c ),ethyl 3-oxopentanoate (2d )and ethyl 3-oxo-3-phenylpropanoate (2e )with various alcohols are sum-marized in Table 2.The use of various alcohols 3a –c ,e gave the corresponding benzylated,allylated and propargylated products 4cb ,4cc and 4ce in 76–91%yields (entries 2–4).However,the re-action of 2c with 1-phenylethanol (3a )gave the corresponding ketoester 4ca in 30%yield,together with a moderate amount (40%)of styrene dimer 5,probably due to lower nucleophilicity of ketoester 2c than those of diketones 2a ,b .Other ketoesters 2d ,e also participated well in the catalytic reaction with alcohol 3b to give the corresponding products 4db and 4eb in 89–97%yields (entries 5and 6).Diastereoselectivities of the products 4ca ,4cc and 4ce are quite low.To confirm the reaction mechanism for the formation of styrenedimer 5,the Bro¨nsted acid ionic liquid-catalyzed reaction of 1-phenylethanol (3a )in EMIOTf in the absence of 1,3-dicarbonyl compound 2was carried out,as shown in Scheme 2.Table 1Bro¨nsted acid ionic liquid 1-catalyzed direct benzylation,allylation and prop-argylation of 1,3-diketones 2a ,b with various alcohols 3EMIOTf,100°C,3h1(5mol%)R 34OH R 1R 2O O +32R 1R 2O O R 4R 343a R 3=Ph,R 4=Me 3b R 3=R 4=Ph3c R 3=(E )-PhCH=CH,R 4=Ph 3d R 3=(E )-MeCH=CH,R 4=Me 3e R 3=PhC C,R 4=Ph 2a R 1=R 2=Me 2b R 1=R 2=PhNNEt TfO EMIOTfNNn -Bu BMIBF 4BF 4NNn -Bu BMIPF 6PF 6Yields of isolated products.Values in parentheses show the yields of styrene dimer 5.bBMIBF 4was used in place of EMIOTf.1,10-Oxybis (ethane-1,1-diyl)dibenzene was obtained in 33%yield.cBMIPF 6was used in place of EMIOTf.dIL catalyst 1was not added.eAn eqimolar amount of 2a was used.fTrifluoromethanesulfonic acid was used in place of IL catalyst 1.4-Phenylpentan-2-one was also obtained in 20%yield.PhPh5K.Funabiki et al./Tetrahedron 65(2009)7457–74637458As a result,styrene dimer 5was formed as a sole product in 50%yield.This result can be explained by the following mechanism:(1)protonation of the hydroxyl group of alcohol 3a and successive dehydration produces the benzyl cation,and subsequent deproto-nation gives styrene.(2)The obtained styrene attacks the other benzyl cation,and deprotonation at the b -carbon gives styrene dimer 5.After having successfully developed an efficient benzylation of 1,3-diketones 2a ,b and ketoesters 2c ,d ,e ,we then sought to apply this methodology to the synthesis of highly functionalized 4H -chromene 10via catalytic tandem benzylation,cyclization and de-hydration of the 2-(hydroxy(phenyl)methyl)phenol (3f ),prepared from salicylaldehyde and phenyllithium,as described in Table 3.This catalytic tandem reaction of 3f with diketones 2a ,b and ketoesters 2c ,d ,e proceeded smoothly to produce the corresponding 4H -chromenes,such as 1-(2-methyl-4-phenyl-4H -chromen-3-yl)-ethanone (6af ),(2,4-diphenyl-4H -chromen-3-yl)(phenyl)methanone (6bf ),ethyl 2-methyl-4-phenyl-4H -chromene-3-carboxylate (6cf ),ethyl 2-ethyl-4-phenyl-4H -chromene-3-carboxylate (6df )and ethyl 2,4-diphenyl-4H -chromene-3-carboxylate (6ef ),in good to excellent yields (77–98%),respectively.Furthermore,the Bro¨nsted acid ionic liquid-catalyzed reactions of 1,3-diphenylpropane-1,3-dione (2b )with an equimolar amount of a highly activated tertiary alkynol,1,1,3-triphenylprop-2-yn-1-ol (7),also proceeded smoothly to give not a propargylated product,but rather a dienyl product,1,3-diphenyl-2-(1,3,3-triphenylallyli-dene)propane-1,3-dione (8),in 66%yield,as shown in Scheme 3.Table 3Bro¨nsted acid ionic liquid 1-catalyzed tandem direct benzylation,cyclization and dehydration of 2with the alcohol 3f1(5mol%)R1R 2O O+3f2a R 1=R 2=Me 2b R 1=R 2=Ph2c R 1=Me,R 2=OEt 2d R 1=Et,R 2=OEt 2e R 1=Ph,R 2=OEtEMIOTf,100°C,3hO R 2O 6R 1R 1R 2O O OHOHOH2Yields of isolated products.Table 2Bro¨nsted acid ionic liquid 1-catalyzed direct benzylation,allylation and prop-argylation of ester 2with various alcohols 31(5mol%)R3R 4OH R1O O +32c R 1=Me 2d R 1=Et 2e R 1=PhOEtO O R 4R 343a R 3=Ph,R 4=Me 3b R 3=R 4=Ph3c R 3=(E )-PhCH=CH,R 4=Ph 3e R 3=PhC C,R 4=PhEMIOTf,100°C,3h2R 1Yields of isolated products.Values in parentheses show the yields of styrene dimer 5.bDetermined by GC.PhPhMe 5(50%)PhMeOH EMIOTf,120°C,3h1(5mol%)3a