NUMERICAL SIMULATION OF MOLTEN POOL AND CONTROL STRATEGY OF KISS POINT IN A TWIN-ROLL STRIP CAST
旋流中间包夹杂物碰撞去除的数值模拟

第20卷第丨2期 2020年12月过程工程学报The Chinese Journal of Process Engineering Vol.20 No. 12 Dec. 2020DOI: 10.12034/j.issn.l009-606X.220021Numerical simulation of collision removal of inclusions in swirling flowtundishJinlin L U 1, Dongsheng Z H A N G 1, Zhiguo LUO 1'2*, Zongshu ZO U 121. School of Metallurgy, Northeast University, Shenyang, Liaoning 110819, China2. Key Laboratory of Ecological Metallurgy Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeast University,Shenyang, Liaoning 110819, ChinaAbstract: The SFT (swirling flow tundish ) is atundish with swirl chamber placed in the flow injection zone . The gravitational potential energy is converted into swirling kinetic energy as the liquid steel flows into the tundish from the bottom of the SC (swirling chamber ) through a nozzle along the tangent direction .The swirling molten steel promotes the inclusions to gather towards the center of the swirling chamber , promoting the inclusions to collide and polymerize . In this work , the PBM model in A N SYS Fluent was used to simulatethe growth o f inclusions in SFT , the DPM model was used to simulate the removal rate and trajectory of different particle size inclusions . Simulation results showed that the average diameter of inclusions in the tundish without swirling chamber increased from 3.93 jam to 4.25 fim and the inclusion removal rate was 40.07% considering the collision polymerization between inclusions . Under the same operating conditions , the average diameter of inclusions in swirling flow tundish increased from 3.93to 4.35 |im , and the removal rate o f inclusions increased from 30.09%to 43.20%. The removal capacity of SFT was better than that of NSCT (non-swirling chamber tundish )Key words: inclusion removal ; collision polymerization ; numerical simulation ; swirling flow tundish. -__3流动与传递l ;收稿:2020-0卜14,修回:2020-03-17,网络发表:2020-04-01,Received: 2020-01-14, Revised: 2020-03-17,丨)ublished online: 2020-04-01 基金项目:国家自然科学基金资助项目(编号:51604068)作者简介:卢金霖(1994-),男,河南省鹿邑县人,硕士研宄生,钢铁冶金专业:罗志国,通讯联系人,E-mail:*************.引用格式:卢金霖,张东升,罗志国,等.旋流中间包夹杂物碰撞去除的数值模拟.过程工程学报,2020, 20(12): 1432-1438.Lu J L, Zhang D S, Luo Z G, et al. Numerical simulation of collision removal of inclusions in swirling flow tundish (in Chinese).Chin. J. Process Eng., 2020, 20(12): 1432-1438, DOI:10.12034/j.issn.l009-606X.220021.第12期卢金霖等:旋流中间包夹杂物碰撞去除的数值模拟1433旋流中间包夹杂物碰撞去除的数值模拟卢金霖、张东升、罗志国U2t,邹宗树h21.东北大学冶金学院,辽宁沈阳1108192.东北大学冶金学院多金属共生矿生态化冶金教育部重点实验室,辽宁沈阳110819摘要:旋流中间包是在中间包注流区内设置旋流室,钢液经长水口从旋流室底部沿着切线方向流入中间包内,使重力势能转 化为旋转动能,旋转的钢液促使夹杂物向旋流室中心聚集,促进夹杂物碰撞聚合长大。
浮法玻璃锡槽中锡液的流动特性研究

浮法玻璃锡槽中锡液的流动特性研究概述浮法法生产的平板玻璃在建筑、汽车和电子行业等领域具有广泛应用。
浮法法是通过将玻璃溶液浇注到锡槽中,锡槽中的锡液起到支撑玻璃溶液的作用,使其形成平整的玻璃表面。
因此,了解浮法玻璃锡槽中锡液的流动特性对提高玻璃生产的质量至关重要。
研究方法本研究使用数值模拟方法,采用计算流体力学(CFD)技术,对浮法玻璃锡槽中锡液的流动特性进行深入研究。
通过建立合适的几何模型和边界条件,利用基本的物理方程(质量守恒、动量守恒和能量守恒方程)求解锡液的流动分布。
通过改变不同参数,如锡液温度、浇注速度等,观察其对锡液流动特性的影响。
流动特性研究发现,锡槽中锡液的流动特性受到多种因素的影响。
首先,锡液的温度对流动特性具有显著影响。
较高温度下的锡液粘度较低,对玻璃溶液的支撑能力较弱,容易产生不均匀的玻璃表面。
而较低温度下的锡液粘度较高,流动性较差,容易导致玻璃溶液停滞不动,影响玻璃生产的连续性。
其次,浇注速度对锡液流动特性也有重要影响。
较低的浇注速度使锡液流动缓慢,容易产生波纹和其他不规则的表面缺陷。
而较高的浇注速度可能导致锡液在锡槽中的搅动,进一步影响玻璃表面的平整度。
因此,寻找适当的浇注速度是提高浮法玻璃质量的关键之一。
此外,锡槽内部的结构对锡液流动特性也有一定影响。
锡槽内部的形态会影响锡液的流动速度和流动路径。
研究发现,合理设计锡槽内部的结构,可以减少锡液流动时的湍流,改善玻璃表面的光洁度。
研究成果和展望本研究通过数值模拟方法,深入研究了浮法玻璃锡槽中锡液的流动特性。
结果表明,锡液的温度、浇注速度和锡槽内部的结构对锡液的流动分布有重要影响。
进一步的研究可以结合实际生产中的观测数据,验证模拟结果,并寻求进一步的改进措施。
未来的研究方向包括优化锡槽内部的结构设计,改善锡液流动时的湍流情况,进一步提高玻璃表面的光洁度。
同时,可以通过实验方法验证数值模拟结果,以建立更准确的模型,为浮法玻璃生产提供更可靠的理论指导。
Effects oftemperature-dependentmaterialpropertiesandshieldinggason

abstract
Laser welding processes are widely used for fabrications in many engineering applications such as aerospace and automotives. In this paper, a moving distributed heat source model based on Goldak’s method [1] has been implemented into finite volume thermal simulations in order to predict temperature distributions during the welding process of a magnesium alloy and to study the effects of variations in thermal properties, absorption coefficient and gas shielding on the computed temperature distributions and weld pool dimensions. The main conclusion is the significant effects of varying the thermal conductivity and absorption coefficient of magnesium. Also, it has been seen that the shielding gas, besides its main role of protection against oxidation, has a significant effect on the width of the weld pool. Finally, the obtained results have been compared to the experimental ones and a satisfactory correlation has been observed, indicating the reliability of the model developed in this study.
