老师用,正交分解(家教版)

合集下载

高一数学正交分解法例题及练习

高一数学正交分解法例题及练习

高一数学正交分解法例题及练习正交分解法是高中数学中的一个重要概念,它在解决向量分解和线性方程组问题时起着关键作用。

下面给出一些高一数学正交分解法的例题及练。

例题1已知向量$\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$,$\vec{b} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$,求向量$\vec{a}$在向量$\vec{b}$上的正交投影。

解:首先计算向量$\vec{b}$的单位向量$\vec{u}$:$$\vec{u} = \frac{\vec{b}}{|\vec{b}|} = \frac{\begin{pmatrix} 3 \\ 4 \end{pmatrix}}{\sqrt{3^2+4^2}} = \frac{\begin{pmatrix} 3 \\ 4\end{pmatrix}}{5} = \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5}\end{pmatrix}$$然后,计算向量$\vec{a}$在向量$\vec{b}$上的正交投影:$$\text{proj}_{\vec{b}}(\vec{a}) = \left(\vec{a} \cdot\vec{u}\right) \vec{u} = \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot\begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}\right)\begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix} =\left(\frac{11}{5}\right) \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5}\end{pmatrix} = \begin{pmatrix} \frac{33}{25} \\ \frac{44}{25}\end{pmatrix}$$所以,向量$\vec{a}$在向量$\vec{b}$上的正交投影为$\begin{pmatrix} \frac{33}{25} \\ \frac{44}{25} \end{pmatrix}$。

正交分解理论例题及练习

正交分解理论例题及练习

正交分解理论例题及练习正交分解理论是现代数学中的一个重要概念,它在各个领域都有着广泛的应用。

本文将介绍正交分解理论的基本概念,并提供一些例题和练,以帮助读者更好地理解和应用这一理论。

正交分解理论的基本概念正交分解理论是将一个向量空间拆分成若干个正交子空间的方法。

它的核心思想是利用向量空间中的正交基,将向量空间中的向量表示成各个正交子空间上的分量之和。

在正交分解理论中,一个向量空间可以表示为以下形式:$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$$其中,$V$ 是一个向量空间,$V_1, V_2, \ldots, V_n$ 是$V$ 的正交子空间。

例题例题1设向量空间 $V$ 的一组基为 $v_1 = (1, 0)$ 和 $v_2 = (0, 1)$。

将向量 $v = (3, 4)$ 表示为 $v_1$ 和 $v_2$ 的分量之和。

解答:首先,根据正交分解理论,$v$ 可以表示为 $v_1$ 和 $v_2$ 的分量之和。

假设 $v$ 的分量分别为 $x_1 v_1$ 和 $x_2 v_2$,其中$x_1$ 和 $x_2$ 是待定系数。

则有:$$v = x_1 v_1 + x_2 v_2$$代入已知数值,得到:$$(3, 4) = x_1 (1, 0) + x_2 (0, 1)$$由此可得到一个线性方程组:$$\begin{cases} x_1 = 3 \\ x_2 = 4 \end{cases}$$解这个线性方程组,得到解 $x_1 = 3$ 和 $x_2 = 4$。

