简单线性规划1

合集下载

简单线性规划1

简单线性规划1

解:设x,y分别为计划生产甲、乙两种混合肥料的车皮数,
则: 4 x y 1 0 ,
1 8 x 1 5 y 6 6 ,
x 0,
能够产生利润z万元. 目标函数为z=x+0.5y, 可行域如图.
y 0 .
y
4x y 10,
1 8 x 1 5 y 6 6 ,
x 0,
y 0 .
y
C
B
o
x=1
析: 作直线l0 :y=-2x, 则直线 l:
y=2x+z是一簇与 l0平行的直线,
故 直线 l 可通过平移直线l0而得,当直
x-4y=-3 线往右上方平移时z 逐渐增大:

3x+5y=25
当l 过点 B(1,1)时,z 最小,即zmin=3
x
当l 过点A(5,2)时,z最大,即
zmax=2×5+2=12 。
引例:
化肥厂生产甲、乙两种肥料,生产1车皮甲种肥料需要 磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要 磷酸盐1吨、硝酸盐15吨. 现有磷酸盐10吨、硝酸盐66吨,若生产1车皮甲种肥料, 利润为10000元;生产1车皮乙种肥料, 利润为5000元. 那么如何安排生产才能够产生最大的利润?
最优化问题
作业: 课后练习 1(2)、2
THANK YOU!
中,用平移的方法找出与可行域有公 共点且纵截距最大或最小的直线;
求 3、 通过解方程组求出最优解; 答 4、 作出答案。
x -4y≤-3
例2:已知x、y满足 3x+5y≤25 ,设z=ax+y (a>0), 若z
x≥1
取得最大值时,对应点有无数个,求a 的值。
解:当直线 l :y =-ax+ z 与

线性规划(一)

线性规划(一)
问题:求z=2x+y的最大值和最小值,使式中x、y
满足下列条件:
y x x y 1 y 1
y x 1
2 1
2x+y=-3
(-1,-1) -1
yx
2x+y=3
1
2
(2,-1)
y 1
2x+y=0
答案:当x=2,y=-1时,z=2x+y有最大值3. 当x=-1,y=-1时,z=2x+y有最小值-3.
问题:求z=2x+y的最大值和最小值,使式中x、y
满足下列条件:
线性约束条件: 关于x,y 的一次不
y x
等式(方程)组成的不等式组
x y 1 y 1
线性目标函数 : 求最大值或最小值所 涉及的变量x,y 的一次解析式
线性规划问题:在线性约束条件下求
线性目标函数的最大值或最小值问题.
可行解 :满足线性约束条件的解(x,y) 可行域 :所有可行解组成的集合
最优解 :使目标函数取得最大值或最小值的可行解
变式1:求z=x+y的最大值和最小值,使式中x、y 满足下列条件:
y x x y 1 y 1
y x 1
2
yx0 1
yx
1
2
-1
y 1
答案: z=x+y有最大值1. z=x+y有最小值-2.
小结: 一.用截距法解线性规划问题的步骤:
1.画:在直角坐标平面内画出可行域和直线
ax by 0 (目标函数为 z ax by ) 2.移:平行移动直线 ax by 0确定最优解.
3.求:求出取得最优解的点的坐标(解方程组),从而 求出最优解. 4.答.

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。

高中数学简单线性规划教案

高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。

2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。

2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。

3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。

三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。

2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。

四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。

2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。

五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。

2. 提醒学生在做作业时要注意思考问题的建模和求解方法。

六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。

2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。

线性规划案例1

线性规划案例1

线性规划案例研究韦德玻璃制品公司新产品生产问题李克很兴奋,他领导的小组获得了显著的成功。

作为韦德玻璃制品公司发展部经理,李克凭着自己领导的小组开发的创新产品,使公司取得了相当大的增长,公司总裁吴总已公开表示过李克在公司近来的成功中所起的关键作用。

事情是这样的,吴总在6个月之前要求李克小组开发了下列新产品:2米的铝矿玻璃门;1米*1.5米的双把木框窗尽管这些规格的门窗产品其他几家公司已有生产,吴总还是认为李克能施展他惯用的魔法在产品中引入使人兴奋异常的新特征,而这些新特征将会建立新的工业标准。