熔滴短路过渡建模及熔池三维瞬态行为模拟

熔滴短路过渡建模及熔池三维瞬态行为模拟夏胜全;朱志明;孙晓明【摘要】针对短路过渡CO2焊接的熔滴过渡随机性强、熔池动态行为复杂的特点,考虑熔滴与熔池短路时刻、短路时刻的熔滴半径、温度和中心位置等随机因素,提出了熔滴短路过渡行为模型。
采用非对称高斯热源表征电弧热流密度沿焊接方向的非对称性,采用附加源项法处理熔池各动量源,采用VOF追踪熔池气-液界面,采用液相分数法和焓-孔隙度法处理液-固糊状区熔化金属凝固潜热及动量损失,建立了短路过渡焊接熔池的三维瞬态模型。
基于FLUENT软件二次开发,模拟了熔池的动态行为,研究了熔池温度场和流场的瞬态变化。
对比等速送丝和脉冲送丝情况,熔滴短路间隔时间的概率密度分布和焊缝成形的模拟与实验结果吻合良好,验证了熔滴短路过渡行为模型和熔池三维瞬态模型的有效性。
%For CO2 arc welding with short⁃circuiting transfer, the droplet transfer and dynamic behavior of molten pool are complexity and have strong randomness. Considering the random factors, such as short⁃circuiting time between droplet and molten pool, radius, temperature and central position of droplet at short⁃circuiting time, the model of droplet short⁃circuiting transfer behavior is proposed and set up. The three⁃dimensional transient model of molten pool is established for arc welding with short⁃circuiting transfer, after the asymmetric Gauss heat source being adopted to characterize the asymmetry of arc heat flux density along welding direction, the additional source term method being used to deal with many momentum sources, the VOF model being adopted to realize the tracking of gas⁃liquid interface, and the liquid volume fraction method andenthalpy⁃porosity technique being used to compute the latent heat of molten metal solidification and the momentum loss in the liquid⁃solid mush zone. Based on the secondary development of FLUENT software, the dynamic behavior of molten pool is numerically simulated;the transient evolution of the temperature field and flow field in molten pool is acquainted. The simulation results of probability density distribution of short⁃circuiting time interval and final weld formation agree with experimental data well, the validation of the model of dropletshort⁃circuiting transfer behavior and three⁃dimensional transient model of molten pool being demonstrated.【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2016(048)005【总页数】6页(P160-165)【关键词】短路过渡行为模型;熔池动态行为;数值模拟;短路过渡频率;焊缝成形【作者】夏胜全;朱志明;孙晓明【作者单位】中国工程物理研究院,621900 四川绵阳; 清华大学机械工程系,100084 北京;清华大学机械工程系,100084 北京;清华大学机械工程系,100084 北京【正文语种】中文【中图分类】TG444CO2气体保护焊因其生产效率高、操作简单、成本低、焊接质量好等特点,在汽车制造、船舶制造、金属结构及机械制造等方面得到广泛的应用[1]. 对直接影响焊缝成形和接头质量的熔滴短路过渡和熔池动态行为开展深入研究,具有重要的现实意义和工程应用价值.焊接过程的熔滴过渡和熔池动态行为复杂,严重影响对其进行有效的观测和控制,促使很多学者采用数值模拟手段对其进行研究[2-8]. 但现有数值模拟研究很少涉及短路过渡CO2焊接熔池动态行为,这与熔滴短路过渡行为随机性强、熔池动态行为复杂、数学建模存在较大难度有关. 本文充分考虑了短路过渡CO2焊接熔滴过渡行为的随机性,在建立熔滴短路过渡行为模型和熔池三维瞬态模型的基础上,对熔池的三维瞬态温度场和流场及其演变进行了数值模拟研究,并在前期的研究基础上分别针对等速送丝焊接系统和脉冲送丝焊接系统进行分析,对熔滴短路过渡间隔时间的概率密度分布、焊缝成形的数值模拟结果进行了试验验证.假设带有一定热焓和动量的熔滴在特定时刻进入熔池,对熔池的能量和动量产生影响. 熔滴与熔池短路时刻、熔滴温度和体积等与熔池状态及焊接工艺参数有关.为简化建模和计算,假设:1)熔池液态金属为粘性不可压缩流体;2)熔滴短路过渡行为的随机性主要体现在熔滴体积、温度及其与熔池短路时刻上.1.1 熔滴与熔池短路时刻熔滴和熔池是否发生短路与前一次短路过渡结束后的初始弧长和熔滴大小、焊丝送进速度、焊丝熔化、熔滴长大以及熔池的振荡行为等因素有关. 采用高速摄像拍摄熔滴图像,对典型短路过渡周期内燃弧阶段的熔滴直径最大值进行测量,可获得如图1所示的多个短路过渡周期的熔滴直径最大值随时间变化规律,其线性拟合公式为式中:d为熔滴直径最大值,mm;kd为直线斜率,即熔滴长大速度,mm/s;d0为前一次短路过渡结束后的熔滴直径的初始值,mm.图1 短路过渡焊接的熔滴直径最大值随时间变化规律(焊接电流:110 A,电弧电压:14 V)由图1和式(1)可知,熔滴长大速度kd近似与焊接电流成正比. 假设燃弧初期的弧长为ld(前一次短路过渡结束时,熔滴和焊丝轴线下方熔池最高点的距离),在焊丝持续送进、熔化和熔滴长大及熔池振荡等因素的共同作用下,熔滴和熔池再次发生短路,何时发生短路可根据下式进行判断:式中:df为焊丝的送进距离,dgrow为熔滴长大引起的位移,dup为熔池最高点相对前一次短路结束时的最高点向上的位移.式(2)考虑了熔池振荡的影响,从而使特定焊接工艺规范下的熔滴与熔池短路时刻具有了随机性,贴近实际短路过渡焊接过程.1.2 短路时刻的熔滴半径对于稳定的焊接过程,焊丝送进速度等于焊丝熔化速度,即式中:Vfeed为焊丝送进速度,rwire为焊丝半径,ρwire为焊丝密度,Δtdrop为短路间隔时间,MR为单个周期内的焊丝熔化量.假设熔滴形状为规则的球缺(见图2),则由式(3)可求出熔滴半径rdrop与Δtdrop 之间满足式中ρdrop为熔滴的密度.由于短路间隔时间Δtdrop具有随机性,于是短路时刻的熔滴半径rdrop也具有随机性.1.3 短路时刻的熔滴温度短路时刻的熔滴温度由熔滴热焓和比热确定:式中:Tdrop为短路时刻的熔滴温度,Hd为温度为Tdrop的熔滴热焓,H1为温度为T1时的低碳钢热焓值,Cdrop为熔滴比热.文献[9]给出了低碳钢熔滴热焓与焊接电流的关系数据,结合低碳钢比热随温度的变化曲线,可获得熔滴温度Tdrop与焊接电流I的近似表达式为Tdrop=0.028 25I+ 2 438.3 (50≤I≤250).1.4 熔滴与熔池短路时的熔滴中心位置短路行为往往发生在熔滴与熔池距离最小处,如图3中的A点. 然而,寻找A点将涉及对区域内所有单元的遍历,将消耗大量计算时间. 实际焊接时,熔滴短路前的熔池表面曲率半径较大,因此为了减少计算量、提高运行速度,短路点近似采用焊丝轴下方的B点,按如下步骤给出:1)求出焊丝轴线下方熔池的最高点;2)加上熔滴半径即得到熔滴中心位置.建立熔滴短路过渡行为模型之后,进一步建立熔池热力模型,包括焊接热源模型,与熔池热力行为有关的动量源项、液面追踪、液态金属凝固处理.2.1 焊接热源模型对典型短路过渡CO2焊接高速摄像进行观察发现,电弧形态沿焊接方向具有非对称性. 因此,采用非对称高斯热源模型,电弧热流密度q(x,y)的表达式为式中:Q为电弧功率;σs为电弧中心截面上的电弧半宽度;, (xcenter为电弧中心沿焊接方向的坐标,σf和σb分别为沿着焊接方向的电弧前部和后部长度).非对称高斯热源的具体参数σs、σf和σb通过测量高速摄像的电弧形状和尺寸近似确定. 图4给出了非对称高斯热源参数和电弧尺寸之间的关系示意图.