基于VC++和Matlab的中央空调温度控制系统设计
基于MATLAB的中央空调模糊控制器设计与仿真

Microcomputer Applications Vol. 25, No.8, 2009 技术交流 微型电脑应用 2009年第25卷第8期·50·文章编号:1007-757X(2009)8-0050-03基于MATLAB 的中央空调模糊控制器设计与仿真张丽 张朝轩 丁宝苍摘 要:随着控制理论及系统研究的迅速发展,对控制效果要求越来越高,控制算法也越来越复杂,因而控制系统的设计也愈加困难。
MATLAB 是国际最流行的控制系统计算机辅助设计语言和软件工具,该文在MATLAB7.0的基础上,通过S 函数,实现中央空调模糊控制器的优化和仿真。
关键词:MATLAB ;模糊控制;S 函数;中央空调 中图法分类号:TP316.89 文章标志码:A0 引言模糊控制是一种基于语言规则和模糊推理的控制方法,采用人类的语言语句表述,较为直观,也易于理解,可以对非线性、大惯性、大滞后对象以及难以建立数学模型的对象取得较好控制效果[1]。
但由于模糊控制器设计过程中存在诸多主观因素,如隶属度确定、控制规则构造等,使得控制系统需要反复调试才能达到较好的鲁棒性和适应性。
因此,利用计算机预先对模糊控制器进行仿真研究显得尤为重要。
1 基于MATLAB 的中央空调模糊控制器设计过程MATLAB 将数值分析、矩阵计算、科学数据可视化以及非线型动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计及众多学科领域提供了一种简捷、高效的编程工具[2]。
同时,MATLAB 是一个开放的系统,针对不同的学科,推出了不同的工具箱,从而大大扩展了其应用范围。
目前,已推出的工具箱涉及学科从控制系统设计、系统辨识、模糊控制到信号处理等,非常丰富。
1.1 中央空调模糊控制器的设计过程(1)确定语言变量在FIS Editor 中单击菜单Edit/Add input,增加输入语言变量,并在下半部的右侧白框内分别输入“E”和“Ec”(温度误差和误差变化率);选中output 方框,在下半部的右侧白框内输入“U”。
基于matalab温度控制系统设计论文初稿

第二章 被控对象及控制策略控制系统意味着通过它可以按照所希望的方式保持和改变机器、结构或其他设备内任何感兴趣或可变化的量。
控制系统同时是为了使被控制对象达到预定的理想状态而实施的。
控制系统使被控制对象趋于某种需要的稳定状态。
2.1被控对象本文的被控对象电烤箱或者电炉的温度。
设计目的是要对它的温度进行控制,达到调节时间短、超调量为零且稳态误差在±1℃内的技术要求。
在工业生产过程中,控制对象各种各样。
理论分析和实验结果表明:电加热装置是一个具有自平衡能力的对象,可用二阶系统纯滞后环节来描述。
然而,对于二阶不振荡系统,通过参数辨识可以降为一阶模型。
因而一般可用一阶惯性滞后环节来描述温控对象的数学模型。
所以, 电烤箱模型的传递函数为:1)(+•=-TS e K S G s τ(2-1)式(2-1)中 K-对象的静态增益T-对象的时间常数τ-对象的纯滞后时间目前工程上常用的方法是对过程对象施加阶跃输入信号,测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。
由于本文是对温度控制系统的控制方式(采用什么样的控制器)优劣的探究,所以对于控制对象不是主要的研究对象,这里取三组控制温度控制对象的模型)(S G 如下:1220)(5.01+=-S e S G s se 5.0-1420)(5.02+=-S e S G s)14)(12(20)(5.03++=-S S e S G s2.2 控制策略分别设计PID 和Fuzzy 控制器,并做多层次不同比较各自性能,得出最优控制方法。
其中Yd=1, 1)()2)0.1t d ξ⎧=⎨=⎩白噪声 方差0.0001确定干扰,采样周期为0.1s.2.3 控制器的模型2.3.1 PID 控制器的模型与设计)(11)(s E S T S T K s U d i p ⎥⎦⎤⎢⎣⎡++=或写成传递函数形式:)11()()()(S T ST K S E S U S G d i p p ++==公式中U(s)和E (s )分别是u (t )和e (t )的拉氏变换,其中p K 、i T 、d T 分别控制器的比例系数、积分时间常数、微分时间常数。
(最新版)基于LabVIEW的温度控制系统毕业设计论文

引言随着微电子技术、计算机技术、软件技术、网络技术和现代测量技术的迅速发展,一种新型的先进仪器——虚拟仪器成为当前系统研究的热点。
虚拟仪器的出现开辟了仪器技术的新纪元,它是多门技术与计算机技术结合的产物,其基本思想逐步代替仪器完成某些功能,如数据的采集、分析、显示和存储等,最终达到取代传统电子仪器的目的。
虚拟仪器通过软件开发平台将计算机硬件资源与仪器硬件有机地融为一体,把计算机强大的数据处理能力和仪器硬件的测量、控制能力结合在一起,通过软件实现对数据的显示、存储及分析处理,并通过交互式图形界面实现系统控制和显示测量数据,并使用框图模块指定各种功能。
采用集成电路温度传感器和虚拟仪器方便地构建一个测温系统,且外围电路简单,易于实现,便于系统硬件维护、功能扩展和软件升级。
本设计利用LabVIEW作为语言开发平台,设计了一个温度控制系统,并利用计算机串口与下位机串行通讯,能实现温度的实时测量与控制。
1 绪论现代计算机技术和信息技术的迅猛发展,冲击着国民经济的各个领域,也引起了测量仪器和测试技术的巨大变革。
人们曾为测量仪器从模拟化、数字化到智能化的进步而欣喜,也为自动测试技术的日新月异的发展所鼓舞,当今虚拟仪器技术的出现又使得测量仪器进步入了高科技的殿堂。
与传统的仪器不同,虚拟仪器(virtual instrument)是基于计算机和标准总线技术的模块化系统,通常它是由控制模块、仪器模块和软件组成,在虚拟仪器中软件是至关重要的,仪器的功能都要通过它来实现,因此软件是虚拟仪器的核心,―软件就是仪器‖,从本质上反映了虚拟仪器的特征。
从构成方式上讲,虚拟仪器可分为四大类:GPIB体系结构、PC-DAQ体系结构、VXI体系结构和PXI体系结构。