Scheme 2.Proposed reaction mechanism for the formation of 5.EMIOTf,100°C,24h1(5mol%)PhOH PhPhO O +72bPh PhO O Ph 8(66%)PhPh PhPhScheme 3.Bro¨nsted acid ionic liquid 1-catalyzed reaction of 1,3-diphenylpropane-1,3-dione (2b )with tertiary alkynol 7.K.Funabiki et al./Tetrahedron 65(2009)7457–74637459According to the previous report by Sanz et al.,3b this product could be produced by the tandem Meyer–Schuster rearrangement of tertiary alkynol 7,aldol condensation with diketone 2b and de-hydration,as shown in Scheme 4.2.3.Reuse of the Bro¨nsted acid ionic liquid catalyst 1Finally,reuse of the Bro¨nsted acid ionic liquid catalyst 1was carried out,as shown in Scheme 5.After the initial use of the catalyst 1in EMIOTf,the product 4aaand styrene dimer 5were extracted from EMIOTf three times with a mixed solvent of diethyl ether and hexane (1:1).Concentration of the mixed organic layer and purification by column chromatogra-phy gave the product 4aa with a trace amount of 5.Reuse of the catalyst in the second and third cycles gave the product 4aa in al-most the same yield along with a trace amount of 5.3.ConclusionIn conclusion,we have developed a new recyclable Bro¨nsted acid-catalyzed direct benzylation,allylation and propargylation of 1,3-dicarbonyl compounds with various alcohols in an ionic liquid,N -ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf),without the use of any hazardous or volatile solvents and without any by-product such as salts.Furthermore,this method could also be applied to the tandem benzylation–cyclization–dehydration of 1,3-dicarbonyl compounds to give functionalized 4H -chromenes in good to excellent yields.4.Experimental4.1.General1H (400MHz)or 13C (100MHz)NMR spectra were measured with a JEOL a -400FT-NMR spectrometer in deuteriochloroform (CDCl 3)solution with tetramethylsilane (Me 4Si)as an internal stan-dard.Melting points were obtained on a Yanagimoto MP-S2micro melting point apparatus and are uncorrected.IR spectra were mea-sured on a SHIMADZU FT-IR 8100A spectrometer.HRMS were measured on a JEOL JMS-700mass spectrometer.LRMS were mea-sured on a JEOL JMS-K9mass spectrometer.The pure products were isolated by column chromatography using silica gel (Wakogel C-200,100–200mesh,Wako Pure Chemical Ind.,Ltd.).N -Ethyl-N -methyl imidazolium trifluoromethanesulfonate (EMIOTf)was a gift from the Central Glass Co.,Ltd.All chemicals were of reagent grade and,if necessary,purified in the usual manner prior to use.4.2.Preparation of 1-butyl-3-(3-sulfopropyl)-1H -imidazol-3-ium trifluoromethanesulfonate (1)To propanesultone (3.908g,31.97mmol)in a two-necked flask under argonwas slowly added 1-butylimidazole (4.005g,32.25mmol),and the mixture was stirred for 30min at room temperature.Repeated washing of the obtained solid with toluene (20ml Â5)and Et 2O (20ml Â5),and evaporation under vacuum at room temperature gave 3-(1-butyl-1H -imidazol-3-ium-3-yl)propane-1-sulfonate in 98%yield (7.797g).4.2.1.3-(1-Butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonateYield 98%;Mp 176.7–177.1 C;IR (KBr)1566(C ]C),1179(SO),1038(SO)cm À1;1H NMR (D 2O,400MHz)d 0.99(t,J ¼7.37Hz,3H,C H 3CH 2CH 2CH 2),1.38(sext,J ¼7.37Hz,2H,CH 3C H 2CH 2CH 2),1.88(quint,J ¼7.37Hz,2H,CH 3CH 2C H 2CH 2),2.32(quint,J ¼7.37Hz,2H,–C H 2CH 2SO 3À),2.80(t,J ¼7.37Hz,2H,–CH 2SO 3À),4.23(t,J ¼7.37Hz,2H,–C H 2N ]), 4.43(t,J ¼7.37Hz,2H,–CH 2N þ^),7.68(d,J ¼15.46Hz,1H,imidazolium-H),7.68(d,J ¼15.46Hz,1H,imidazo-lium-H),9.02(s,1H,imidazolium-H);13C NMR (D 2O,100MHz)d 24.2(s),30.4(s),36.7(s),42.8(s),58.8(s),59.3(s),61.0(s),133.9(s),134.2(s),147.0(s);HRMS found m /z 247.1112,calcd for C 10H 19N 2O 3S:M þH,247.1118.A mixture of 3-(1-butyl-1H -imidazol-3-ium-3-yl)propane-1-sulfo-nate (2.473g,10.0mmol)and trifluoromethanesulfonic acid (1.628g,10.85mmol)was heated to 150 C and stirred at the same temperature for 5h.After being allowed to cool to room temperature,the obtained ionic liquid was washed repeatedly with toluene (20ml Â5)and Et 2O (20ml Â5)to remove non-ionic residues,and dried under vacuum at room temperature to give 1-butyl-3-(3-sulfopropyl)-1H -imidazol-3-ium trifluoromethanesulfonate (1)(3.924g,99%).4.2.2.1-Butyl-3-(3-sulfopropyl)-1H-imidazol-3-ium