通过图4测得焊丝直径在图中的长度D值以及图中的电弧前部尺寸Lf和电弧后部尺寸Lb,可以得到σf和σb的大小和相互关系,计算过程中假设σs和σf相等. M.Lu和S.Kou通过实验测定了焊接电流与高斯热源参数之间关系[10],具体应用到CO2短路过渡焊接并参考该关系时,通过添加校正系数k进行校正:通过已知焊接电流大小的高速摄影,即可以求出相应的k值.2.2 熔池热力行为处理方法CO2气体保护焊焊接熔池的主要作用力如图5所示. Parc为电弧压力,体现了电弧对熔池的作用力,主要方向向下;Pd为熔滴对熔池的冲击力,熔滴过渡进入熔池时,将对熔池造成较大冲击,它和电弧压力引起熔池的下凹变形;σ1和σ2分别为熔池的下表面和上表面张力,平焊时,熔池的上表面下凹,下表面下凸,表面张力均存在方向向上的分量,防止熔池下漏;Gpool为熔池中液态金属所受的重力,平焊时,重力是引起熔池下塌的因素之一;τ为等离子流产生的熔池表面剪切力,造成熔池表面的液态金属以焊丝轴线为中心向四周流动;N为周围坡口“壁面”的支撑力,也是方向向上的作用力. 需要注意的是,由于母材的熔化,此时的“壁面”是固液界面动态分界线(省略糊状区).对熔池所受各种作用力、液面追踪、液态金属凝固分别采用如下处理方法:1)对熔池所受各种作用力产生的动量源,采用附加源项法进行处理. 充分考虑熔池表面温度和张力分布不均匀引起的液体金属Marangoni流,由连续表面张力模型CSF[11],结合散度定理,求出表面张力源项;采用Boussinesq近似假设处理热浮力;电弧压力参考文献[12];假设自由表面的电流密度符合高斯分布,再结合电磁场的Maxwell方程组、欧姆定律等推导出三个方向电磁力源项.2)对于熔池自由表面(气-液界面),充分考虑熔池的上下表面变形,采用VOF模型进行跟踪,通过控制流体体积分数函数来获取自由面.3)对于熔池凝固过程,采用液相体积分数法处理凝固潜热问题,采用焓-孔隙度法[13]来处理糊状区的动量损失.在前述基础上,运用有限体积法,基于Fluent软件UDF功能二次开发,模拟短路过渡CO2焊接的熔池动态行为及三维瞬态温度场.采集焊接过程中的焊接电流和电弧电压数据,采用MATLAB和C语言混合编程进行统计分析. 数据采集装置如图6所示,高速PCI采集卡有4个通道,每个通道采样频率为2.5 MHz.焊接实验条件为:纯CO2气体保护,流量为10 L/min;焊丝直径1.2 mm,牌号为H08Mn2SiA. 单边工件尺寸为330 mm(长)×60 mm(宽)×6 mm(厚),装配间隙1.6 mm,钝边1 mm,V型坡口的单边角度30°,送丝速度1.45 m/min.为提高计算速度,建立半模型,截除对计算结果影响较小且远离焊缝的母材下方的气相区域;主要计算域示意图如图7所示(40 mm(长)×8 mm(宽)×6 mm(厚),下部存在8mm(宽)×2 mm(高)气体层).图7中,以ANMKI为截面的实体为第二相域,其余为气相域(主相). NOCD为气相入口,两侧面NOLKM等为气体出口,ODEFGL为中心对称面. 熔池上下表面、母材上下表面、处于熔池上方的坡口壁面等,为对流和辐射散热. 中心对称面为绝热边界,即中心对称面的动量边界条件为熔池上表面的自由表面的连续性条件为在固相/气相界面上有:u=0,v=0,w=0. 为提高计算收敛性,采用六面体划分网格,采用自适应时间步长进行计算. 随温度变化的材料属性详见文献[14-15].3.1 熔池瞬态流场和温度场模拟结果表明,大约在焊接开始后的0.2 s,熔池开始形成;2 s左右,熔池达到宏观准稳定状态. 1.5103 06 s和2.014 17 s时的熔池流场和温度场瞬态分布如图8所示.由图8(a)可见:在1.510 306 s这一时刻,熔滴正向熔池过渡,熔滴温度最高;由于熔滴向熔池过渡存在的液态金属运动,其附近流速较大,同时,熔池液态金属在坡口侧壁处的流向指向坡口壁面,有利于增大熔合比. 图中的矢量箭头表示流体流动方向和大小,可以看到此时由于熔滴正向熔池过渡使得熔滴周围流体速度最大. 图8(c)~(d)的2.014 17 s时刻,熔滴已完成向熔池的过渡,熔池温度相对均匀,熔池下部的液态金属由于熔滴向下的冲击使得其流动更强烈.3.2 熔滴短路过渡频率在短路过渡CO2焊接中,熔滴和熔池的短路时刻和短路过渡频率存在随机性. 图9所示为等速送丝焊接时的熔滴短路间隔时间的概率密度分布的实验值和数值模拟结果对比.由图9可以看出:数值模拟获得的短路间隔时间概率密度在23.7 ms处达到峰值,熔滴短路过渡频率约为42 Hz;而实验获得的短路间隔时间概率密度在24.2 ms处达到峰值,熔滴短路过渡频率约为41 Hz,两者偏差仅2.1%. 由于焊接实验过程不可避免地会受到其他随机因素(如焊接电源输出电压和焊丝送进速度波动等)的影响,因而获得的短路间隔时间概率密度峰值所对应的范围较宽,峰值较低;而数值模拟的随机因素较少,从而峰值对应范围较窄,峰值较高.为进一步验证熔滴短路过渡行为模型的有效性,将其应用于脉冲送丝式短路过渡CO2焊接[16]的数值模拟. 图10为短路间隔时间概率密度分布的实验值和数值模拟结果对比结果.图10 脉冲送丝焊接短路间隔时间概率密度分布(峰值送丝速度为3.2 m/min,基值送丝速度为1.45 m/min,脉冲送丝周期为0.6 s,峰值送丝时间为0.1 s,基值送丝时间为0.5 s,坡口装配间隙为1.6 mm)由图10可以看出:由于脉冲送丝时的峰值送丝速度和基值送丝速度相差较大,熔滴短路间隔时间的概率密度分布与等速送丝时的单一峰值存在明显差异,峰值送丝速度和基值送丝速度分别对应不同的熔滴短路间隔时间,数值模拟结果呈现明显的“双峰”分布. 图10的左侧峰值对应峰值送丝速度,短路间隔时间的模拟值约为6.7 ms、实验值约为6.6 ms,熔滴短路过渡频率分别为149、151 Hz,二者相差仅1.5%;图10的右侧峰值对应基值送丝速度,短路间隔时间的模拟值约为18.3 ms、实验值约为17.9 ms,熔滴短路过渡频率分别为54、55 Hz,二者相差2.2%.固定峰值送丝时间为0.2 s、基值送丝时间为0.5 s、基值送丝速度为1.45 m/min,改变峰值送丝速度,分别为2.6、3.2和5.0 m/min. 图11为不同峰值送丝速度下的熔滴短路间隔时间概率密度分布. 3种条件下,对应基值送丝速度的短路间隔时间概率密度峰值所对应的时间基本一致,分别为18.37、18.43和18.59 ms,熔滴短路过渡频率分别为54.4、54.3、53.8 Hz,相对均值的误差分别为0.5%、0.2%和0.7%,即基值送丝速度不变,对应的熔滴短路过渡频率也基本不变;而对应峰值送丝速度的短路间隔时间概率密度峰值所对应的时间分别为7.27、6.5和7.58 ms,熔滴过渡频率分别为137、153、131 Hz. 可见,熔滴短路过渡频率并不是随着送丝速度增大而单调增加,而是在一定范围内存在一个最高值.3.3 焊缝背面外观成形图12所示为数值模拟获得的焊缝背面温度场分布及相同条件下实验获得的焊缝背面外观成形. 由图12(a)可以看出,在熔池底部低于固相线温度(1 773 K)的区域未超过母材底部,完全冷却后将形成焊缝背面未熔合. 数值模拟和实验结果吻合较好. 图13为数值模拟获得的焊缝横截面(浅色区域为母材及凝固后的焊缝横截面,深色为气相域)与相同条件下实验获得的焊缝横截面对比. 可以看出,数值模拟获得的焊缝背面余高和正面焊缝高度基本吻合,证明了所建数学模型的有效性.图13 焊缝横截面的数值模拟和实验结果对比(峰值送丝速度为3.2 m/min,基值送丝速度为1.45 m/min,脉冲送丝周期为0.6 s,峰值送丝时间为0.1 s,基值送丝时间为0.5 s,坡口装配间隙为1.6 mm)1)可通过熔滴与熔池短路时刻、短路时刻熔滴半径、温度等因素表征CO2焊接熔滴短路过渡的强随机性.2)文中所述的等速送丝条件下大约在焊接开始后的0.2 s,熔池开始形成;2 s左右,熔池达到宏观准稳定状态,送丝速度1.45 m/min时焊缝背面未熔合;熔滴短路过渡频率并不是随着送丝速度增大而单调增加,而是在一定范围内存在一个最高值.3)实时获取熔池流动状况较为复杂,可通过焊后的焊缝背面成形和横截面形状对比以及在连续送丝和脉冲送丝条件下短路间隔时间概率密度分布对比验证所建立的数学模型,计算得到的连续送丝条件下短路间隔时间概率密度分布呈单峰特征,而脉冲送丝条件下为明显的双峰特征.4)该数学模型不仅适用于传统的等速送丝系统,而且适用于脉冲送丝式的短路过渡焊接熔池模拟.【相关文献】[1] 周培山,谢芋江,杨昕,等. 不同CO2气保焊工艺对Q345钢焊接接头的影响[J].电焊机,2014,5(44):213-216.[2] OREPERA G M, SZEKELY J. Convection in arc weld pool[J]. Welding Journal, 1983, 62(11 ): 307-312.[3] THOMPSON M E, SZEKELY J. The transient behavior of weld pools with a deformed free surface[J]. International Journal of Heat and Mass Transfer, 1989, 32(6): 1007-1019.[4] KO S H, YOO C D, FARSON D F, et al. Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools[J]. Metallurgical and Materials Transactions B, 2000, 31(6): 1465-1473.[5] ITO M, IZAWA S, FUKUNISHI Y, et al. SPH simulation of gas arc welding process[C]//Se venth International Conference on Computational Fluid Dynamics (ICCFD7).Hawaii:Spring er, 2012.[6] 赵明, 武传松, 赵朋成. GTAW熔池形状数值模拟精度的改进[J]. 焊接学报, 2006, 27(3): 17-20.[7] 孙俊生, 武传松. 电弧热流分布模式对GMAW焊接温度场的影响[J]. 焊接学报, 1998, 19(4): 255-260.[8] 饶政华. 熔化极气体保护焊传热与传质过程的数值研究[D].长沙: 中南大学, 2010.