GPIB体系结构是通过GPIB总线将具有GPIB接口的计算机和仪器集成的测试系统。
其优点是用户可以充分利用自己的计算机和仪器资源,且组建方便灵活、操作简单,曾是国际流行的自动测试系统。
基于matlab的空调房间温度控制仿真

目 录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题的背景和意义 (1)1.2 空调温度控制系统在国内外研究现状及发展趋势 (1)1.3 本文的研究内容和主要方法 (2)第二章 Matlab/Simulink (3)2.1 Matlab/Simulink简介 (3)2.2 MATLAB模糊工具箱 (3)2.3 MATLAB神经网络工具箱 (4)第三章 PID控制及模糊PID控制 (7)3.1 PID控制概述 (7)3.2 数字PID控制 (8)3.3 模糊控制概述 (9)3.4 模糊控制系统的基本理论 (9)3.5 模糊PID开关切换控制 (10)3.6 调房间温度控制的建立及仿真 (11)第四章神经网络PID控制系统 (19)4.1 神经网络概述 (19)4.2 基于单神经元网络PID控制 (19)4.3 系统仿真 (21)结论 (27)参考文献(References) (28)致谢 (29)附录 (30)基于MATLAB的空调房间温度控制仿真摘要:利用空调系统控制房间温度时,由于空调温度控制系统具有大延迟,参数时变,大惯性及强非线性等特性,建立精确的数学模型较为困难,使得传统PID控制方法显得较为乏力。
而智能控制方法中的神经网络、模糊系统等工具对于存在的这些问题有更好地控制,能够达到较好地控制效果。
对于空调房间温度控制存在的这些问题,本文使用常规PID控制、模糊控制、神经网络PID控制、模糊PID开关切换控制等控制方法进行控制仿真,利用MATLAB软件工具,在Simulink和M文件环境下,建立仿真模型并进行仿真对比。
结果表明,相对传统PI D控制而言,模糊PID控制及神经网络PID控制具有更优良的控制效果。
关键字:MATLAB,PID控制,模糊控制,神经网络,空调房间仿真Based on MATLAB simulation of air-conditioned roomtemperature controlAbstract:When the use of air conditioning systems control the room temperature, due to the air-conditioning temperature control system has a large delay, when the parameters change, big inertia and strong nonlinear properties, to establish a precise mathematical model more difficult, the traditional PID control method seems to be rather weak. The intelligent control method in neural networks, fuzzy systems and other tools for the existence of these problems have better control, can achieve better control effect. For air-conditioned room temperature control existence of these problems, we use the conventional PID control, fuzzy control, neural network PID control, fuzzy PID control switch control method for controlling the simulation using MATLAB software tools, and the M-file in the Simulink environment, the establishment The simulation model and simulation comparison. The results show that relative to traditional PID control, the fuzzy neural network PID control and PID control has better control effect.Keyword:MATLAB,PID control,fuzzy control,neural network,simulation conditioned room 绪论1.1 课题的背景和意义在生活生产中大量利用工具的今天,工具给我们提供了很多的便利,同时对于工具的要求也越来越高。
基于VC++与MATLAB混合编程的温度控制系统的模拟

基于VC++与MATLAB混合编程的温度控制系统的模拟程国怀武汉科技大学信息科学与工程学院自动化系,武汉(430081)E-mail:chengguohuaippts@摘要:应用MATLAB的engine引擎函数实现VC++与MATLAB的混合编程,结合温度PID控制系统实例,详细介绍参数的优化和接口实现的过程,最后在VC++的界面显示结果。
关键词:MATLAB;VC++;混合编程;接口;PID中图法分类号:TP311Visual C++ 是当前主流的应用程序开发环境之一,开发环境强大,开发的程序执行速度快,能够实现具有人机交互界面友好、简洁的系统图形用户界面(GUI)。
但在科学计算方面函数库显得不够丰富、读取、显示数据图形不方便。
MATLAB 是一款将数值分析、矩阵计算、信号处理和图形显示结合在一起,包含大量高度集成的函数可供调用,适合科学研究、工程设计等众多学科领域使用的一种简洁、高效的编程工具。
不过由于 MATLAB 使用的是解释性语言,大大限制了它的执行速度和应用场合。