trifluoromethanesulfonate (1)Yield 99%;IR (neat)3415(SO 3H),1566(C ]C),1227(SO),1170(SO),1030(SO)cm À1;1H NMR (D 2O,400MHz)d 0.92(t,3H,J ¼7.34Hz,Ph OH 7PhPh H +PhOHPhPh Ph -H +PhPhPh Ph O PhPhPh OO PhPhPh HO-H 2OPhPhOO Ph8PhPhPhPh O O2b Scheme 4.Proposed reaction mechanism for the formation of 8.PhOH MeMeO O +initial use 4aa (77), 5 (7)first reuse 4aa (77), 5 (7)second reuse 4aa (75), 5 (5)Product (%)aaYields of isolated productsScheme 5.Reuse of the Bro¨nsted acid ionic liquid catalyst 1.K.Funabiki et al./Tetrahedron 65(2009)7457–74637460C H3CH2CH2CH2),1.33(sext,2H,J¼7.34Hz,CH3C H2CH2CH2),1.87 (quint,J¼7.34Hz,CH3CH2C H2CH2), 2.34(quint,J¼7.34Hz,2H,–C H2CH2SO3À), 2.93(t,2H,J¼7.34Hz,–CH2SO3À), 4.22(t,2H, J¼7.34Hz,–CH2N]),4.38(t,2H,J¼7.34Hz,–CH2Nþ^),7.54(d, 1H,J¼9.42Hz,imidazolium-H),7.54(d,1H,J¼9.42Hz,imidazolium-H),8.82(s,1H,imidazolium-H);13C NMR(D2O,100MHz)d23.2(s),29.4(s),35.8(s),41.8(s),57.9(s),58.4(s),60.1(s),50.2(s),130.3(q, J¼317.9Hz),133.0(s),133.3(s),146.0(s);HRMS found m/z247.1123, calcd for C10H19N2O3S:MÀCF3SO3,247.1116.4.3.Typical procedure for the recyclable Bro¨nsted acid1-catalyzed direct carbon–carbon bond formation of1,3-dicarbonyl compounds with alcoholsA mixture of1-butyl-3-(3-sulfopropyl)-1H-imidazol-3-ium tri-fluoromethanesulfonate(1)(0.060g,0.151mmol),1-phenylethanol (3a)(0.370g,3.029mmol)and pentane-2,4-dione(2a)(1.503g, 15.01mmol)in1-ethyl-3-methyl-1H-imidazol-3-ium trifluorome-thanesulfonate(1ml)under argon was stirred at100 C for3h.The mixture was then cooled to room temperature and extracted from the ionic liquid with a mixed solvent of Et2O/hexane(1:1) (30mlÂ3).After the solvent was removed under reduced pressure, the product was purified by column chromatography on silica gel with hexane/EtOAc(20:1)to give3-(1-phenylethyl)pentane-2,4-dione(4aa)(0.478g,77%)and(E)-but-1-ene-1,3-diyldibenzene(5) (0.022g,7%).4.3.1.3-(1-Phenylethyl)pentane-2,4-dione(4aa)3aYield77%;Mp46.9–47.9 C(lit.43–45 C);R f0.38(hexane/ EtOAc¼5:1);IR(CHCl3)1697(C]O),1722(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.16(d,J¼7.00Hz,3H,CHC H3),1.78(s,3H, COCH3),2.22(s,3H,COCH3),3.51–3.59(m,1H,C H CH3),3.99(d, J¼7.00Hz,1H,C H COCH3),7.13–7.26(m,5H,aryl H);13C NMR (CDCl3,100MHz)d21.6(s),30.4(s),30.5(s),41.1(s),77.4(s),127.7 (s),128.0(s),130.0(s),143.8(s),204.1(s),204.2(s);HRMS found m/z204.1151,calcd for C13H16O2:M,204.1154.4.3.2.(E)-But-1-ene-1,3-diyldibenzene(5)3aYield7%;R f0.38(hexane);IR(neat)1600(C]C)cmÀ1;1H NMR (CDCl3,400MHz)d1.38(d,J¼7.00Hz,3H,CHC H3),3.55(quint, J¼7.00Hz,1H,C H CH3),6.30–6.32(m,2H,2Âvinyl H),7.08–7.28(m, 10H,aryl H);13C NMR(CDCl3,100MHz)d21.4(s),42.7(s),126.3(s), 126.4(s),127.2(s),127.4(s),128.6(s),135.3(s),137.7(s),145.7(s); HRMS found m/z208.1259,calcd for C16H16:M,208.1253.4.3.3.1,10-Oxybis(ethane-1,1-diyl)dibenzeneYield33%;dr¼50:50;R f0.60(hexane/CH2Cl2¼1:1);1H NMR (CDCl3,400MHz)d1.31(d,6H,J¼6.52Hz,2ÂCHC H3),1.39(d,6H, J¼6.52Hz,2ÂCHC H3),4.18(q,2H,J¼6.52Hz,2ÂC H CH3),4.46(q, 2H,J¼6.52Hz,2ÂC H CH3),7.13–7.31(m,20H,aryl H);13C NMR (CDCl3,100MHz)d23.9(s),25.6(s),75.3(s),75.5(s),127.1(s),127.2 (s),128.0(s),128.3(s),129.1(s),129.4(s),145.0(s),145.1(s);MS(EI) m/z226(M,7.5%).4.3.4.4-Phenylpentan-2-one11Yield20%;R f0.29(hexane/CH2Cl2¼1:1);IR(neat)1716 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.29(d,3H,J¼7.00Hz, C H3CHPh), 2.09(s,3H,COCH3), 2.68(dd,1H,J¼7.00,16.18Hz, CH2CO), 2.78(dd,1H,J¼7.00,16.18Hz,CH2CO), 2.78(sext, J¼7.00Hz,1H,CH3C H Ph),7.20–7.35(m,5H,aryl H);13C NMR (CDCl3,100MHz)d21.9(s),30.5(s),35.3(s),51.9(s),126.2(s),126.6 (s),128.4(s),146.1(s),207.8(s);MS(EI)m/z162(M,34.3%).4.3.5.3-benzhydrylpentane-2,4-dione(4ab)3aYield94%;Mp114.9–116.1 C(lit.112–114 C);R f0.43(hexane/ CH2Cl2¼1:3);IR(CHCl3)1697(C]O),1719(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d2.00(s,6H,2ÂCOCH3),4.81(d,J¼12.32Hz,1H,C H Ph),4.73(d,J¼12.32Hz,1H,C H COCH3),7.15–7.20(m,2H,aryl H),7.24–7.29(m,8H,arlyl H);13C NMR(CDCl3,100MHz)d30.5(s),52.1 (s),75.4(s),127.9(s),128.6(s),129.8(s),142.1(s),203.8(s);HRMS found m/z266.1308,calcd for C18H18O2:M,266.1307.4.3.6.