因此,向量 $v = (3, 4)$ 可以表示为 $(3, 0)$ 和 $(0, 4)$ 的分量之和。

例题2设向量空间 $V$ 的一组基为 $v_1 = (1, 1, 1)$ 和 $v_2 = (1, -1, 0)$。

求向量空间 $V$ 的正交子空间 $V_1$ 和 $V_2$。

解答:根据正交分解理论,我们需要寻找与 $v_1$ 和 $v_2$ 正交的向量。

物理人教版必修一专题正交分解

物理人教版必修一专题正交分解
Fy
q
f
Fx
x
G
力的正交分解法
• 某人用力F=40 N 斜向上60°的力拉物体 向右运动,已知物体质量为10kg,动摩擦 因数为0.1。求物体在水平方向所受的合
力y为多少?(g=10m水/s平2)方向上,受到Fx和f两个力 FN F
Fy
q
f
Fx
x
G
力的正交分解法
• 某人用力F=40 N 斜向上60°的力拉物体 向右运动,已知物体质量为10kg,动摩擦 因数为0.1。求物体在水平方向所受的合
平和竖直两个方向上的分力.
Fx F c osq
y
Fy
F
q
Fx
20 3 N 2
10 3 N
x Fy F sin q
20 1 N 2
10 N
力的正交分解法
• 三个共点力F1=20 N、F2=30 N、F3=40 N ,它们相互间的夹角为120°,求它们的 合力.
F2=30 N 120o
120o F1=20 N 120o
F3y
F3=40 N 5 3 N
力的正交分解法
• 三个共点力F1=20 N、F2=30 N、F3=40 N
,它们相互间的夹角为120°,求它们的
合力. y
F2y
F2=30 N
120o F1=20 N 120o 120o
F2x F3x
三个力合力的大小为:
x F 152 (5 3)2 N
10 3 N
互相垂直的方向进行分解。y
• 正交分解的步骤:
• ①建立xOy直角坐标系
F
O
x
力的正交分解法
• 力的正交分解:把一个已知力沿着两个
互相垂直的方向进行分解建立xOy直角坐标系

高中物理正交分解

高中物理正交分解

高中物理正交分解讲解及解题方法步骤高中物理正交分解是一种常用的解题方法,主要用于解决涉及两个互相垂直方向的物理问题。

下面我将详细讲解正交分解的原理、应用和解题步骤。

一、正交分解的原理正交分解是将一个物理量沿着两个互相垂直的方向进行分解的方法。

在物理学中,很多物理量都可以用正交分解的方法进行求解,如力、速度、加速度等。

正交分解的原理基于矢量的分解和合成。

矢量是既有大小又有方向的量,可以沿任意方向进行分解和合成。

在正交分解中,我们将一个矢量沿两个互相垂直的方向进行分解,得到两个互相垂直的分量。

这两个分量是独立的,它们的大小和方向都可以单独求解。

二、正交分解的应用1.力的正交分解力的正交分解是解决力学问题的常用方法。

在解决涉及两个互相垂直方向的力的问题时,我们可以将力沿这两个方向进行分解,得到两个互相垂直的分力。

然后分别对这两个分力进行分析和求解,最后合成得到总力。

2.速度和加速度的正交分解在解决涉及速度和加速度的问题时,我们也可以使用正交分解的方法。

将速度或加速度沿两个互相垂直的方向进行分解,得到两个互相垂直的分速度或分加速度。

然后分别对这两个分速度或分加速度进行分析和求解,最后合成得到总速度或总加速度。

三、正交分解的解题步骤1.确定需要分解的物理量。

2.确定两个互相垂直的方向。

3.将物理量沿这两个方向进行分解,得到两个互相垂直的分量。

4.分别对这两个分量进行分析和求解。

5.最后将两个分量合成得到总物理量。

四、例题解析例题:一个物体在水平方向上受到两个力的作用,这两个力的大小分别为F1=10N和F2=20N,方向互相垂直。

求这个物体的合力大小和方向。

解题步骤:1.确定需要分解的物理量:合力。

2.确定两个互相垂直的方向:水平方向和竖直方向。

3.将合力沿这两个方向进行分解,得到两个互相垂直的分力:水平分力和竖直分力。

4.分别对这两个分力进行分析和求解:水平分力为F1=10N,竖直分力为F2=20N。

5.最后将两个分力合成得到总合力:F=√(F1²+F2²)=√(10²+20²)=√500N,方向为与水平方向成arctan(2)的夹角斜向上。

正交分解法课件

正交分解法课件

01
02
03
选取正交基
选择一组正交基,用于表 示目标向量。
展开目标向量
将目标向量展开为正交基 的线性组合,即每个基底 与对应系数的乘积之和。
求解系数
通过点积运算求解展开式 中的系数,使得目标向量 与正交基之间的点积相等 。
正交分解法的优势与局限性
优势
正交分解法能够将复杂的向量运算转化为简单的代数运算,方便计算。同时, 正交基的选择具有多样性,可以根据具体问题选择合适的基底。
多目标正交分解法
总结词
多目标正交分解法是一种解决多目标优化问 题的有效方法。
详细描述
多目标正交分解法通过将多目标优化问题转 化为一系列单目标优化问题,利用正交分解 技术求解。这种方法能够同时考虑多个目标 ,平衡不同目标之间的冲突,从而找到更全 面的解决方案。
自适应正交分解法
总结词
自适应正交分解法是一种能够自动调整参数 和方法的正交分解方法。
组合优化问题
组合优化问题是一类具有离散特征的 优化问题,如旅行商问题、排班问题 等。正交分解法也可以用于解决组合 优化问题,通过将问题分解为若干个 子问题,降低问题的复杂度,提高求 解效率。
VS
例如,一个简单的组合优化问题可以 表示为:最小化 $f(x)$,满足 $x in {0,1}^n$,其中 $f(x)$ 是一个非线 性函数。通过正交分解法,可以将这 个问题分解为一系列简单的子问题, 从而方便求解。
自适应算法设计
根据不同问题的特性,设 计自适应的正交分解法, 提高算法的适用性和鲁棒 性。
应用领域的拓展
数值分析领域
将正交分解法应用于更广泛的数值分析问题,如 求解偏微分方程、积分方程等。
机器学习领域