基于 VC 和 MATLAB 混合编程是很多熟悉 VC++ 编程而又需要进行科学计算、数据仿真的科研人员常用的一种方式,其中最简单也最直接的方法就是调用 MATLAB 引擎,可以在一定程度上满足两个软件接口的需要。
本文以下部分将详细介绍通过 VC++6.0 调用 MATLAB7.1 引擎函数来达到 VC++ 与 MATLAB 数据共享,实现温度PID控制系统的模拟。
1 温度系统的模型及PID参数优化2 编写所需的M文件M文件函数名为canshu和pidjiaozheng,分别计算最优PID参数和实现系统的模拟,canshu函数则按照上述最优参数整定方法计算,pidjiaozheng函数实现过程参考文献 [2]如下:%温度系统PID控制function [yout,time]=pidjiaozheng(Kp,Ki,Kd,K,T,a) %将返回数据保存在yout和time数组中ts=20;%设定采样时间%延时环节sys=tf([K],[T,1],'inputdelay',a);%系统模型dsys=c2d(sys,ts,'zoh');%离散化处理[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;y_1=0;y_2=0;y_3=0;error_1=0;error_2=0;ei=0;for k=1:1:60time(k)=k*ts;%delay plantyout(k)=-den(2)*y_1+num(2)*u_5;%I separationrin(k)=60;%设定的输入比较值error(k)=rin(k)-yout(k);ei=ei+error(k)*ts;M=1;if M==1;if abs(error(k))>=30&abs(error(k))<=40beta=0.3;elseif abs(error(k))>=20&abs(error(k))<=30beta=0.6;elseif abs(error(k))>=10&abs(error(k))<=20beta=0.9;elsebeta=1.0;endelseif M==2beta=1.0;endu(k)=Kp*error(k)+Kd*(error(k)-error_1)/ts+beta*Ki*ei;%PID调节的实现过程%限幅实现if u(k)>=110u(k)=110;endif u(k)<=-110u(k)=-110;endu_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);error_2=error_1;error_1=error(k);end编写完成后将M文件放在MATLAB的work文件夹下,利用MFC AppWizard建立“温度控制系统”的对话框应用程序,在对话框中添加必要的控件,将用于显示曲线的ID设置为IDC-PIC。
matlab模拟中央空调pid遗传算法

一、引言中央空调系统在现代建筑中扮演着至关重要的角色,对空调系统的控制效率和性能要求也越来越高。
PID控制器作为一种经典的控制算法,被广泛应用于中央空调系统中。
而遗传算法作为一种全局搜索和优化的方法,具有一定的优势和应用前景。
MATLAB作为一个功能强大的模拟工具,提供了丰富的工具箱和函数,可以用于模拟和优化中央空调系统的PID控制器参数。
二、MATLAB模拟中央空调PID控制器1. 使用MATLAB进行中央空调系统建模在MATLAB环境中,可以利用Simulink工具箱进行中央空调系统的建模。
建立空调系统的传递函数模型,包括室内外温度传感器、风机、制冷剂循环等部件,以及控制器的输入输出。
这一步可以帮助工程师理解系统的动态特性,并为下一步的控制器设计做准备。
2. 设计PID控制器在MATLAB中,可以利用Control System Toolbox设计PID控制器。
根据已建立的系统模型,利用PID Tuner或者手动调节的方式,得到合适的比例、积分和微分系数,使得系统能够快速、稳定地响应温度变化。
3. 仿真系统响应利用Simulink工具箱对设计的PID控制器进行仿真,观察系统的响应特性。
可以通过改变温度变化输入信号,观察系统的温度响应、控制器输出等参数,并评估PID控制器性能的优劣。
三、遗传算法在PID参数优化中的应用1. 遗传算法原理及优化遗传算法是一种模拟生物进化过程的优化方法,其基本思想是通过种群的选择、交叉和变异等操作,实现对问题的全局搜索和优化。
在PID参数优化中,可以利用遗传算法搜索合适的控制器参数,使得系统的性能指标达到最优。
2. MATLAB中的遗传算法工具MATLAB提供了遗传算法工具箱,可以方便地使用遗传算法对问题进行优化。
用户可以自定义适应度函数、遗传算子等参数,也可以选择内置的优化函数进行快速优化。
3. 将遗传算法与PID控制器相结合通过将遗传算法与PID控制器相结合,可以实现对PID参数的优化。
中央空调控制系统的MATLAB仿真

设计题目中央空调控制系统的MATLAB仿真设计内容和要求运用PID算法,利用MATLAB仿真技术对经验法建立的中央空调控制系统模型进行仿真,通过MATLAB仿真分析。
报告主要章节第一章概述与引言随着工、农业生产向着大规模化、集成化、高精度、现代化水平的发展,提高出产品质量,降低生产成本和能耗,减轻劳动的强度,已经成为最紧迫的课题。
科学技术的飞速发展,以及国防建设中的高、精、尖产品的生产,这些都依赖于现代的自动控制技术。
现代的自动控制技术使空调技术由最初的手动调节发展到单环节的自动调节,再到各环节的联合自动控制,从而形成较为完整的空调自动控制系统。
离开了现代控制技术,空调系统的自动控制技术就不可能达到目前如此完美的程度。
该设计方案是运用PID算法,利用MATLAB仿真技术对经验法建立的中央空调控制系统模型进行仿真,通过MATLAB仿真分析。
运用PID算法来进一步的提高空调系统的控制精准性,从而使空调的性能得到提高。
第二章各部分设计方案及工作原理一、中央空调系统的构成;一般全空气空调系统,都包括水系统和风系统两个部分,其中水系统一般包括冷水机组、冷却水系统和冷冻水系统等;而风系统一般又包括送、回、排风系统三个部分。
例如水系统的组成:(1)冷冻水循环系统由冷冻泵及冷冻水管道组成。