(Z)-3-(1,3-Diphenylallyl)pentane-2,4-dione(4ac)1Yield90%;Mp83.0–83.8 C(lit.85 C);R f0.20(hexane/ Et2O¼5:1);IR(CHCl3)1682(C]O),1732(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.92(s,3H,COCH3),2.25(s,3H,COCH3),4.30–4.37(m,2H,C H COCH3and CHPh),6.16–6.22(m,1H,PhCH]C H), 6.43(d,J¼15.70Hz,1H,PhC H]CH),7.20–7.33(m,10H,aryl H);13C NMR(CDCl3,100MHz)d30.4(s),30.7(s),49.8(s),127.0(s),127.9 (s),128.4(s),128.6(s),129.2(s),129.7(s),129.9(s),132.3(s),137.2 (s),140.7(s),141.9(s),203.4(s),203.5(s);HRMS found m/z 292.1475,calcd for C20H20O2:M,292.1464.4.3.7.(E)-3-(Pent-3-en-2-yl)pentane-2,4-dione(4ad)Yield47%;R f0.18(hexane/Et2O¼5:1);IR(neat)1698(C]O), 1722(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d0.96(d,J¼7.19Hz, 3H,CHC H3),1.62(d,J¼7.19Hz,3H,C H3CH:CH),2.11(s,3H,COCH3), 2.19(s,3H,COCH3), 2.97(sext,J¼7.19Hz,1H,C H CH3), 3.56(d, J¼7.19Hz,1H,C H COCH3),5.19–5.25(m,1H,CH3CH]C H),5.46–5.55 (m,1H,CH3C H]CH);13C NMR(CDCl3,100MHz)d17.8(s),19.0(s), 29.5(s),30.0(s),37.7(s),75.8(s),126.4(s),132.3(s),204.0(s),204.0 (s);HRMS found m/z168.1158,calcd for C10H16O2:M,168.1151. 4.3.8.3-(1,3-Diphenylprop-2-ynyl)pentane-2,4-dione(4ae)3bYield88%;Mp95.4–96.0 C(lit.90–92 C);R f0.50(hexane/ CH2Cl2¼1:3);IR(CHCl3)1701(C]O),1733(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.93(s,3H,COCH3),2.39(s,3H,COCH3),4.22(d, J¼10.87Hz,1H,C H Ph),4.67(d,J¼10.87Hz,1H,C H COCH3),7.25–7.42(m,10H,aryl H);13C NMR(CDCl3,100MHz)d28.7(s),31.1(s), 38.0(s),75.6(s),84.9(s),88.0(s),122.7(s),127.7(s),128.1(s),128.2 (s),128.3(s),128.9(s),131.6(s),138.2(s),201.6(s),201.6(s);HRMS found m/z290.1310,calcd for C20H18O2:M,290.1307.4.3.9.1,3-Diphenyl-2-(1-phenylethyl)propane-1,3-dione(4ba)3aYield81%;Mp126.1–126.8 C(lit.126–127 C);R f0.15(hexane/ EtOAc¼20:1);IR(KBr)1683(C]O),1733(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.33(d,J¼7.00Hz,3H,CHC H3),4.03–4.11(m, 1H,C H Ph),5.63(d,J¼7.00Hz,1H,C H COPh),7.04(t,J¼7.35Hz,1H, aryl H),7.14(t,J¼7.35Hz,2H,aryl H),7.22–7.26(m,4H,aryl H), 7.35–7.42(m,3H,aryl H),7.52(t,J¼7.35Hz,1H,aryl H),7.73(d, J¼7.35Hz,2H,aryl H),8.02(d,J¼7.35Hz,2H,aryl H);13C NMR (CDCl3,100MHz)d20.5(s),41.5(s),65.0(s),126.9(s),128.0(s), 128.7(s),128.8(s),129.1(s),129.1(s),133.3(s),133.9(s),137.1(s), 137.4(s),144.1(s),194.9(s),195.3(s);HRMS found m/z328.1467, calcd for C23H20O2:M,328.1464.4.3.10.2-Benzhydryl-1,3-diphenylpropane-1,3-dione(4bb)12Yield98%;Mp221.6–222.3 C(lit.228.6–230.2 C);R f0.28 (hexane/CH2Cl2¼1:1);IR(KBr)1661(C]O),1683(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d5.32(d,J¼11.71Hz,1H,C H COPh),6.35(d, J¼11.71Hz,1H,CHPh),7.05(t,J¼7.46Hz,2H,aryl H),7.15(t, J¼7.46Hz,4H,aryl H),7.24(s,4H,aryl H),7.33(t,J¼7.46Hz,4H,aryl H),7.47(t,J¼7.46Hz,2H,aryl H),7.83(d,J¼7.46Hz,4H,aryl H);13C NMR(CDCl3,100MHz)d52.4(s),62.3(s),126.6(s),128.3(s),128.5 (s),128.6(s),128.6(s),133.2(s),136.9(s),141.7(s),194.1(s);HRMS found m/z390.1618,calcd for C28H22O2:M,390.1621.4.3.11.Ethyl2-acetyl-3-phenylbutanoate(4ca)2bYield30%;R f0.63(hexane/EtOAc¼5:1);IR(neat)1717(C]O), 1747(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d0.85(t,J¼7.10Hz, 3H,COOCH2C H3),1.16(d,J¼8.88Hz,3H,CHC H3),1.21(t,J¼7.10Hz, 3H,COOCH2C H3), 1.22(d,J¼8.88Hz,3H,CHC H3), 1.85(s,3H,K.Funabiki et al./Tetrahedron65(2009)7457–74637461COCH3),2.22(s,3H,COCH3),3.44–3.48(m,2H,PhCH),3.67(d, J¼8.88Hz,1H,C H COCH3),3.72(d,J¼8.88Hz,1H,C H COCH3),3.80(q, J¼7.10Hz,2H,COOC H2CH3),4.14(q,J¼7.10Hz,2H,COOC H2CH3), 7.11–7.21(m,10H,aryl H);13C NMR(CDCl3,100MHz)d13.7(s),14.2 (s),20.4(s),20.6(s),29.6(s),29.9(s),39.8(s),40.1(s),61.2(s),61.5 (s),67.0(s),67.6(s),76.8(s),77.1(s),77.4(s),126.8(s),126.9(s), 127.4(s),127.5(s),128.5(s),128.7(s),143.1(s),143.3(s),168.2(s), 168.6(s),202.4(s);HRMS found m/z234.1263,calcd for C14H18O3: M,234.1256.4.3.12.Ethyl2-benzhydryl-3-oxobutanoate(4cb)3aYield91%;Mp87.8–89.0 C(lit.84–86 C);R f0.38(hexane/ CH2Cl2¼1:1);IR(CHCl3)1716(C]O),1738(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d1.00(t,J¼7.10Hz,3H,COOCH2C H3),2.09(s,3H, COCH3),3.98(q,J¼7.10Hz,2H,COOC H2CH3),4.52(d,J¼12.20Hz, 1H,CHPh),4.76(d,J¼12.20Hz,1H,C H COCH3),7.14–7.18(m,2H,arylH),7.23–7.30(m,8H,aryl H);13C NMR(CDCl3,100MHz)d13.4(s),29.7(s),50.5(s),61.2(s),64.9(s),126.5(s),126.6(s),127.4(s),127.5 (s),128.3(s),128.5(s),140.9(s),141.2(s),167.3(s),201.4(s);HRMS found m/z296.1419,calcd for C19H20O3:M,296.1413.Found:C, 76.91;H,6.87.C19H20O3requires C,77.00;H,6.80.4.3.13.