现在李克真是喜不自禁,因为他们已经开发出新产品了。

背景韦德玻璃制品公司生产高质量的玻璃制品,包括工艺精湛的窗和玻璃门。

尽管这些产品昂贵,但它们是为客户提供的行业中最高质量的产品。

公司有三个工厂:工厂1:生产铝矿和五金件工厂2:生产木框工厂3:生产玻璃和组装窗与门由于某些产品销售量的下降,高层管理部门决定调整公司的产品线。

如果征得管理部门的同意,不盈利的产品要停止生产并撤出生产能力来生产李克小组开发的两个新产品。

此外,韦德公司的生产计划是以周为单位制定的。

收到李克所写的两个新产品的备忘录,吴总召集了一次会议来讨论当前的问题。

包括吴总、李克,制造副总裁老毕和营销副总裁安娜参加了会议。

李克介绍了了产品的特性。

他认为玻璃门有三个特性能够引起消费者的驻足和注意。

一是玻璃门的隔热价值,它比市场上现有的任何一个玻璃门都要高得多。

开发人员采用了三种方式来实现这个特性:第一种是两面上光;第二种是在两面玻璃之间充入惰性气体;第三种是使用了特殊涂层和色料。

第二个特性是李克所使用的玻璃比一般的玻璃有更佳的紫外线防护能力,第三个特性是这种玻璃很难打破,用大锤都不容易打碎它,有人在玻璃上行走或者一只鸟撞向玻璃,它都不会破碎。

双把木框窗所用的玻璃与玻璃门相同。

此外,木材的精细加工使其保存极为长久,而且窗还有一个专门机关,使得它比一般的窗更容易滑动。

简单的线性规划问题(第1课时)课件2

简单的线性规划问题(第1课时)课件2

x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3

x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3

M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。

简单的线性规划问题

简单的线性规划问题

三、新知建构,典例分析
某工厂用A,B两种配件生产甲,乙两种产品, 每生产一件甲种产品使用4个A配件耗时1h, 每生产一件乙种产品使用4个B配件耗时2h, 该厂每天最多可从配件厂获得16个A配件和 12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?
若生产1件甲种产品获利2万元,生产1 件乙 种产品获利3万元,采用哪种生产安排利润最大?
x2y 8
44
x y
16 12
象这样关于x,y一次不等 式组的约束条件称为 线性约束条件
x
0
Z=2x+3y称为目标函数,(因这里 目标函数为关于x,y的一次式,又
y 0
称为线性目标函数
在线性约束下求线性目标函数 的最值问题,统称为线性规划,
满足线性约束的解(x,y)叫做可行解, 所有可行解组成的集合叫做可行域 使目标函数取得最值的可行解叫做这个 问题的最优解
y4x z 3 28
z 28 是直线在y轴上
的截距,当截距最
5/7 M
小时,z的值最小。 3/7
3、移
如图可见,当直线z= 28x+21y 经过可行 域上的点M时,纵截距 最小,即z最小。
o
3/7
y4x 3
/ 57 6/7 x
4、求 M点是两条直线的交点,解方程组
7 x 7 y 5
14x 7 y 6
二、新课引入,任务驱动
1、二元一次不等式表示哪个平面区域的判断方法:
“直线定界、特殊点定域”
2、二元一次不等式组表示的平面区域
各个不等式所表示的平面区域的公共部分
二、新课引入,任务驱动
通过本节的学习你能掌握简单的线性规 划问题的解法及步骤吗?
三、新知建构,典例分析

第一章 线性规划

第一章 线性规划
第四节 线性规划的典型案例
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?



资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中,用平移的方法找出与可行域有公 共点且纵截距最大或最小的直线;
求 3、 通过解方程组求出最优解; 答 4、 作出答案。
x -4y≤-3
例2:已知x、y满足 3x+5y≤25 ,设z=ax+y (a>0), 若z
x≥1
取得最大值时,对应点有无数个,求a 的值。
解:当直线 l :y =-ax+ z 与
解:设x,y分别为计划生产甲、乙两种混合肥料的车皮数,
则: 4x y 10,
18x 15 y 66,

x 0,
能够产生利润z万元. 目标函数为z=x+0.5y, 可行域如图.
y 0.
y
4x y 10,
18x 15 y 66,

x 0,
=2x+z
5
M
作出直线l0 y=2x ,平 移l0 当直线经过点M时,Z最大.
0 1234
4x+y=10
18x 15y 66
解方程组
4x y 10
,得M点坐标为(2,2)
所以 zmax x 0.5y 3.
答(略)
x
18x+15y=66
x≥1
C
B
o
x-4y=-3