从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各房间内进行热交换,带走房间热量,使房间内的温度下降。
从冷冻机组流出、进入房间的冷冻水简称为“出水”:流经所有的房间后回到冷冻机组的冷冻水简称为“回水”。
(2)冷却水循环系统由冷冻泵、冷却水管道及冷却塔组成。
冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量。
该热量被冷却水吸收,使冷却水温度升高。
冷却泵将升了温的冷却水压入冷却塔,使之在冷却塔与大气进行热交换,然后在将降了温的冷却水,送回到冷却机组。
如此不断循环,带走了冷冻机组释放的热量。
流进冷冻机组的冷却水简称为“进水”;从冷冻机组流回冷却塔的冷却水简称为“回水”。
基于MATLAB的温度控制系统的PID控制器设计

基于MATLAB的温度控制系统的PID控制器设计摘要本论文以温度控制系统为研究对象设计一个PID控制器PID控制是迄今为止最通用的控制方法大多数反馈回路用该方法或其较小的变形来控制PID控制器亦称调节器及其改进型因此成为工业过程控制中最常见的控制器至今在全世界过程控制中用的84仍是纯PID调节器若改进型包含在内则超过90 在PID控制器的设计中参数整定是最为重要的随着计算机技术的迅速发展对PID参数的整定大多借助于一些先进的软件例如目前得到广泛应用的MATLAB仿真系统本设计就是借助此软件主要运用Relay-feedback法线上综合法和系统辨识法来研究PID控制器的设计方法设计一个温控系统的PID控制器并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形关键词 PID参数整定 PID控制器 MATLAB仿真冷却机AbstractThis paper regards temperature control system as the research object to design a pid controller Pid control is the most common control method up until now the great majority feedback loop is controlled by this method or its small deformation Pid controller claim regulator also and its second generation so become the most common controllers in the industry process control so far about 84 of the controller being used is the pure pid controller itll exceed 90 if the second generation included Pid parameter setting is most important in pid controller designing and with the rapid development of the computer technology it mostly recurs to some advanced software for example mat lab simulation software widely used now this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid controller design method design a pid controller of temperature control system and observe the output waveform while input step signal through virtual oscilloscope after system completedKeywords PID parameter setting PID controller MATLAB simulationcooling machine摘要Ibstract II第一章绪论 1课题来源及PID控制简介 1com 课题的来源和意义 1com PID控制简介1国内外研究现状及MATLAB简介 3二章控制系统及PID调节 5控制系统构成 5PID控制 5com积分微分 5com控制7三章系统辨识9系统辨识9系统特性图10系统辨识方法11PID最佳调整法与系统仿真1441 PID参数整定法概述14针对无转移函数的PID调整法15comay feedback调整法15com Relay feedback 在计算机做仿真15 com整法19com 在线调整法在计算机做仿真20针对有转移函数的PID调整方法23 com识法24com法及根轨迹法27五章油冷却机系统的PID控制器设计28 油冷却机系统28com机 28com转换器29com 控制组件30油冷却机系统之系统辨识31油冷却机系统的PID参数整定3340致谢41参考文献42第一章绪论11 课题来源及PID控制简介com 课题的来源和意义任何闭环的控制系统都有它固有的特性可以有很多种数学形式来描述它如微分方程传递函数状态空间方程等但这样的系统如果不做任何的系统改造很难达到最佳的控制效果比如快速性稳定性准确性等为了达到最佳的控制效果我们在闭环系统的中间加入PID控制器并通过调整PID参数来改造系统的结构特性使其达到理想的控制效果com PID控制简介当今的自动控制技术都是基于反馈的概念反馈理论的要素包括三个部分测量比较和执行测量关心的变量与期望值相比较用这个误差纠正调节控制系统的响应这个理论和应用自动控制的关键是做出正确的测量和比较后如何才能更好地纠正系统PID 比例 - 积分 - 微分控制器作为最早实用化的控制器已有 50多年历史现在仍然是应用最广泛的工业控制器 PID 控制器简单易懂使用中不需精确的系统模型等先决条件因而成为应用最为广泛的控制器PID 控制器由比例单元 P 积分单元 I 和微分单元 D 组成其输入 e t 与输出 u t 的关系为公式1-1公式1-1 公式1-2 