(Z)-Ethyl2-acetyl-3,5-diphenylpent-4-enoate(4cc)7Yield76%;R f0.20(hexane/EtOAc¼20:1);IR(neat)1714(C]O), 1741(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d0.93(t,J¼7.10Hz, 3H,COOCH2C H3),1.16(t,J¼7.10Hz,3H,COOCH2C H3),1.99(s,3H, COCH3),2.26(s,3H,COCH3),3.89(q,J¼7.10Hz,2H,COOC H2CH3),4.05(d,J¼10.99Hz,2H,C H COCH3), 4.08(d,J¼10.99Hz,2H,C H COCH3),4.12(q,J¼7.10Hz,2H,COOC H2CH3),4.26(t,J¼10.99Hz, 2H,CHPh),6.18–6.30(m,2H,PhCH]C H),6.39(d,J¼10.99Hz,1H, PhC H]CH),6.43(d,J¼10.99Hz,1H,PhC H]CH),7.12–7.29(m,20H, aryl H);13C NMR(CDCl3,100MHz)d13.3(s),13.7(s),29.4(s),29.5 (s),48.3(s),48.5(s),60.9(s),61.1(s),64.8(s),65.1(s),125.9 (s),125.9(s),126.6(s),126.7(s),127.1(s),127.1(s),127.5(s),127.5(s), 128.0(s),128.2(s),128.4(s),128.8(s),129.0(s),131.0(s),131.3(s), 136.2(s),136.3(s),139.7(s),139.9(s),167.1(s),167.4(s),200.9 (s),201.2(s);HRMS found m/z322.1574,calcd for C21H22O3:M, 322.1570.4.3.14.Ethyl2-acetyl-3,5-diphenylpent-4-ynoate(4ce)3bYield84%;R f0.50(hexane/EtOAc¼15:1);IR(neat)1719 (C]O),1746(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.00(t, J¼7.06Hz,3H,COOCH2C H3),1.24(t,J¼7.06Hz,3H,COOCH2C H3), 1.97(s,3H,COCH3),2.39(s,3H,COCH3),3.95(q,J¼7.06Hz,2H, COOC H2CH3), 3.98(d,J¼10.69Hz,1H,C H COCH3), 4.04(d, J¼10.69Hz,1H,C H COCH3),4.22(q,J¼7.06Hz,2H,COOC H2CH3), 4.60(d,J¼10.69Hz,1H,CHPh),4.63(d,J¼10.69Hz,1H,CHPh), 7.20–7.42(m,20H,aryl H);13C NMR(CDCl3,100MHz)d13.8(s), 14.1(s),29.8(s),30.6(s),37.8(s),37.8(s),61.6(s),61.8(s),66.5 (s),66.8(s),84.1(s),84.7(s),88.2(s),88.5(s),122.8(s),123.1(s), 127.6(s),127.7(s),128.1(s),128.2(s),128.2(s),128.2(s),128.3 (s),128.6(s),128.7(s),131.6(s),138.2(s),138.3(s),166.8(s), 167.1(s),200.3(s),200.7(s);HRMS found m/z320.1413,calcd for C21H20O3:M,320.1415.4.3.15.Ethyl2-benzhydryl-3-oxopentanoate(4db)Yield89%;Mp87.8–88.1 C;R f0.38(hexane/CH2Cl2¼1:1);IR (KBr)1714(C]O),1747(C]O)cmÀ1;1H NMR(CDCl3,400MHz) d0.84(t,J¼7.25Hz,3H,COCH2C H3),0.97(t,J¼7.25Hz,3H, COOCH2C H3), 2.18–2.28(m,1H,COC H2CH3), 2.46–2.56(m,1H, COC H2CH3),3.90–4.01(m,2H,COOC H2CH3),4.56(d,J¼12.20Hz, 1H,CHPh),4.82(d,J¼12.20Hz,1H,C H COCH2CH3),7.11–7.32(m, 10H,aryl H);13C NMR(CDCl3,100MHz)d7.1(s),13.6(s),36.6(s), 50.7(s),61.2(s),64.0(s),126.6(s),126.7(s),127.5(s),127.7(s),128.4 (s),128.6(s),141.3(s),141.5(s),167.5(s),204.1(s);MS(EI)m/z292 (MÀH2O,19.3%).4.3.16.Ethyl2-benzhydryl-3-oxo-3-phenylpropanoate(4eb)11Yield97%;Mp137.0–137.5 C(lit.141.9–143.1 C);R f0.54(hex-ane/CH2Cl2¼1:1);IR(KBr)1682(C]O),1730(C]O)cmÀ1;1H NMR (CDCl3,400MHz)d0.93(t,J¼7.12Hz,3H,COOCH2C H3),3.85–3.99 (m,2H,COOC H2CH3),5.08(d,J¼11.83Hz,1H,CHCOPh),5.41(d, J¼11.83Hz,1H,CHPh),7.03–7.07(m,1H,arlyl H),7.12–7.30(m,7H, arlyl H),7.34–7.45(m,4H,arlyl H),7.53–7.57(m,1H,arlyl H),8.00–8.02(m,2H,arlyl H);13C NMR(CDCl3,100MHz)d13.7(s),50.9(s), 59.4(s),61.5(s),126.5(s),126.8(s),127.7(s),128.2(s),128.5(s), 128.6(s),128.6(s),128.7(s),133.5(s),136.6(s),141.7(s),167.7(s), 192.8(s);MS(EI)m/z340(MÀH2O,46.4%).4.4.Typical procedure for the recyclable Bro¨nsted acid1-catalyzed tandem direct benzylation,cyclization and dehydration of the alcohol3fA mixture of1-butyl-3-(3-sulfopropyl)-1H-imidazol-3-ium tri-fluoromethanesulfonate(1)(0.020g,0.050mmol),2-(hydroxy-(phenyl)methyl)phenol(3f)(0.199g,0.994mmol)and pentane-2,4-dione(2a)(0.503g,5.024mmol)in1-ethyl-3-methyl-1H-imidazol-3-ium trifluoromethanesulfonate(1ml)under argon was stirred at 100 C for3h.The mixture was then cooled to room temperature and extracted from the ionic liquid with a mixed solvent of Et2O/hexane (1:1)(30mlÂ3).After the solvent was removed under reduced pressure,the product was purified by column chromatography on silica gel with hexane/CH2Cl2(1:4)to give1-(2-methyl-4-phenyl-4H-chromen-3-yl)ethanone(6af)(0.204g,77%).4.4.1.1-(2-Methyl-4-phenyl-4H-chromen-3-yl)ethanone(6af)Yield77%;R f0.58(hexane/CH2Cl2¼1:4);IR(neat)1682 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d2.13(s,3H,COCH3),2.43 (s,3H,CCH3),4.99(s,1H,CHPh),6.92–6.99(m,2H,aryl H),7.06–7.14 (m,3H,aryl H),7.19–7.30(m,4H,aryl H);13C NMR(CDCl3,100MHz) d20.5(s),30.5(s),42.6(s),114.5(s),116.7(s),124.9(s),125.2(s), 127.2(s),127.9(s),128.0(s),129.3(s),129.3(s),146.2(s),149.4(s), 159.5(s),199.2(s);HRMS found m/z264.1147,calcd for C18H16O2: M,264.1151.4.4.2.