正交分解法例题及练习

正交分解法例题及练习

正交分解法例题及练习正交分解法是一种常用的数学工具,在诸多领域中有着广泛的应用。

本文将介绍正交分解法的基本原理,并提供一些例题和练,以帮助读者更好地理解和应用该方法。

1. 正交分解法的基本原理正交分解法是一种将一个向量空间中的向量表示为一组正交基向量线性组合的方法。

具体来说,如果有一个向量空间V和它的一组正交基向量{v1, v2, ..., vn},则可以将任意一个向量v∈V表示为:v = c1 * v1 + c2 * v2 + ... + cn * vn其中,c1, c2, ..., cn是标量,也就是向量v在每个基向量上的投影。

2. 正交分解法的例题例题1考虑一个三维向量空间V,其中的一组正交基向量为{v1, v2, v3},它们分别为:v1 = [1, 0, 0]v2 = [0, 1, 0]v3 = [0, 0, 1]现在给定一个向量v = [2, 3, 4],要求将它表示为这组正交基向量的线性组合。

解答:根据正交分解法的原理,我们可以将向量v表示为:v = c1 * v1 + c2 * v2 + c3 * v3其中,c1, c2, c3为待求的标量。

由于v1, v2, v3是正交基向量,它们两两之间内积为0。

因此,我们可以根据内积的性质求解c1, c2, c3。

具体计算如下:v·v1 = (2 * 1) + (3 * 0) + (4 * 0) = 2v·v2 = (2 * 0) + (3 * 1) + (4 * 0) = 3v·v3 = (2 * 0) + (3 * 0) + (4 * 1) = 4由此可得:c1 = v·v1 / ||v1||^2 = 2 / 1 = 2c2 = v·v2 / ||v2||^2 = 3 / 1 = 3c3 = v·v3 / ||v3||^2 = 4 / 1 = 4因此,将向量v表示为这组正交基向量的线性组合的结果为:v = 2 * [1, 0, 0] + 3 * [0, 1, 0] + 4 * [0, 0, 1]例题2考虑一个二维向量空间V,其中的一组正交基向量为{v1, v2},它们分别为:v1 = [1, 1]v2 = [-1, 1]现在给定一个向量v = [2, 3],要求将它表示为这组正交基向量的线性组合。

高一专题正交分解

高一专题正交分解

专题二:正交分解法班级 姓名所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选定的相互垂直的x 轴和y 轴方向分解,然后分别求出x 轴方向、y 方向的合力ΣF x 、ΣF y ,由于ΣF x 、ΣF y 相互垂直,可方便的求出物体所受外力的合力ΣF (大小和方向)。

一、正交分解法的步骤(1)建立直角坐标系(通常选择共点力的作用点为坐标原点,建立x 、y 轴让尽可能多的力落在坐标轴上)(2)把不在坐标轴上的各力向坐标轴进行正交分解.(3)在X 轴、Y 轴上分别列Fx 、Fy 的平衡方程.求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。

例1 共点力F 1=100N ,F 2=150N ,F 3=300N ,方向如图1所示,求此三力 的合力。

解:三个力沿x ,y 方向的分力的合力x x x x F F F F 321++=∑:︒+︒-︒=37sin 53sin 37cos 321F F F N N N 6.03008.01508.0100⨯+⨯-⨯=N 140= y y y y F F F F 321++=∑︒-︒+︒=37cos 53cos 37sin 321F F F N N N 8.03006.01506.0100⨯-⨯+⨯=N 90-= (负值表示方向沿y 轴负方向)由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N 22)90(140-+=166.4N ∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α=x yF F ∑∑=NN 14090=0.6429 ∴α=32.7º 运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题。

运用正交分解法解平衡问题时,根据平衡条件F 合=0,应有ΣF x =0,ΣF y =0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。