比例调节作用是按比例反应系统的偏差系统一旦出现了偏差比例调节立即产生调节作用用以减少偏差比例作用大可以加快调节减少误差但是过大的比例使系统的稳定性下降甚至造成系统的不稳定积分调节作用是使系统消除稳态误差提高无差度因为有误差积分调节就进行直至无差积分调节停止积分调节输出一个常值积分作用的强弱取决与积分时间常数TiTi越小积分作用就越强反之Ti大则积分作用弱加入积分调节可使系统稳定性下降动态响应变慢积分作用常与另两种调节规律结合组成PI调节器或PID调节器微分调节作用微分作用反映系统偏差信号的变化率具有预见性能预见偏差变化的趋势因此能产生超前的控制作用在偏差还没有形成之前已被微分调节作用消除因此可以改善系统的动态性能在微分时间选择合适情况下可以减少超调减少调节时间微分作用对噪声干扰有放大作用因此过强的加微分调节对系统抗干扰不利此外微分反应的是变化率而当输入没有变化时微分作用输出为零微分作用不能单独使用需要与另外两种调节规律相结合组成PD或PID控制器PID控制器由于用途广泛使用灵活已有系列化产品使用中只需设定三个参数 Kp Ki 和 Kd 即可在很多情况下并不一定需要全部三个单元可以取其中的一到两个单元但比例控制单元是必不可少的首先PID应用范围广虽然很多控制过程是非线性或时变的但通过对其简化可以变成基本线性和动态特性不随时间变化的系统这样PID就可控制了其次PID参数较易整定也就是PID参数KpKi和Kd可以根据过程的动态特性及时整定如果过程的动态特性变化例如可能由负载的变化引起系统动态特性变化 PID 参数就可以重新整定第三PID控制器在实践中也不断的得到改进下面两个改进的例子在工厂总是能看到许多回路都处于手动状态原因是很难让过程在自动模式下平稳工作由于这些不足采用 PID 的工业控制系统总是受产品质量安全产量和能源浪费等问题的困扰PID参数自整定就是为了处理PID参数整定这个问题而产生的现在自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准在一些情况下针对特定的系统设计的PID控制器控制得很好但它们仍存在一些问题需要解决如果自整定要以模型为基础为了PID参数的重新整定在线寻找和保持好过程模型是较难的闭环工作时要求在过程中插入一个测试信号这个方法会引起扰动所以基于模型的 PID 参数自整定在工业应用不是太好如果自整定是基于控制律的经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来因此受到干扰的影响控制器会产生超调产生一个不必要的自适应转换另外由于基于控制律的系统没有成熟的稳定性分析方法参数整定可靠与否存在很多问题因此许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式自动整定通常是指根据开环状态确定的简单过程模型自动计算PID 参数但仍不可否认 PID 也有其固有的缺点PID 在控制非线性时变耦合及参数和结构不确定的复杂过程时工作地不是太好最重要的是如果 PID 控制器不能控制复杂过程无论怎么调参数都没用虽然有这些缺点PID控制器是最简单的有时却是最好的控制器12 国内外研究现状及MATLAB简介PID控制中最重要的是对其参数的控制所以当今国内外PID控制技术的研究主要是围绕如何对其参数整定进行的自Ziegler和Nichols提出PID参数整定方法起有许多技术已经被用于PID控制器的手动和自动整定根据发展阶段的划分可分为常规PID参数整定方法及智能PID参数整定方法按照被控对象个数来划分可分为单变量PID参数整定方法及多变量PID参数整定方法前者包括现有大多数整定方法后者是最近研究的热点及难点按控制量的组合形式来划分可分为线性PID参数整定方法及非线性PID 参数整定方法前者用于经典PID调节器后者用于由非线性跟踪-微分器和非线性组合方式生成的非线性PID控制器Astrom在1988年美国控制会议ACC上作的《面向智能控制》〔〕自整定和自适应为智能PID控制的发展奠定了基础他认为自整定控制器和自适应控制器能视为一个有经验的仪表工程师的整定经验的自动化在文〔〕中继续阐述了这种思想PI或PID控制即自整定调节器应具有推理能力自适应PID的应用途径的不断扩大使得对其整定方法的应用研究变得日益重要目前在众多的整定方法中主要有两种方法在实际工业过程中应用较好一种是由福克斯波罗Foxboro公司推出的基于模式识别的参数整定方法基于规则另一种是基于继电反馈的参数整定方法基于模型前者主要应用于Foxboro的单回路EXACT控制器及其分散控制系统IA Series的PIDE功能块其原理基于Bristol在模式识别方面的早期工作〔〕这些技术极大地简化了PID控制器的使用显着改进了它的性能它们被统称为自适应智能控制技术〔〕〔〕PID参数整定方法和非线性PID参数整定方法PID控制算法是迄今为止最通用的控制策略有许多不同的方法以确定合适的控制器参数这些方法区分于复杂性灵活性及使用的过程知识量一个好的整定方法应该基于合理地考虑以下特性的折衷负载干扰衰减测量噪声效果过程变化的鲁棒性设定值变化的响应所需模型计算要求等我们需要简单直观易用的方法它们需要较少的信息并能够给出合适的性能我们也需要那些尽管需要更多的信息及计算量但能给出较好性能的较复杂的方法从目前PID参数整定方法的研究和应用现状来看以下几个方面将是今后一段时间内研究和实践的重点〔〕PID参数整定方法使其在初始化抗干扰和鲁棒性能方面进一步增强使用最少量的过程信息及较简单的操作就能较好地完成整定②对于多入多出被控对象需要研究针对具有显着耦合的多变量过程的多变量PID参数整定方法进一步完善分散继电反馈方法尽可能减少所需先验信息量使其易于在线整定〔〕PID控制技术有待进一步研究将自适应自整定和增益计划设定有机结合使其具有自动诊断功能结合专家经验知识直觉推理逻辑等专家系统思想和方法对原有PID控制器设计思想及整定方法进行改进将预测控制模糊控制和PID控制相结合进一步提高控制系统性能都是智能PID控制发展的极有前途的方向〔〕Matrix Laboratory 缩写为Mat lab 软件包是一种功能强效率高便于进行科学和工程计算的交互式软件包其中包括一般数值分析矩阵运算数字信号处理建模和系统控制和优化等应用程序并将应用程序和图形集于便于使用的集成环境中在此环境下所解问题的Mat