[9] 曹振宁. TIG/MIG焊接熔透熔池流场与热场的数值分析[D].哈尔滨:哈尔滨工业大学 , 1993.[10]LU M, KOU S. Power and current distributions in gas Tungsten arcs[J]. Welding Journal , 1988,67(2):29-34.[11]BRACKBILL J U, KOTHE D B, ZEMACH. C. A Continuum method for modeling surface te nsion[J]. Journal of computational physics, 1992, 100: 335-354.[12]安藤弘平, 长谷川光雄. 焊接电弧现象[M]. 施雨湘,译. 北京: 机械工业出版社, 1985:16.[13]VOLLER V R, BRENT A D, PRAKASH C. The modeling of heat, mass and solute transpor t in solidification systems[J]. International Journal of Heat and Mass Transfer, 1989, 32(9):1719-1731.[14]TOULOKIAN Y S. Thermal physical properties of matter[M]. New York: IFI/Plenum Pres s, 1970.[15]SCHNICK M, WILHELM G, LOHSE M, et al. Three-dimensional modelling of arc behavior and gas shield quality[J]. Journal of Physics D: Appl ied Physics, 2011, 44(18): 1-25.[16]夏胜全,区智明,孙晓明. 脉冲送丝式CO2短路过渡焊及焊缝背面成形控制[J]. 电焊机, 2013, 43(12): 9-13.。
铸造短语 英汉对照

短语1 数值模拟:numerical simulation2 力学性能:mechanical property3 铝合金:aluminum alloy4 应力分析:stress analysis5 钛合金:titanium alloy6 表面处理:surface treatment7 电磁场:electromagnetic field8 抗拉强度:tensile strength9 晶粒细化:grain refinement10 工艺参数:process parameter11 有机合成:organic synthesis12 表面质量:surface quality13 定向凝固:directional solidification14 生产管理:production management15 制备工艺:preparation technology16 拉伸强度:tensile strength17 冷轧:cold rolling18 速度场:Velocity Field19 电子束:Electron beam20 ANSYS软件:ANSYS software21 电磁搅拌:electromagnetic stirring22 铸铁:cast iron23 隔振:vibration isolation24 动力学仿真:Dynamic Simulation25 铜合金:copper alloy26 离心铸造:centrifugal casting27 色差:color difference28 金属基复合材料:metal matrix composites29 应变速率:Strain Rate30 气力输送:pneumatic conveying31 压铸:Die Casting32 金属氧化物:metal oxide33 正电子湮没:Positron annihilation34 热效率:heat efficiency35 凝固组织:solidification structure36 界面反应:interfacial reaction37 模具设计:mold design38 置换通风:displacement ventilation39 镁合金:Mg alloy40 熔模铸造:Investment Casting41 高铬铸铁:high chromium cast iron42 电磁力:electromagnetic force 43 生产实践:production practice44 AZ91D镁合金:AZ91D magnesium alloy45 机械振动:mechanical vibration46 机械系统:mechanical system47 温差:temperature Difference48 传热模型:heat transfer model49 耐磨性能:wear resistance50 硅溶胶:silica sol51 生产系统:production system52 色散关系:dispersion relation53 超声振动:ultrasonic vibration54 知识表达:knowledge representation55 真空系统:Vacuum system56 工艺控制:process control57 TiAl合金:TiAl alloy58 离心力:Centrifugal force59 连续铸造:Continuous Casting60 液压控制:Hydraulic control61 球墨铸铁:nodular cast iron62 流变模型:rheological model63 时效处理:aging treatment64 小波网络:wavelet network65 软件包:software package66 弹簧钢:spring steel67 冷却速率:cooling rate68 铸钢:Cast steel69 水平连铸:horizontal continuous casting70 技术改造:technological transformation71 脉冲电流:pulse current72 凝固过程:Solidification Process73 气缸盖:cylinder head74 制备技术:preparation technology75 复合形法:Complex method76 工艺分析:process analysis77 动力学建模:dynamic modeling78 消失模铸造:Lost Foam Casting79 真空干燥:vacuum drying80 余热:waste heat81 系统控制:system control82 铝硅合金:Al-Si Alloy83 响应面分析法:Response surface methodology84 铸造工艺:casting process85 气缸套:cylinder liner86 SIMPLE算法:SIMPLE algorithm87 工艺优化:technology optimization88 流场:fluid field89 工艺过程:Technological process90 氮化硼:boron nitride91 精密铸造:investment casting92 热循环:thermal cycling93 表面缺陷:Surface defects94 节能技术:energy-saving technology95 低压铸造:Low Pressure Casting96 界面结构:interface structure97 铁水:hot metal98 Al-Cu合金:Al-Cu alloy99 AZ91镁合金:AZ91 magnesium alloy 100 凝固模拟:Solidification simulation101 碳酸钾:potassium carbonate102 等离子弧:plasma arc103 抗裂性:crack resistance104 模锻:die forging105 冲蚀磨损:erosion wear106 注射成形:injection molding107 热压缩变形:hot compression deformation108 激光淬火:laser quenching109 超声检测:ultrasonic inspection110 磨球:Grinding ball111 冷变形:cold deformation112 强韧化:strengthening and toughening 113 气泡:air bubble114 保温时间:holding time115 白口铸铁:white cast iron116 电磁铸造:electromagnetic casting117 断口形貌:fracture morphology118 氢含量:hydrogen content119 浇注温度:pouring temperature120 锥齿轮:bevel gear121 灰铸铁:gray iron122 喷丸:shot peening123 排气系统:exhaust system124 水玻璃:Sodium silicate125 挤压铸造:Squeezing Casting126 密度分布:density distribution127 渣浆泵:slurry pump128 分型面:parting surface 129 A356合金:A356 alloy130 静磁场:static magnetic field131 网格剖分:mesh generation132 电磁连铸:electromagnetic continuous casting133 快速制造:rapid manufacturing134 压铸模:die-casting die135 韧性断裂:ductile fracture136 ADAMS软件:ADAMS