正交分解法 上课用

正交分解法 上课用
B
θ
A O
C
m
练习 题
1 、木箱重500 N,放在水平地面上,一个 人用大小为 200 N与水平方向成 30°向上的 力拉木箱,木箱沿地平面匀速运动,求木箱 受到的摩擦力和地面所受的压力。
F
30°
练习 题
2、 如图,物体A的质量为m,斜面倾角α,A与斜 面间的动摩擦因数为μ,斜面固定,现有一个水平力 F作用在A上,当F多大时,物体A恰能沿斜面匀速向 上运动?
FN
F x
θ
由题得: X方向:Fx= Ff Y方向:FN+Ff = G
G
则得: FN= G- Fy=G - Fsin θ Ff =FX= Fcos θ
例题 2、在倾角为θ的光滑斜 面上用一水平的推力F 使质量为m的物体保 持静止状态,求推力F 的大小?
FБайду номын сангаас
θ
例 题 3 、如图质量为m的物 体用AO、BO、CO 绳作用下处于静止状 态,求三根绳的拉力 各为多少?
例 题
1、质量为10kg的物体放在 水平地面上,受到一个与水 平面成θ=30︒角的斜向上拉 力F=50N 作用作匀速直线 运动,求:物体受到的支持 力和摩察力?
F
θ
y
解:物体受力如图所示:
以作用点为坐标原点,建立 直角坐标系,如图所示, 并 标出力与轴的夹角。 将力F分解得:
FX= Fcos θ Fy= Fsin θ Ff o
F A α
练习 题
3、 如图,物体重力10N, AO绳与顶板间的夹角45º , BO绳水平,试用计算法求出 AO绳和BO绳所受拉力的大 小。
A B
O C
正交分解法 4、如图,氢气球被水平吹来 的风吹成图示的情形,若测得 绳子与水平面的夹角为37˚, 已知气球受到空气的浮力为 15N,忽略氢气球的重力,求: ①氢气球受到的水平风力多大? ②绳子对氢气球的拉力多大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选定的相互垂直的x 轴和y 轴方向分解,然后分别求出x 轴方向、y 方向的合力ΣF x 、ΣF y ,由于ΣF x 、ΣF y 相互垂直,可方便的求出物体所受外力的合力ΣF (大小和方向一、正交分解法的三个步骤第一步,立正交 x 、y 坐标,这是最重要的一步,x 、y 坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x 与y 的方向一定是相互垂直而正交。

第二步,将题目所给定跟要求的各矢量沿x 、y 方向分解,求出各分量,凡跟x 、y 轴方向一致的为正;凡与x 、y 轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。

第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。

这是此法的核心一步。

第四步,根据各x 、y 轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。

求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。

) 例1 共点力F 1=100N ,F 2=150N ,F 3=300N ,方向如图1所示,求此三力 的合力。

解:三个力沿x,y方向的分力的合力x x x x F F F F 321++=∑︒+︒-︒=37sin 53sin 37cos 321F F F NN N 6.03008.01508.0100⨯+⨯-⨯=N140=y y y y F F F F 321++=∑︒-︒+︒=37cos 53cos 37sin 321F F F NN N 8.03006.01506.0100⨯-⨯+⨯=N90-= (负值表示方向沿y 轴负方向) 由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N22)90(140-+=166.4N∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α=xy F F ∑∑=NN 14090=0.6429 ∴α=32.7º运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题 。

运用正交分解法解平衡问题时,根据平衡条件F 合=0,应有ΣF x =0,ΣF y =0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。

例2 重100N 光滑匀质球静止在倾角为37º的斜面和与斜面垂直的挡板间, 求斜面和挡板对球的支持力F 1, F 2。

y图 3解:选定如图3所示的坐标系,重球受力如图3所示。

由于球静止,所⎩⎨⎧=︒-=︒-037sin 037cos 21G F G F∴NN G F 808.010037cos 1=⨯=︒= NN G F 606.010037sin 2=⨯=︒=【考点自清】一、平衡物体的动态问题 (1)动态平衡:指通过控制某些物理量使物体的状态发生缓慢变化。