(2,4-Diphenyl-4H-chromen-3-yl)(phenyl)methanone(6bf)Yield98%;Mp152.5–153.0 C;R f0.30(hexane/CH2Cl2¼2:1);IR (KBr)1643(C]O)cmÀ1;1H NMR(CDCl3,400MHz)d5.35(s,1H, CHPh),7.02–7.19(m,9H,aryl H),7.22–7.28(m,4H,aryl H),7.36–7.39 (m,2H,aryl H),7.43–7.51(m,4H,aryl H);13C NMR(CDCl3,100MHz) d43.9(s),114.4(s),116.5(s),124.6(s),126.7(s),127.6(s),127.8(s), 127.9(s),128.1(s),128.6(s),129.1(s),129.3(s),129.5(s),129.7(s), 131.7(s),133.3(s),138.4(s),145.2(s),150.3(s),155.3(s),197.2(s); HRMS found m/z388.1471,calcd for C28H20O2:M,388.1464.4.4.3.Ethyl2-methyl-4-phenyl-4H-chromene-3-carboxylate(6cf)9Yield84%;R f0.75(hexane/CH2Cl2¼1:4);IR(neat)1710 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.16(t,J¼7.12Hz,3H, COOCH2C H3),2.51(s,3H,CCH3),4.02–4.15(m,2H,COOC H2CH3),5.04(s,1H,CHPh),6.94–6.98(m,1H,aryl H),7.00–7.06(m,2H,arylH),7.09–7.15(m,2H,aryl H),7.20–7.24(m,4H,aryl H);13C NMR (CDCl3,100MHz)d13.6(s),19.0(s),41.0(s),59.6(s),105.6(s),115.7 (s),124.0(s),124.3(s),125.9(s),127.0(s),127.3(s),127.9(s),128.7 (s),146.2(s),148.8(s),159.5(s),166.6(s),HRMS found m/z 294.1265,calcd for C19H18O3:M,294.1256.4.4.4.Ethyl2-ethyl-4-phenyl-4H-chromene-3-carboxylate(6df)Yield80%;R f0.50(hexane/CH2Cl2¼1:1);IR(neat)1703 (C]O)cmÀ1;1H NMR(CDCl3,400MHz)d1.17(t,J¼7.30Hz,3H, CCH2C H3),1.29(t,J¼7.30Hz,3H,COOCH2C H3),2.84–3.00(m,2H, CC H2CH3),4.02–4.15(m,2H,COOC H2CH3),5.03(s,1H,CHPh),6.94–6.98(m,1H,aryl H),7.02–7.07(m,2H,aryl H),7.10–7.16(m,2H,arylH),7.21–7.23(m,4H,aryl H);13C NMR(CDCl3,100MHz)d11.9(s),K.Funabiki et al./Tetrahedron65(2009)7457–7463 7462。
经典化学反应500个

86 Claisen Condensation 87 Claisen Rearrangement 88 Claisen-Schmidt Condensation 89 Clemmensen Reaction 90 Combes Quinoline Synthesis. 91 Conrad-Limpach Synthesis 92 Cope Elimination Reaction 93 Cope Rearrangement 94 Corey-Bakshi-Shibata Reduction(CBS) 95 Corey-House Synthesis 96 Corey-Kim Oxidation 97 Corey-Winter Olefin Synthesis 98 Cornforth Rearrangement 99 Craig Method 100 Criegee Reaction 101 Cram's Rule of Asymmetric Induction 102 Creighton Process 103 Criegee Reaction 104 Crum Brown-Gibson Rule 105 Curtius Rearrangement (Curtius Reaction) 106 Dakin Reaction 107 Dakin-West Reaction 108 Darapsky Degradation 109 Darzens Condensation (Darzens-Claisen Reaction; Glycidic Ester Condensation) 110 Darzens Procedure 111 Darzens Synthesis of Tetralin Derivatives 112 Darzens-Nenitzescu Synthesis of Ketones 113 Delepine Reactions 114 Demjanov Rearrangement 115 Dess-Martin Oxidation 116 de Mayo Reaction 117 D-Homo Rearrangement of Steroids 118 Dieckmann Reaction 119 Diels Alder Reaction 120 Diels Reese Reaction 121 Dienol Benzene Rearrangement 122 Dienone-Phenol Rearrangement 123 Dimroth Rearrangement 124 Doebner Reaction 125 Doebner-Miller Synthesis (Beyer Method for Quinolines). 126 Doering-LaFlamme Carbon Chain Extension 127 Dotz Reaction 128 Dowd-Beckwith Ring Expansion Reaction
有机化学人名反应机理

1.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:2. Birch还原反应实例3.Cannizzaro 反应4.反应实例4. Chichibabin反应反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
5. Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应。
反应机理反应实例6. Claisen重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用 γ-碳 14C 标记的烯丙基醚进行重排,重排后 γ-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,重排后则仍是α-碳原子与苯环相连。
芳环上取代基的电子效应对重排无影响。
取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。
反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。
7. Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
黄鸣龙反应

黄鸣龙还原反应是第一个以中国人姓名命名的反应,在国际上已广泛应用。
本书是一本汇集国内外关于黄鸣龙还原反应应用的成就、经过分析整理撰写而成的具有创见性的新著作。
书中系统介绍了黄鸣龙还原反应的发展历史、反应机理、应用范围和还原实例,是对黄鸣龙教授原始遗作及其有关工作的首次总结,可供有机化学专业的学生、科研人员及有机合成工作者学习和参考。
1911年,俄国化学家Nikolai Kishner将液体腙类化合物逐滴加到镀铂的多孔板与KOH混合体系中,加热后(约200 ℃)可消除N2得到相应的烷烃产物。
一年以后,德国化学家Ludwig Wolff又发现,将缩氨基脲溶于乙醇中,并加入乙醇钠作为碱,得到的乙醇溶液置于封管中加热至180 ℃,反应经历腙中间体,最终同样得到烷烃产物。
由于醛、酮等羰基化合物可与肼(NH2NH2)、氨基甲酰肼缩合制备相应的腙与缩氨基脲,所以这两种方法可用于羰基化合物脱氧还原。
这样的反应过程便叫作Wolff-Kishner还原(Wolff-Kishner Reduction)反应。
无论是Nikolai Kishner先生还是Wolff先生发展的方法,反应均需在封管、高压釜等密闭条件下进行,不仅操作不方便,反应过程中还会产生N2,体系压力过大则存在安全隐患。
为此,人们对这种方法的反应条件进行了改进:将醛、酮等羰基化合物溶于高沸点溶剂(如乙二醇、丙三醇)中,并加入NH2NH2与过量的碱(如金属钠、NaOEt),体系加热至回流状态。
此时反应的产率得到明显的提高,也无需在压力体系下进行。
但这种反应体系同样存在缺点,其中一个问题便是羰基化合物与NH2NH2缩合会形成水,由此导致体系温度降低,反应时间大大延长,一般需要加热反应50-100 h;除此之外,水会额外消耗一部分碱,因而体系中需要加入过量的碱与大量的溶剂。