software137 弯曲变形:bending deformation138 缸体:cylinder block139 变频控制:frequency conversion control 140 热应力场:thermal stress field141 压铸机:Die Casting Machine142 TiNi合金:TiNi alloy143 碳当量:carbon equivalent144 析出相:precipitated phase145 保温材料:thermal insulation material 146 对甲苯磺酸:p-toluene sulphonic acid 147 组织性能:microstructure and property 148 半固态成形:Semi-solid Forming149 TC4合金:TC4 alloy150 疲劳破坏:fatigue failure151 熔池:molten pool152 超声处理:ultrasonic treatment153 阀体:Valve Body154 压缩变形:Compression Deformation 155 扩散层:Diffusion layer156 缸套:cylinder liner157 铸钢件:steel casting158 性能计算:Performance calculation 159 缸盖:cylinder head160 微波炉:microwave oven161 浇注系统:pouring system162 Al-Zn-Mg-Cu合金:Al-Zn-Mg-Cu alloy 163 炉衬:furnace lining164 规则推理:rule-based reasoning165 在线控制:on-line control166 共晶碳化物:eutectic carbide167 振动频率:vibrational frequency168 TA15钛合金:TA15 titanium alloy169 Cr12MoV钢:Cr12MoV steel170 变形镁合金:wrought magnesium alloy 171 功率超声:power ultrasound172 TiAl基合金:TiAl-based alloy173 Box-Behnken设计:Box-behnken design 174 专业课:specialized course175 金相组织:metallurgical structure176 模具寿命:die life177 研究应用:research and application 178 Al-Mg合金:Al-Mg alloy179 成本优化:cost optimization180 变形激活能:deformation activation energy181 干燥工艺:drying technology182 合金铸铁:alloy cast iron183 模具材料:die material184 铸态组织:as-cast microstructure185 电磁制动:electromagnetic brake186 球铁:ductile iron187 侧架:side frame188 气缸体:cylinder block189 洛伦兹力:Lorentz Force190 微观组织演变:microstructure evolution 191 显微组织:microscopic structure192 共晶组织:Eutectic structure193 冶金质量:metallurgical quality194 热震稳定性:thermal shock resistance 195 强迫对流:forced convection196 切削加工:cutting process197 过共晶Al-Si合金:Hypereutectic Al-Si Alloy198 定量金相:quantitative metallography 199 磁感应强度:Magnetic Flux Density 200 半固态浆料:Semi-solid Slurry201 电磁泵:electromagnetic pump202 超声衰减:Ultrasonic attenuation203 加热时间:heating time204 半连续铸造:Semi-continuous Casting 205 液压站:Hydraulic station206 三元硼化物:ternary boride207 内应力:inner stress208 热裂纹:hot crack209 黄麻纤维:jute fiber210 泡沫陶瓷:foam ceramics211 砂型铸造:Sand casting212 油润滑:oil lubrication213 预热温度:preheating temperature 214 维氏硬度:Vickers Hardness215 高温合金:high-temperature alloy216 拉速:casting speed217 铝熔体:aluminum melt218 异型坯:beam blank219 高钒高速钢:high vanadium high speed steel220 静液挤压:hydrostatic extrusion221 等轴晶:equiaxed grain222 摩擦角:friction angle223 初生相:Primary Phase224 转向节:steering knuckle225 快速成型技术:rapid prototyping technology226 冷坩埚:Cold Crucible227 A357合金:A357 Alloy228 焊接结构:welding structure229 耦合场:coupled field230 AZ80镁合金:AZ80 magnesium alloy 231 止推轴承:thrust bearing232 铝镁合金:Al-Mg alloy233 真空熔炼:vacuum melting234 铝锂合金:aluminum-lithium alloy235 充型过程:filling process236 AZ61镁合金:AZ61 magnesium alloy 237 声流:Acoustic streaming238 金属凝固:metal solidification239 高速钢轧辊:high speed steel roll240 石墨形态:graphite morphology241 磁粉检测:Magnetic particle testing 242 颗粒级配:particle size distribution243 型砂:molding sand244 收缩率:shrinkage rate245 Mg-Li合金:Mg-Li alloy246 自动生产线:automatic production line 247 高频磁场:High Frequency Magnetic Field248 组织与性能:microstructure and property249 连续定向凝固:continuous unidirectional solidification250 充型:mold filling251 失效机制:failure mechanism252 梯度分布:gradient distribution253 制动鼓:Brake drum254 摄动分析:perturbation analysis255 铸造企业:foundry enterprise256 超声波振动:Ultrasonic vibration257 测量系统分析:measurement system analysis258 固溶处理:solution heat treatment259 冷却速度:cooling velocity260 固液混合铸造:solid-liquid mixed casting 261 温度场分布:temperature distribution 262 部分重熔:Partial Remelting263 工艺措施:technological measures264 变形量:deformation amount265 模糊优化设计:Fuzzy optimal design 266 零缺陷:zero defect267 重力分离:gravitational separation268 晶粒:crystal grain269 离心力场:centrifugal force field270 凝固行为:Solidification Behavior271 铝铜合金:Al-Cu alloy272 组织和性能:microstructure and property 273 复合板:composite plate274 Al-Fe合金:Al-Fe alloy275 马氏体不锈钢:martensite stainless steel 276 冷却装置:cooling device277 铝合金车轮:aluminum alloy wheel 278 热应力分析:thermal stress analysis 279 Al含量:Al content280 挤压比:extrusion ratio281 相似准则:similarity criterion282 热疲劳裂纹:thermal fatigue crack283 原子团簇:atomic cluster284 湿型砂:green sand285 AZ91D合金:AZ91D alloy286 6061铝合金:6061 aluminum alloy287 锻造工艺:forging technology288 铸铁件:Iron casting289 表面复合材料:Surface composites 290 盲孔法:blind-hole method291 加热功率:heating power292 铸造合金:Cast Alloy293 低铬白口铸铁:Low chromium white