lab语言表述形式和其数学表达形式相同不需要按传统的方法编程并能够进行高效率和富有创造性的计算同时提供了与其它高级语言的接口是科学研究和工程应用必备的工具目前在控制界图像信号处理生物医学工程等领域得到广泛的应用本论文设计中PID参数的整定用到的是Mat lab中的 SIMULINK它是一个强大的软件包在液压系统仿真中只需要做数学模型的推导工作用 SIMULINK对设计好的系统进行仿真可以预知效果检验设计的正确性为设计人员提供参考其仿真结果是否可用取决于数学模型正确与否因此要注意模型的合理及输入系统的参数值要准确〔〕PID调节21 控制系统构成对控制对象的工作状态能进行自动控制的系统称为自动控制系统一般由控制器与控制对象组成控制方式可分为连续控制与反馈控制即一般所称开回路与闭回路控制连续控制系统的输出量对系统的控制作用没有任何影响也就是说控制端与控制对象为单向作用这样的系统亦称开回路系统反馈控制是指将所要求的设定值与系统的输出值做比较求其偏差量利用这偏差量将系统输出值使其与设定值调为一致反馈控制系统方块图一般如图2-1所示图2-1反馈控制系统方块图22 PID控制将感测与转换器输出的讯号与设定值做比较用输出信号源 2-10v或4-20mA 去控制最终控制组件在工程实际中应用最为广泛的调节器控制规律为比例积分微分控制简称PID控制又称PID调节PID控制器问世至今已有近60年的历史了它以其结构简单稳定性好工作可靠调整方便而成为工业控制主要和可靠的技术工具当被控对象的结构和参数不能完全掌握或得不到精确的数学模型时控制理论的其它设计技术难以使用系统的控制器的结构和参数必须依靠经验和现场调试来确定这时应用PID控制技术最为方便即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统的参数的时候便最适合用PID控制技术com 比例积分微分比例图2-2 比例电路公式2-1积分器图2-3 积分电路公式2-2图2-4微分电路微分器式2-3实际中也有PI和PD控制器PID控制器就是根据系统的误差利用比例积分微分计算出控制量控制器输出和控制器输入误差之间的关系在时域中如公式2-4和2-5u t Kp e t Td 公式2-4U s ]E s 公式2-5公式中U s 和E s 分别为u t 和e t 的拉氏变换其中分别为控制器的比例积分微分系数〔〕com PIDP控制比例控制是一种最简单的控制方式其控制器的输出与输入误差讯号成比例关系当仅有比例控制时系统输出存在稳态误差Steady-state error 积分I控制在积分控制中控制器的输出与输入误差讯号的积分成正比关系对一个自动控制系统如果在进入稳态后存在稳态误差则称这个控制系统是有稳态误差的或简称有差系统System with Steady-state Error为了消除稳态误差在控制器中必须引入积分项积分项对误差取关于时间的积分随着时间的增加积分项会增大这样即便误差很小积分项也会随着时间的增加而加大它推动控制器的输出增大使稳态误差进一步减小直到等于零因此比例积分 PI 控制器可以使系统在进入稳态后无稳态误差微分D控制在微分控制中控制器的输出与输入误差讯号的微分即误差的变化率成正比关系自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳其原因是由于存在有较大惯性的组件环节和或有滞后 delay 的组件使力图克服误差的作用其变化总是落后于误差的变化解决的办法是使克服误差的作用的变化要有些超前即在误差接近零时克服误差的作用就应该是零这就是说在控制器中仅引入比例项往往是不够的比例项的作用仅是放大误差的幅值而目前需要增加的是微分项它能预测误差变化的趋势这样具有比例微分的控制器就能够提前使克服误差的控制作用等于零甚至为负值从而避免了被控量的严重地冲过头所以对有较大惯性和或滞后的被控对象比例微分 PD 的控制器能改善系统在调节过程中的动态特性〔〕31 系统辨识1 所谓系统辨识即是在不知道系统转移函数时根据系统特性辨识出来2 若被控对象的数学模式相当线性 linear 且各项参数都可知道则可用控制理论来设计PID控制器的系数大小但实际的被控对象往往是非线性系统且系统复杂难以精确地用数学式表达所以工业上设计PID控制器时常常使用实验方法而较少用理论来设计调整PID控制器的方法中最有名的是Ziegler-Nichols所提出的二个调整法则这个调整法测是基于带有延迟的一阶传递函数模型提出的这种对象模型可以表示为公式3-1在实际的过程控制系统中有大量的对象模型可以近似的由这样的一阶模型来表示如果不能物理的建立起系统的模型我们还可以由实验提取相应的模型参数[5]3 将大小为1的阶跃信号加到被控对象如图3-1所示图3-1 将阶跃信号加到被控对象对大多数的被控对象若输入为阶跃信号则其输出c t 大多为S状曲线如下图3-2所示这个S状曲线称之为过程反应曲线process reaction curve 图3-2被控对象的阶跃响应图4 系统转移函数空调方面图3-3空调系统示意图图3-4 空调系统方块图由图3-3及图3-4可得知此系统的转移函数推导如下公式3-232 系统特性图1 系统为制热使用最大信号去控制系统直到稳定之后也就是热到达无法再上升时此时系统特性就会出现如下图3-5所示图3-5 系统制热的特性图2 系统为制冷使用最大信号去控制系统直到稳定之后也就是冷到达无法再下降时此时系统特性就会出现如下图3-6所示图3-6 系统制冷的特性图33 系统辨识方法1一阶系统带有延迟特性图3-7 一阶系统带有延迟特性图一阶系统加一个传递来近似被控对象则其近似转移函数如公式3-3所示公式3-3其中KTL可由上图3-7求得K稳态时的大小T时间常数※注系统越大时间常数越大L延迟时间2 KTL的求法K如上图3-31所示K值相当于C t 在稳态时的大小T与L求T及L必须在S形状曲线划一条切线最大斜率画出切线之后T及L值可以直接从图上得知T及L值与C t 及切线的关系如上图3-7所示第四章PID最佳调整法与系统仿真41 PID参数整定法概述1PID参数整定方法1 Relay feedback 利用Relay 的 on-off 