1946年,中国化学家黄鸣龙对这一过程进行了改进,羰基化合物与NH2NH2缩合后形成相应的腙中间体,随后蒸馏除去形成的水与剩余的NH2NH2,此时不再需要大量的溶剂,体系规模也可进一步缩小。
有机催化导论第四章不对称催化

a) 不对称毒化 1986年由研究小组提出。采用光学活性分子作为毒化剂,通过分子识别使外消旋催化剂中的一种对映异构体,选择性中毒,失去活性,而另一种对映异构体成为催化反应的活性成分,因而生成光学活性产物。 局限性: 产物的光学纯度不可能超过使用光学纯催化剂时所得产物的光学纯度 b) 不对称活化 1997年由K. Mikami在Nature提出。一种外消旋催化剂或者光学纯催化剂可以被另一种手性活化试剂(Chiral activator)通过分子识别对映选择性活化,从而催化反应生成光学活性产物。 不对称毒化和不对称活化概念的提出,为手性催化的设计提供了一条更经济的途征,因为外消旋体催化剂的获得,比光学纯催化剂要容易得多。 优点:活化的催化剂比单独使用光学纯催化剂,可催化产生更高对映体过量的产物。
以15%ee(-)DAIB可以得到95%ee手性产物,表现出明显的不对称放大作用
例:烷基锌与苯甲醛的加成反应
不对称自催化(asymmetric auto-catalysis)
产物本身作为手性催化剂促进反应,完成产物的转化。 在不对称自催化反应中,手性催化剂和产物是相同的,反应后,无需分离产物和催化剂 例:2-烷基-5-甲醛基-嘧啶催化还原为嘧啶基烷醇
4.2.4 手性碳含N ,O,S等杂原子配体 ⅰ)氮,膦手性配体: 结构特点:含手性碳,配位原子为N(P)和P原子,分子含N,P原子 ⅱ)氮,氮手性配体: 结构特点:含手性碳,配位原子为N和N原子,分子含氮双齿配体
4.2.5 C2对称性配体
结构特点: SP2杂化成键的芳香环骨架,与脂肪族相比具有较高的稳定性 有卓越的空间效应 配位后生成七元环具有较大的刚性和高度扭曲构象
卤氨化反应英语

卤氨化反应英语Here is an English essay on the topic of "Halogenation Reactions" with a word count of over 600 words:Halogenation reactions are a fundamental class of organic chemical transformations that involve the introduction of a halogen atom, such as chlorine, bromine, or iodine, into an organic compound. These reactions are of great importance in organic synthesis, as they provide a means to functionalize and modify organic molecules, leading to the creation of new and useful compounds.One of the most common types of halogenation reactions is the electrophilic halogenation of alkenes. In this process, an alkene, which is a carbon-carbon double bond, reacts with a halogen molecule (e.g., Cl2, Br2, or I2) to form a haloalkane, also known as an alkyl halide. The mechanism of this reaction typically involves the initial formation of a bromonium or chloronium ion intermediate, followed by the attack of a nucleophile, such as a halide ion, to displace the halogen and form the final product.For example, the reaction of ethene (C2H4) with bromine (Br2) would proceed as follows:C2H4 + Br2 → CH2Br-CH2Br (1,2-dibromoethane)The bromonium ion intermediate is formed first, and then the bromide ion attacks to displace one of the bromine atoms, resulting in the formation of 1,2-dibromoethane.Another important class of halogenation reactions is the radical halogenation of alkanes. This process involves the use of a radical initiator, such as ultraviolet light or peroxide, to generate a halogen radical, which then abstracts a hydrogen atom from the alkane to form a new alkyl radical. This alkyl radical then combines with another halogen molecule to produce the haloalkane product.For example, the reaction of methane (CH4) with chlorine (Cl2) under radical conditions would proceed as follows:CH4 + Cl· → CH3· + HClCH3· + Cl2 → CH3Cl + Cl·The initial chlorine radical abstracts a hydrogen atom from methane, forming a methyl radical, which then combines with another chlorine molecule to give chloromethane (CH3Cl).Halogenation reactions can also be used to functionalize morecomplex organic molecules, such as aromatic compounds. In these cases, the halogenation typically occurs through an electrophilic aromatic substitution mechanism, where the halogen electrophile replaces a hydrogen atom on the aromatic ring.For instance, the reaction of benzene (C6H6) with bromine (Br2) in the presence of a Lewis acid catalyst, such as FeBr3, would produce bromobenzene (C6H5Br):C6H6 + Br2 (FeBr3) → C6H5Br + HBrThe Lewis acid catalyst helps to activate the bromine molecule, facilitating the electrophilic substitution on the aromatic ring.Halogenation reactions have a wide range of applications in organic synthesis, including the preparation of various pharmaceutical intermediates, agrochemicals, and other valuable organic compounds. Furthermore, the halogenated products can serve as useful building blocks for further chemical transformations, allowing for the synthesis of more complex molecules.In conclusion, halogenation reactions are a versatile and essential tool in the field of organic chemistry, enabling the introduction of halogen atoms into organic compounds and facilitating the creation of a diverse array of useful and often complex chemical structures.