cast iron294 初生硅:primary silicon 295 热节:Hot Spot296 锡青铜:tin bronze297 ZL101合金:ZL101 alloy298 真空感应熔炼:vacuum induction melting299 薄带连铸:strip casting300 真空压铸:vacuum die casting301 缩孔:shrinkage hole302 等温处理:Isothermal Treatment303 平均晶粒尺寸:average grain size304 抽芯:core pulling305 离心浇铸:Centrifugal casting306 铸铁管:cast iron pipe307 感应线圈:induction coil308 冷却介质:Cooling medium309 气体压力:gas pressure310 船用柴油机:marine diesel311 高温强度:high-temperature strength 312 3Cr2W8V钢:3Cr2W8V steel313 缺陷预测:defect prediction314 工艺方案:process scheme315 温度均匀性:temperature uniformity 316 电磁离心铸造:electromagnetic centrifugal casting317 横向应力:transverse stress318 超声声速:ultrasonic velocity319 残留应力:residual stress320 固化工艺:curing process321 精铸:Investment Casting322 铝锭:aluminum ingot323 短路过渡:short circuit transfer324 反重力铸造:counter-gravity casting 325 感应电炉:induction furnace326 稀土Y:rare earth Y327 工艺因素:Technological factor328 双辊铸轧:twin roll casting329 凝固速率:solidification rate330 含氢量:Hydrogen Content331 钢锭:steel ingot332 浆料制备:slurry preparation333 η相:η phase334 衬板:lining board335 压铸件:die casting336 水口堵塞:nozzle clogging337 陶瓷型芯:ceramic core338 车间布局:workshop layout339 安全操作:safe operation340 铸造不锈钢:cast stainless steel341 压铸模具:die casting die342 热裂:Hot Crack343 失效形式:failure form344 成形机理:forming mechanism345 AlSi7Mg合金:AlSi7Mg Alloy346 铸件缺陷:casting defect347 银合金:silver alloys348 反应层:reaction layer349 镍基高温合金:Ni base superalloy350 薄带:thin strip351 覆膜砂:coated sand352 CAE技术:CAE Technique353 性能预测:property prediction354 液态金属:liquid metals355 熔模精密铸造:investment casting356 空气压力:air pressure357 ZA合金:ZA alloy358 凝固传热:Solidification and heat transfer 359 侧向分型:Side Parting360 高温塑性:Hot Ductility361 黑斑:black spot362 点火温度:ignition temperature363 旋压机:spinning machine364 Al-Ti-B中间合金:Al-Ti-B master alloy 365 减排:discharge reduction366 射线检测:radiographic inspection367 耐热:heat resistant368 2024铝合金:2024 aluminum alloy369 技术现状:technology status370 复合变质:complex modification371 蠕墨铸铁:vermicular iron372 机械搅拌:mechanical agitation373 保温炉:holding furnace374 成形技术:forming technology375 碳化硅颗粒:SiC particle376 可锻铸铁:malleable iron377 模型控制:model control378 改性水玻璃:modified sodium silicate 379 熔炼工艺:melting process380 焊补:repair welding 381 异常组织:abnormal structure382 组织细化:structure refinement383 防止措施:preventing measures384 铸渗:Casting infiltration385 BT20钛合金:BT20 titanium alloy386 直流电场:direct current field387 铸造应力:casting stress388 初晶Si:primary Si389 夹紧装置:clamping device390 均衡凝固:Proportional solidification 391 熔模精铸:investment casting392 空心叶片:hollow blade393 ZL201合金:ZL201 alloy394 温轧:warm rolling395 不均匀变形:inhomogeneous deformation396 呋喃树脂砂:furan resin sand397 纸浆:paper pulp398 半连铸:semi-continuous casting399 锻锤:forging hammer400 延伸率:elongation rate401 焊接修复:welding repair402 冶金结合:metallurgical bond403 技术对策:technical measures404 结晶器振动:Mold Oscillation405 厚壁:thick wall406 WC颗粒:WC particles407 预处理技术:pretreatment technology 408 金属零件:metal part409 特种铸造:special casting410 低熔点合金:low melting point alloy 411 水模实验:water model experiment 412 复合管:clad pipe413 插装阀:plug-in valve414 金相试样:Metallographic specimen 415 抗吸湿性:humidity resistance416 近液相线铸造:near-liquidus casting 417 新设计:new design418 电机转子:motor rotor419 CAE:computer aided engineering420 交流变频:AC variable frequency421 下横梁:lower beam422 ZL102合金:ZL102 alloy423 模型参考控制:model reference control424 虚拟对象:virtual object425 加工图:processing maps426 立式离心铸造:vertical centrifugal casting427 抽芯机构:core pulling mechanism428 连铸连轧:casting and rolling429 残留强度:residual strength430 复合铸造:composite casting431 树脂砂:resin bonded sand432 AM60B镁合金:AM60B magnesium alloy 433 铸造CAE:casting CAE434 砂型:sand mould435 熔化:melting process436 高硼铸钢:high boron cast steel437 稳恒磁场:stable magnetic field438 Al-Ti-C晶粒细化剂:Al-Ti-C grain refiner 439 再生技术:regeneration technology 440 压铸工艺:die casting process441 管坯:tube billet442 厚大断面:Heavy section443 保护气体:protective gas444 性能特征:performance characteristics 445 Al-5%Fe合金:Al-5%Fe alloy446 半固态挤压:Semi-solid extrusion447 金属型铸造:Permanent mold casting 448 晶粒组织:grain structure449 综合经济效益:Comprehensive economic benefit450 半固态压铸:semi-solid die casting451 气膜:gas film452 硅酸乙酯:Ethyl Silicate453 自动化生产线:automatic production line454 Mg-Gd-Y-Zr合金:Mg-Gd-Y-Zr alloy455 渗透检测:Penetrant testing456 W-Cu复合材料:W-Cu composites457 存放时间:storage time458 ProCAST软件:ProCAST software459 滑板:sliding