控制方式让系统产生一定的周期震荡再用Ziegler-Nichols调整法则去把PID值求出来2 在线调整实际系统中在PID控制器输出电流信号装设电流表调P值观察电流表是否有一定的周期在动作利用Ziegler-Nichols把PID求出来PID值求法与Relay feedback一样3 波德图跟轨迹在MATLAB里的Simulink绘出反馈方块图转移函数在用系统辨识方法辨识出来之后输入指令算出PID值[13]2PID调整方式图4-1 PID调整方式如上描述之PID调整方式分为有转函数和无转移函数一般系统因为不知转移函数所以调PID值都会从Relay feedback和在线调整去着手波德图及根轨迹则相反一定要有转移函数才能去求PID值那这技巧就在于要用系统辨识方法辨识出转移函数出来再用MATLAB里的Simulink画出反馈方块图调出PID值〔〕PID 值的方法有在线调整法Relay feedback波德图法根轨迹法前提是要由系统辨识出转移函数才可以使用波德图法和根轨迹法如下图4-2所示42 针对无转移函数的PID调整法在一般实际系统中往往因为过程系统转移函数要找出之后再利用系统仿真找出PID值但是也有不需要找出转移函数也可调出PID值的方法以下一一介绍com Relay feedback4-3所示将PID控制器改成Relay利用Relay的On-Off 控制将系统扰动可得到该系统于稳定状态时的震荡周期及临界增益Tu及Ku在用下表4-4 的Ziegler-Nichols第一个调整法则建议PID调整值即可算出该系统之KpTiTv之值Controller P 05Ku PI 045Ku 083Tu PID 06Ku 05Tu 0125Tu 〔〕com Relay feedback 在计算机做仿真Step 1 以MATL AB里Simulink绘出反馈方块如下图4-5所示图4-5 Simulink绘出的反馈方块图Step 2让Relay做On-Off动作将系统扰动On-Off动作将以±1做模拟如下图4-6所示图4-6Step 3即可得到系统的特性曲线如下图4-7所示图4-7 系统震荡特性曲线Step 4取得Tu及a带入公式3-1计算出Ku以下为Relay feedback临界震荡增益求法公式4-1a振幅大小d电压值com 在线调整法图4-8在线调整法示意图在不知道系统转移函数的情况下以在线调整法直接于PID控制器做调整亦即PID控制器里的I值与D值设为零只调P值让系统产生震荡这时的P值为临界震荡增益Kv之后震荡周期也可算出来只不过在线调整实务上与系统仿真差别在于在实务上处理比较麻烦要在PID控制器输出信号端在串接电流表即可观察所调出的P值是否会震荡虽然比较上一个Relay feedback法是可免除拆装Relay 的麻烦但是就经验而言在实务上线上调整法效果会较Relay feedback 差在线调整法也可在计算机做出仿真调出PID值可是前提之下如果在计算机使用在线调整法还需把系统转移函数辨识出来但是实务上与在计算机仿真相同之处是PID 值求法还是需要用到调整法则Ziegler-Nichols经验法则去调整与Relay feedback的经验法则一样调出PID值com 在线调整法在计算机做仿真Step 1以MATLAB里的Simulink绘出反馈方块如下图4-9所示图4-9反馈方块图PID方块图内为图4-10 PID方块图Step 2将Td调为0Ti无限大让系统为P控制如下图4-11所示图4-11Step 3调整KP使系统震荡震荡时的KP即为临界增益KU震荡周期即为TV 使在线调整时不用看a求KU如下图4-12所示图4-12 系统震荡特性图Step 4再利用Ziegler-Nichols调整法则即可求出该系统之KpTiTd之值43 针对有转移函数的PID调整方法com系统反馈方块图在上述无转移函数PID调整法则有在线调整法与Relay feedback调整法之外也可利用系统辨识出的转移函数在计算机仿真求出PID值至于系统辨识转移函数技巧在第三章已叙述过接下来是要把辨识出来的转移函数用在反馈控制图之后应用系统辨识的经验公式Ziegler-Nichols第二个调整法求出PID值〔〕4-14所示controllerPPI33LPID2L 表4-14 Ziegler-Nichols第二个调整法则建议PID调整值〔〕为本专题将经验公式修正后之值※comL为延迟时间可com b※coma的解法可有以下2种解一如下图4-15中可先观察系统特性曲线图辨识出a值解二利用三角比例法推导求得图4-15利用三角比例法求出a值公式4-2用Ziegler-Nichols第一个调整法则求得之PID控制器加入系统后一般闭环系统阶跃响应最大超越的范围约在1060之间所以PID控制器加入系统后往往先根据Ziegler-Nichols第二个调整法则调整PID值然后再微调PID值至合乎规格为止com 波德图法及根轨迹法利用系统辨识出来的转移函数使用MATLAB软件去做系统仿真由于本设计中PID参数的整定主要是基于系统辨识及Ziegler-Nichols调整法则所以在此不用波德图法及根轨迹法第五章油冷却机系统的PID控制器设计51 油冷却机系统本论文设计以油冷却机温度控制系统为被控对象进行PID控制器的参数整定及其设计下面介绍一下油冷却机系统以及各个组成部分com 油冷却机图5-1 油冷却机实物图图5-2 油冷却机系统循环图油冷却机系统循环主要可分为冷媒循环系统以及油循环系统冷媒循环系统即为一般常见之制冷循环而油循环则是将油打出后经过负载加热再与冷媒循环的蒸发器作热交换再流回油槽做冷却用[16]com 感测与转换器图5-3 PT100实物图电阻式温度检测器 RTDResistance Temperature Detector -一种物质材料作成的电阻它会随温度的上升而改变电阻值如果它随温度的上升而电阻值也跟着上升就称为正电阻系数如果它随温度的上升而电阻值反而下降就称为负电阻系数[6]PT100温度传感器是一种以白金 Pt 作成的电阻式温度检测器属于正电阻系数其电阻和温度变化的关系式如下R Ro 1αT其中α 000392Ro为100Ω 0℃的电阻值 T为摄氏温度Vo 255mA ×100 1000392T 0255T1000 电源是带噪声的因此我们使用齐纳二极管作为稳压零件由于72V齐纳二极管的作用使得1K电阻和5K可变电阻之电压和为65V靠5K可变电阻的调整可决定晶体管的射集极极电流而我们须将集极电流调为255mA使得量测电压V如箭头所示为0255T1000其后的非反向放大器输入电阻几乎无限大同时又放大10倍使得运算放大器输出为255T100 6V齐纳二极管的作用如72V齐纳二极管的作用我们利用它调出255V因此电压追随器的输出电压V1亦为255V其后差动放大器之输出为Vo 10 V2-V1 10 255T100-255 T10如果现在室温为25℃则输出电压为25V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 阀控制 器调节 热交 换器 进水 口阀门开度 的过 程 中 , 以增 加进 水 的 阻力 来 减少 流 体 ( 冻水 ) 是 冷 在