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The SPV reaction isdone intwo stages: Stage 1 (chromogen formation): To 0.2ml of concentrated sulfuric acid (980 g/liter) add 10 tl of the test solution (substance dissolved in chloroform or carbon tetrachloride), heat at 100 #{176}C for 10 mm, and cool to room temperature. Stage 2 (chromophore production): Add 10 ml of freshlyprepared phosphovanillinrcagent [4 vol of H3P04 (890ml/liter) + 1 vol of aqueous vanillin, 6 g/ liter], incubateat 37 #{176}C for 15 mm, cool, and measure the absorbanceat530 nm. Effect of varying acid concentration; stage 1: This was investigated in the following ways: (a) Pre-heating: 0.2-miportionsof sulfuric acidof several concentrations were substituted forthe 0.2ml of concentrated sulfuric acid. (b) Post-heating: stage 1 of the reaction was carried out as described in a, and increasing amounts of water
were incubated at room temperature for 30 mm beforeproceedingwith stage2 ofthereaction. The absorbance at 530 nm was corrected for volume changes which resulted from dilution ofthe sulfuric acid. Partition Experiments
AddItional
ofwhich containthe chemicalconfiguration necessary for SPV reactivity.
Materials and Methods
Chemicals All chemicals of analytical grade were purchased from British Drug Houses Ltd.;cyclohexanol, cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene were obtained from R. N. Emanuel. Chromatography was on silica gelsheets(No.6061;Eastman-Kodak Ltd.), in a solvent system recommended fortheseparation oflipid classes (1).
Linoleic acid
Cyclohexene 1,3-Cyclohexadiene (290, 300, 405)
1,4-Cyciohexadiene (320, 400)
Linolenic acid
cerol trioleate (300) Cholesterol (315, 410) Cholesterol stearate Cholesterol oleate
were tions added after cooling at stage 1. The resulting solu-
dations are that lipids be analyzed in serum obtained after fasting, inwhich the main lipid components contain either cholesterol oran unsaturated fatty acid, both
Reaction
Keyphrases: reaction between akiehydes in strong
reaction mechanisms
-
acids nance
-
nuclear magnetic reso-
Routine analysis for individual lipids has not achieved the same stageofdevelopment and application in the investigation ofdisease ashas amino acidanalysis. We believe thatthisis partly due to lack of a simple analytical system similar to the ion-exchange chromatographic system used in amino acid analyzers, the success of which relies on the coupling ofan established separation technique with a chemical method for which the reaction mechanism is well understood. Ifthe specificity ofthe sulfophosphovanillin (SPV) reaction were elucidated, its potential for lipid analysis would be comparable tothatofthe ninhydrinreaction foramino acids. The SPV reaction shows versatility in being applicable to both lipid extracts and lipoprotein solutions. The feasibility of this technique being used
CLIN. CHEM.23/9, 1669-1678(1977)
The SulfophosphovanillinReaction for Serum Lipids:A Reappraisal
K. R. Johnson,1 G. Ellis,2 and C. Toothlll3
New evidence is presented for the mechanism of this reaction, which is used in estimating lipids. The reaction occurs in two stages: (a) Stage 1 evidently involves an
Octanoic acid
Cyclohexanone
Cyciopentanone Octanoic lactone
Glycerol tripalmitate
Glycerol tristearate
DL-a-LeCithin
Methanol
oxidation step, forming a specific type of carbonium ion called an alkenyl cation of the general formula RC-C=C-R’ (previousevidence had indicated that a carbonium ion of general formula R_C+_R was formed by protonation only). (b) Stage 2 of the reaction was examined by nuclear magnetic resonance studies and by partition experiments, which have indicated that a vanillin phosphate ester is not formed as previously suggested. Comparative data from other acid-aldehyde reactions indicate that in this reaction 1, 1-di(4-hydroxy-3-methoxy phenyl)ethylene ionisformed,a product compatible with the formation of an alkenyl cation at stage 1.
of East Anglia, School
1977.
Pathology,
of Medicine,
LS2 9NL, U.K. Received Aug. 8, 1976; accepted
May 25,
Spectra of vanillin in water, ether, and phosphoric acid differ sufficiently to allow identification. Both phases resulting from the extraction into water of vanillin in ether (1 mg/ml) were examined spectroscopically. The ether phase of a biphasic system of a mixture