plate460 铸造铝合金:casting aluminum alloy 461 水玻璃砂:Water-glass Sand462 电脉冲:Electrical pulse463 蜡模:Wax Pattern464 悬浮铸造:suspension casting 465 D型石墨:D-type graphite466 工艺性能:technological performance 467 Al-1%Si合金:Al-1%Si alloy468 悬浮性:suspension property469 差压铸造:counter-pressure casting 470 工艺原理:process principle471 铸轧:continuous roll casting472 行波磁场:traveling magnetic field473 型壳:Shell Mold474 金属型:permanent mould475 脱模机构:demolding mechanism476 调压铸造:adjusted pressure casting 477 喷砂:sand blasting478 界面换热系数:interfacial heat transfer coefficient479 Al-Mg-Si-Cu合金:Al-Mg-Si-Cu alloy 480 电熔镁砂:fused magnesia481 充型速度:Filling Velocity482 泵体:pump body483 钢锭模:ingot mould484 Cu-Fe合金:Cu-Fe alloy485 辐射力:radiation force486 空化泡:Cavitation bubble487 渣池:slag pool488 原位生成:In-situ Synthesis489 热型连铸:heated-mold continuous casting490 缩松:dispersed shrinkage491 CO2气体保护焊:CO_2 arc welding 492 伺服控制系统:servo system493 端盖:End cover494 铸造技术:casting technology495 水力学模拟:Hydraulics simulation496 再生铝:secondary aluminum497 轴套:axle sleeve498 成形模具:forming die499 抗磨性能:Wear Resistance500 水模拟:water model501 快速铸造:rapid casting502 电磁软接触:electromagnetic soft-contact503 石膏型:plaster mold504 大型铸钢件:heavy steel casting505 移动磁场:traveling magnetic field506 轴承座:bearing seat507 混合稀土:rare earth508 铸态球铁:as-cast nodular iron509 砂芯:sand core510 铸造性能:casting properties511 真空差压铸造:vacuum counter-pressure casting512 玻璃模具:glass mold513 双联熔炼:duplex melting514 设备改进:improvement of equipment 515 铸坯质量:billet quality516 局部加压:Local Pressurization517 旧砂再生:used sand reclamation518 结晶速度:Crystallization rate519 壳体:shell body520 干强度:dry strength521 浇注系统设计:gating system design 522 慢压射:slow shot523 图像分析仪:image analysis system 524 温度曲线:Temperature profile525 水力效率:hydraulic efficiency526 单晶铜:single-crystal copper527 电渣重熔:electroslag refining528 铸造起重机:casting crane529 Cu-Cr合金:Cu-Cr alloys530 堆垛机:stacking machine531 巴氏合金:Babbitt alloy532 自抗扰控制器:auto-disturbance rejection controller(ADRC)533 陶瓷型:ceramic mold534 直流磁场:direct current magnetic field 535 漏气:air leakage536 泡沫陶瓷过滤器:foam ceramic filter 537 过共晶高铬铸铁:Hypereutectic High Cr Cast Iron538 壁厚差:wall thickness difference539 HPb59-1黄铜:HPb59-1 Brass540 旋转喷吹:Spinning Rotor541 水玻璃旧砂:used sodium silicate sand 542 冷却强度:cooling strength543 耐磨铸铁:wear resistant cast iron544 ZA35合金:ZA35 alloy545 钠基膨润土:sodium bentonite546 熔体净化:melt purification 547 油雾润滑:oil-mist lubrication548 初生α相:primary α phase549 铸造生产:foundry production550 高电位:High Potential551 钴基高温合金:cobalt base superalloy 552 Al-Zn-Mg-Cu-Zr合金:Al-Zn-Mg-Cu-Zr alloy553 水平连续铸造:Horizontal continuous casting554 自硬砂:no-bake sand555 微区分析:micro-area analysis556 顺序凝固:sequential solidification557 非枝晶组织:Non-dendritic microstructure558 反变形:reverse deformation559 铬青铜:Chromium bronze560 湿型铸造:green sand casting561 配料计算:burden calculation562 热-力耦合:Thermo-mechanical Coupling 563 浇注时间:Pouring time564 铸造速度:Casting velocity565 亚共晶铝硅合金:Hypoeutectic Al-Si Alloy566 搅拌功率:power consumption567 热电场:thermoelectricity field568 铸铝合金:cast aluminum alloy569 陶瓷型铸造:Ceramic mold casting570 热凝固:Thermal coagulation571 界面压力:interface pressure572 多尺度模拟:multiscale simulation573 输送链:Conveyor Chain574 关键措施:key measures575 冒口系统:Riser system576 开炉:blowing in577 铜锡合金:Cu-Sn alloy578 无铅黄铜:unleaded brass579 球墨铸铁管:ductile cast iron pipe580 二次枝晶间距:secondary dendrite arm spacing581 GA-BP网络:GA-BP network582 铝合金熔体:aluminum alloy melt583 生产条件:production conditions584 铬铁矿砂:chromite sand585 再生效果:regeneration effect586 导向叶片:Guide Vane587 金属管:Metal tube588 空心管坯:hollow billet589 超高强铝合金:ultra-high strength aluminum alloy590 流变曲线:flow curve591 蠕化剂:vermicularizing alloy592 波浪型倾斜板:wavelike sloping plate 593 凝固特性:solidification characteristics 594 磨头:grinding head595 反白口:reverse chill596 黑线:black line597 净化技术:purifying technology598 中间合金:master alloys599 捏合块:Kneading Block600 硅相:silicon phase601 低过热度浇注:low superheat pouring 602 3004铝合金:3004 aluminum alloy603 液态压铸:liquid die casting604 中频感应电炉:intermediate frequency induction electric furnace605 球墨铸铁件:Ductile iron casting606 凝固路径:solidification path607 喷枪:spraying gun608 ZL201铝合金:ZL201 aluminum alloy 609 质量改善:quality improvement610 气路:gas circuit611 补缩设计:Feeding design612 油底壳:Oil sump613 汽缸体:cylinder block614 CREM法:CREM process615 铸造机:Casting machine616 提高措施:improving measure617 SIMA法:SIMA method618 铬系白口铸铁:Chromium