在这个过程中物体始终处于一系列平衡状态中。

(2)动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。

(3)平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。

晶品质心_新浪博客 解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。

图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。

二、物体平衡中的临界和极值问题1、临界问题:(1)平衡物体的临界状态:物体的平衡状态将要变化的状态。

物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。

临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。

(2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。

晶品质心_新浪博客平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。

解决这类问题关键是要注意“恰好出现”或“恰好不出现”。

2、极值问题:极值是指平衡问题中某些物理量变化时出现最大值或最小值。

平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。

【重点精析】一、动态分析问题【例1】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。

现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动。

则在这一过程中,环对杆的摩擦力Ff和环对杆的压力FN的变化情况是( )A、Ff不变,FN不变B、Ff增大,FN不变C、Ff增大,FN减小D、Ff不变,FN减小【解析】以结点O为研究对象进行受力分析如图(a)。

由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a)。

由图可知水平拉力增大。

以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。

由整个系统平衡可知:FN=(mA+mB)g;Ff=F。

即Ff增大,FN不变,故B正确。

【答案】B晶品质心_新浪博客【方法提炼】动态平衡问题的处理方法所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态中。

(1)图解分析法对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。

晶品质心_新浪博客动态平衡中各力的变化情况是一种常见题型。

总结其特点有:合力大小和方向都不变;一个分力的方向不变,分析另一个分力方向变化时两个分力大小的变化情况。

用图解法具有简单、直观的优点。

(2)相似三角形法对受三力作用而平衡的物体,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

晶品质心_新浪博客(3)解析法根据物体的平衡条件列方程,在解方程时采用数学知识讨论某物理量随变量的变化关系。

【例2】如图所示,一个重为G的匀质球放在光滑斜面上,斜面倾角为α.在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态,今使木板与斜面的夹角β缓慢增大至水平,在这个过程中,球对挡板和球对斜面的压力大小如何变化?【方法提炼】从分析可以看出,解析法严谨,但演算较繁杂,多用于定量分析。

图解法直观、鲜明,多用于定性分析。

晶品质心_新浪博客【例3】如图所示装置,两根细绳拴住一球,保持两细绳间的夹角不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力FA大小变化情况是,CB绳的拉力FB的大小变化情况是。

【解析】取球为研究对象,由于球处于一个动态平衡过程,球的受力情况如图所示:重力mg,CA绳的拉力FA,CB绳的拉力FB,这三个力的合力为零,根据平衡条件可以作出mg、FA、FB组成矢量三角形如图所示。

将装置顺时针缓慢转动的过程中,mg的大小方向不变,而FA、FB的大小方向均在变,但可注意到FA、FB两力方向的夹角θ不变。

那么在矢量三角形中,FA、FB的交点必在以mg所在的边为弦且圆周角为π-θ的圆周上,所以在装置顺时针转动过程中,CA绳的拉力FA大小先增大后减小;CB绳的拉力FB的大小一直在减小。

二、物体平衡中的临界和极值问题分析【例4】如图所示,物体的质量为2kg,两根轻绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F,若要使两绳都能伸直,求拉力F的大小范围。

【方法提炼】抓住题中“若要使两绳都能伸直”这个隐含条件,它是指绳子伸直但拉力恰好为零的临界状态。

当AC恰好伸直但未张紧时,F有最小值;当AB恰好伸直但未张紧时,F有最大值。

【例5】如图所示,一球A夹在竖直墙与三角劈B的斜面之间,三角劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的。

问:欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)晶品质心_新浪博客【方法提炼】处理平衡物理中的临界问题和极值问题,首先仍要正确受力分析,搞清临界条件并且要利用好临界条件,列出平衡方程,对于分析极值问题,要善于选择物理方法和数学方法,做到数理的巧妙结合。

对于不能确定的临界状态,我们采取的基本思维方法是假设推理法,即先假设为某状态,然后再根据平衡条件及有关知识列方程求解。

晶品质心_新浪博客【例6】如图所示,用绳AC和BC吊起一重物,绳与竖直方向夹角分别为30°和60°,AC绳能承受的最大拉力为150N,而BC绳能承受的最大的拉力为100N,求物体最大重力不能超过多少?【方法提炼】思考物理问题不能想当然,要根据题设情景和条件综合分析,找出研究对象之间的关系,联系起来考虑。

晶品质心_新浪博客1.如图1,一架梯子斜靠在光滑竖直墙和粗糙水平面间静止,梯子和竖直墙的夹角为α。

当α再增大一些后,梯子仍然能保持静止。

那么α增大后和增大前比较,下列说法中正图确的是 CA .地面对梯子的支持力增大B .墙对梯子的压力减小C .水平面对梯子的摩擦力增大D .梯子受到的合外力增大2.一个质量可以不计的细线,能够承受的最大拉力为F 。