3x+5y=25
x
x-4y≤-3
设z=2x+y,式中变量x、y满足下列条件 3x+5y≤25 ,
求z的最大值和最小值。
x≥1
问题 1: 将z=2x+y变形?
y=-2x+ z
问题 2: z几何意义_斜__率__为__-_2_的__直__线__在__y_轴__上__的__截__距___。
可行域:所有可行解组成的集合。 最优解:使目标函数达到最大
y
值或 最小值 的可 行 解。
C
设Z=2x+y,式中变量x、y
x-4y≤-3
满足下列条件 3x+5y≤25 ,
B
x≥1
o
x-4y=-3

3x+5y=25
x
求z的最大值和最小值。
x=1
x -4y≤-3
例1:设z=2x-y,式中变量x、y满足下列条件 3x+5y≤25
x-y≤7 y ≥0 , y ≤6 x≥0
回归引例:
例3.化肥厂生产甲、乙两种肥料,生产1车皮甲种肥料 需要磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要 磷酸盐1吨、硝酸盐15吨. 现有磷酸盐10吨、硝酸盐66吨,若生产1车皮甲种肥料, 利润为10000元;生产1车皮乙种肥料, 利润为5000元. 那么如何安排生产才能够产生最大的利润?
直线重合时,有无数个点,使
函数值取得最大值,此时有:
k l =kAC
y

k = AC
4.4 2 15


3 5
3x+5y=25 C
k l = -a
∴ -a = 3 5
∴ a=3 5
x-4y=-3 B
o
x=1

x
练习:
设Z=x+3y,式中变量x、y满足下列条件 求z的最大值和最小值。
2x+3y≤24
求z的最大值和最小值。
x≥1
解:可行域如图:目标函数 变形为y=2x-z
y
2x-y=0
当z=0时,设直线 l0:y=2x
3x+5y=25 C (1,4.4)
平移l0,当l0经过可行域上点A时,
-z 最小,即z最大。
x-4y=-3
平移l0 ,当l0经过可行域上点C时,
o
-z最大,即z最小。
B
x=1

(5,2)
y
C
B
o
x=1
析: 作直线l0 :y=-2x, 则直线 l:
y=2x+z是一簇与 l0平行的直线,
故 直线 l 可通过平移直线l0而得,当直
x-4y=-3 线往右上方平移时z 逐渐增大:

3x+5y=25
当l 过点 B(1,1)时,z 最小,即zmin=3
x
当l 过点A(5,2)时,z最大,即
zmax=2×5+2=12 。
x

x-4y=-3 3x+5y=25得A点坐标__(5_,_2_) ;由
x3=x1+5y=25得C点坐标_(_1_,_4_.4_)_;

zmax=2×5-2=8
zmin=2×1-4.4= -2.4
解线性规划问题的步骤:
画 1、 画出线性约束条件所表示的可行域; 移 2、 在线性目标函数所表示的一组平行线
【教学目标】 1.了解二元一次不等式表示平面区域; 2.了解线性规划的意义以及约束条件、目标 函数、可行解、可行域、最优解等基本概念 ; 3.了解线性规划问题的图解法,并能应用它 解决一些简单的实际问题;
【教学重点】 用图解法解决简单的线性规划问题 【教学难点】 准确求得线性规划问题的最优解
引例:
深化概念
约束条件:由x、y的不等式(方程)构成的不等式组。
线性约束条件:约束条件中均为关于x、y的一次不等式或方程
目标函数:欲求最值的关于x、y的一次解析式。
线性目标函数:欲求最值的解析式是关于x、y的一次解析式。
线性规划:求线性目标函数在线性约束条件下最大值或最小值
可行解:满足线性约束条件的解(x,y)。
x-4y≤-3 3x+5y≤25 表示的平面区域。
x≥1
在该平面区域上
y
问题 1:x有无最大(小)值? x=1 问题2:y有无最大(小)值?
问题3:2x+y有无最大(小)值?
C
B
o
x-4y=-3
A
3x+5y=25
x
设z=2x+y,式中变量x、y满足下列条件 求z的最大值和最小值。
y x=1
x-4y≤-3 3x+5y≤25,
化肥厂生产甲、乙两种肥料,生产1车皮甲种肥料需要 磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要 磷酸盐1吨、硝酸盐15吨. 现有磷酸盐10吨、硝酸盐66吨,若生产1车皮甲种肥料, 利润为10000元;生产1车皮乙种肥料, 利润为5000元. 那么如何安排生产才能够产生最大的利润?
最优化问题
画出
小结:
1.线性规划问题的有关概念; 2. 用图解法解线性规划问题的一般步骤; 3. 求可行域中的整点可行解。
作业: 课后练习 1(2)、2
相关文档
最新文档