热交换 器 中的流 动 速 度 , 样 就 以浪 费 一 大 部分 这
冷冻水 的动能来 达 到 调 温 , 而 浪 费 的这 一 部分 然
动能恰 恰是 中央空 调 的 冷冻 泵 所 给 予 , 冷 冻泵 而
中 图 分 类 号 : P 7 T 22 文献标识码 : A
De i n o nt o y t m o m pe a u e o nta i‘ o d to n sg fCo r lS se f rTe r t r fCe r lA rc n ii ni g Ba e n VC++ a dM alb sd o n t a
E E T I R VE 2 0 V 13 N . 2 L C RCD I 08 o. 8 o 1
电 气 传 动 2 0 0 8年 第 3 8卷 第 1 期 2
基 于 VC+ 和 Malb的 中央 空 调 温度 + t a 控 电 气工程 学院 , 北京 1 0 4 ) 0 0 4
电机是 要 消耗 电能 的 , 就 是 说采 用 比例 阀 调温 也
浪费 了一部 分 的 电 能 。其 次 , 管风 机 是 以电机 盘 来 驱动 的, 电机是 长期 以满 速 运行 的, 以工频 而 即
Ke r s c nr l i-o dt nn fz yc n r ltmp r tr ; ywod :e ta rc n ii ig;u z o to ;e e au e VC++ & M alb e e g a ig a o ta ; n r y svn
近 年来 , 随着 高 层 建筑 的兴 起 和人 们 生 活 水
Ab ta t W i e p c o t e d s d a t g s o i h l s n p e e u a i n i r dto a o to ta e y sr c : t r s e tt h ia v n a e fh g s a d s e d r g lt n ta iin l n r l r t g h o o c s f rc n r l i c n iin n o e ta r o d t i g,a me h d t a a lb S rp a ld i a — o t o h tM t c i ti c l n VC++ i r e o r a ief z y c nto f a s e n o d r t e l u z o r l z o t mp r t r s p o o e u o i i n ri n o r s o s .Att e s metme,t e CAN e wo k s s e e e a u e wa r p s d d e t sb g i e t a d l w e p n e t a h a i h n t r y t m o tmie t e wa e ic l t y t m r m h o ev e ,t ee e g a i g e f c sb c mig mo e o v o sy p i z h t rcr u a es s e fo t ewh l iw h n r y s vn fe t e o n r b i u l. i Th u c s f l p l a in i d c t s t a h e i n i o ia n au b e e s c e su l a p i to n ia e h tt e d sg sl g c l d v l a l. y c a
平 的提 高 , 中央 空 调 的应 用 变 得越 来 越 普 遍 。 中 央 空调传 统上 采 用 比例 阀进 行机 械 式 调 温 , 比 由
该调节 方式是 人 工调节 而 不是 自动 恒 温调 节 。另 外 比例 阀性能不稳定 也造成调温效果 不理想 。 本文将 中央空调 设计 成一 个 温度 闭环 自动控 制系统 , 并结 合控制对象大惯 性 、 迟滞 严重 的特点 , 采用温 度的模 糊控 制 策略 。本文 结 合 了 V + 和 C + Mal t b的优点 , a 通过 在 VC +中调用 在 Mal + t b中 a 编写 的模糊 函数的方法实 现对温度控制 。
W A NG Guiga g。W A NG n — n Ya
( c o l f E e r a n ier g, e igJ a t g U i ri B i n 0 0 4 C i ) S ho l ti l g ne n B i n io n n v s y, e ig 1 0 4 , hn o c c E i j o e t j a
络 系 统 对 循 环 水 系 统 进 行 整 体 的 优 化 控 制 功 能 , 能 效 果 会 更 为 明显 。应 用 表 明该 系 统 设 计 合 理 、 价 比 高 , 节 性 具有很强的实际应用价值与广阔的前景 。
关键词 : 中央 空 诃 ; 糊 控 制 ; 度 ; c 模 温 V ++和 Malb 节 能 t ; a
摘 要: 针对 中 央空 调传 统 控 制方 法损 耗 较 大 以及 调 速 控 制 策 略上 的缺 点 , 合 被 控 对 象 温度 具 有 大 惯 性 、 结
响 应 慢 的特 点 , 出 了在 V ++中调 用 Malb脚 本 的 方 法 来 实 现 对 温 度 的模 糊 控 制 的方 法 ; 加 上 C 提 C t a 再 AN 网