现在把重力G =F 的重物通过光滑的轻质小钩挂在这根细线上,两手握住细线的两端,开始两手并拢,然后沿水平方向慢慢地分开,为了不使细线被拉断,细线的两端之间的夹角不能大于(C )A .60°B .90°C .120°D .150°3.放在斜面上的物体,所受重力G 可以分解使物体沿斜面向下滑的分力G 1和使物体压紧斜面的分力G 2,当斜面倾角增大时(C )A . G 1和G 2都增大B . G 1和G 2都减小C . G 1增大,G 2减小D . G 1减小,G 2增大4.如图所示,细绳MO 与NO 所能承受的最大拉力相同,长度MO>NO,则在不断增加重物G 的重力过程中(绳OC 不会断)( A )A .ON 绳先被拉断B .OM 绳先被拉断C .ON 绳和OM 绳同时被拉断D .条件不足,无法判断6.质量为m 的木块沿倾角为θ的斜面匀速下滑,如图1所示,那么斜面对物体的作用力方向是 [D ]A .沿斜面向上B .垂直于斜面向上C .沿斜面向下D .竖直向上7.物体在水平推力F的作用下静止于斜面上,如图3所示,若稍稍增大推力,物体仍保持静止,则 [BC ]A.物体所受合力增大B.物体所受合力不变C.物体对斜面的压力增大D.斜面对物体的摩擦力增大8.如图4-9所示,位于斜面的物块M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的(ABCD )A.方向可能沿斜面向上B.方向可能沿斜面向下C.大小可能等于零D.大小可能等于F9.一个运动员双手对称地握住杠杆,使身体悬空.设每只手臂所受的拉力都是T,它们的合力是F,当两手臂之间的夹角增大时( C )A.T和F都增大B.T和F都增大C.T增大,F不变D.T不变,F增大10.如图2所示,人站在岸上通过定滑轮用绳牵引小船,若水的阻力恒定不变,则在船匀速靠岸的过程中 [AD]A.绳的拉力不断增大B.绳的拉力保持不变C.船受到的浮力不变D.船受到的浮力减小11.如图5-8所示,在一根绳子的中间吊着一个重物G,将绳的两端点往里移动,使θ角减小,则绳上拉力的大小将(A)A.拉力减小B.拉力增大C.拉力不变D.无法确定12.静止在斜面上的重物的重力可以分解为沿斜面方向向下的分力1F,和垂直于斜面方向的分力2F,关于这两个分力,下列的说明正确的是( D )A.1F作用在物体上,2F作用在斜面上B.2F的性质是弹力C.2F就是物体对斜面的正压力D.1F和2F是物体重力的等效代替的力,实际存在的就是重力13.如图6-17所示,OA、OB、OC三细绳能承受的最大拉力完全一样.如果物体重力超过某一程度时,则绳子( A)A.OA段先断B.OB段先断C.OC段先断D.一起断14.如图1—6—1所示,光滑斜面上物体重力分解为F1、F2两个力,下列说法正确的是CDA.F1是斜面作用在物体上使物体下滑的力,F2是物体对斜面的压力B.物体受到重力mg、F N、F1、F2四个力的作用C.物体只受到重力mg和斜面支持力F N的作用D.力F N、F1、F2三力的作用效果与力mg、F N两个力的作用效果相同15.质量为m的木块在推力F作用下,在水平地面上做匀速运动(如图1—6—4).已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪一个B、DA.μmgB.μ(mg+Fsinθ)C.μ(mg-Fsinθ)D.Fcosθ16.如图1—6—12所示,在倾角为α的斜面上,放一质量为m的光滑小球,小球被竖直的木板挡住,则球对斜面的压力为CA.mgcosαB.mgtanαC.mg/cosαD.mg17.如图1—6—13长直木板的上表面的一端放有一铁块,木板由水平位置缓慢向上转动,(即木板与水平面的夹角α增大),另一端不动,则铁块受到的摩擦力F f随时间变化的图象可能正确的是图1—6—14中的哪一个(设最大静摩擦力与滑动摩擦力相等) C 18.质量为m的物体A置于斜面体上,并被挡板B是(A)A.若斜面体光滑,则A、B之间一定存在弹力。

相关文档
最新文档