white cast iron 619 高合金钢:High alloy steels620 增压系统:pressurization system621 收缩缺陷:shrinkage defect622 卧式离心铸造:Horizontal Centrifugal Casting623 测控仪:measuring and controlling instrument624 精铸件:Investment Castings625 制动阀:Brake valve 626 金属成型:metal forming627 有机纤维:organic fiber628 大气采样器:air sampler629 钢支座:steel bearing630 低频磁场:low frequency magnetic field 631 破坏面:failure surface632 偏轨箱形梁:bias-rail box girder633 数值处理:data processing634 双辊薄带:twin-roll thin strip635 合成铸铁:Synthetic cast iron636 堆冷:stack cooling637 行星轧制:planetary rolling638 铸造缺陷:foundry defect639 二次冷却:second cooling640 炉衬材料:lining material641 弥散强化:dispersion hardening642 2D70铝合金:2D70 aluminum alloy 643 A356铝合金:A356 Al alloy644 元胞自动机方法:Cellular Automaton method645 铸造温度:casting temperature646 铸造涂料:Foundry coating647 耦合模拟:coupled simulation648 充型能力:Filling ability649 复合尼龙粉:nylon composite powder 650 改性纳米SiC粉体:modified SiC nano-powders651 炉外脱硫:external desulfurization652 绿色铸造:green casting653 净化方法:purification method654 制芯:Core making655 铸态球墨铸铁:as-cast ductile iron656 复合轧辊:compound roller657 冷隔:cold shut658 薄壁件:thin-wall part659 铸钢车轮:cast steel wheel660 铁水质量:quality of molten iron661 热物理性能:Thermo-physical properties 662 7050铝合金:7050 Al alloy663 半固态金属加工:semi-solid metal forming664 半固态铸造:semisolid casting665 表面反应:Surface reactions666 KBE:knowledge-based engineering(KBE)667 倾斜板:inclined plate668 弯销:dog-leg cam669 多边形效应:polygonal effect670 脱模剂:releasing agent671 铜包铝线:copper clad aluminum wire 672 球化衰退:nodularization degeneration 673 低过热度:low superheat674 升降机构:lifting mechanism675 SLS:selective laser sintering(SLS)676 溢流槽:spillway trough677 制浆技术:pulping technology678 浇注工艺:casting process679 变形行为:deformation behaviors680 转移涂料:transfer coating681 牵引速度:haulage speed682 WC/钢复合材料:WC/steel composites 683 泡沫模样:foam pattern684 皮下气孔:surface blowhole685 超高强度铝合金:ultrahigh strength aluminum alloy686 薄带铸轧:strip casting687 造型线:moulding line688 工具杆:tool rod689 铸锭组织:ingot microstructure690 复合变质剂:composite modifier691 发热剂:Heating Agent692 液相线半连续铸造:liquidus semi continuous casting693 Mg-Al-Zn合金:Mg-Al-Zn alloy694 洛仑兹力:Lorenz force695 散射比:scattering ratio696 翻转机构:turnover mechanism697 超声铸造:Ultrasonic Casting698 A356:A356 alloy699 Mg-Li-Al合金:Mg-Li-Al alloy700 复合磁场:electromagnetic field701 单缸机:single cylinder engine702 快速产品设计:Rapid Product Design 703 真空阀:Vacuum valve704 界面传热系数:Interfacial heat transfer coefficient705 液态金属冷却:liquid metal cooling 706 散射衰减:scattering attenuation707 电磁场频率:Electromagnetic Frequency 708 半连续铸锭:semicontinuous casting ingot709 凝固补缩:Solidification Feeding710 Mg-Zn合金:Mg-Zn alloy711 连铸-热轧区段:CC-HR region712 TC11钛合金:titanium alloy713 损坏机理:failure mechanism714 元素分布:Distribution of element715 原位TiC颗粒:in-situ TiC particles716 均匀化处理:uniform heat treatment 717 使用要求:application requirement718 初生相形貌:morphology of primary phase719 枝晶形貌:dendritic morphology720 铸造废弃物:foundry waste721 AZ91D:AZ91D Magnesium Alloy722 高压铸造:high pressure die casting 723 细化变质:Refinement and Modification 724 结疤:scale formation725 连续铸轧:continuous casting726 热变形行为:Thermal Deformation Behavior727 壳型铸造:shell mould casting728 消失模:evaporative pattern729 手机外壳:mobile phone shell730 热管技术:heat pipe731 水韧处理:water toughening process 732 阻燃镁合金:Ignition proof magnesium alloys733 除尘装置:dust collector734 悬浮率:suspending rate735 非线性估算法:nonlinear estimation method736 电解铝液:electrolytic aluminum melt 737 双金属复合:bimetal compound738 离心浇注:centrifugal pouring739 抗磨损:abrasion resistance740 薄壁铸件:thin-walled casting741 盖包法球化处理:tundish-cover nodulizing process742 无定形二氧化硅:amorphous silicon dioxide743 排气槽:air vent744 高铬白口铸铁:high chromium cast iron745 熔炼炉:smelting furnace746 过滤机理:Filtration mechanism747 汽车覆盖件模具:auto panel die748 低合金高强度钢:Low-alloy high-strength steel749 精铸模具:investment casting mould 750 铝板带:aluminum plate751 球状石墨:nodular graphite752 铸轧区:casting-rolling zone753 接线盒:junction box754 铁水净化剂:purifying agent for molten iron755 石墨块:graphite block756 优质铸件:high quality casting757 处理温度:treatment temperature758 高尔夫球头:golf head759 固相体积分数:solid volume fraction 760 纳米SiC颗粒:SiC nanoparticle761 检测仪器:testing instrument762 Mg17Al12相:Mg_(17)Al_(12) phase 763 攻关:tackling key problems764 硬化机理:Hardening mechanism765 真空吸铸:vacuum suction766 热分析技术:thermal analysis technology 767 高频调幅磁场:High Frequency Amplitude-modulated Magnetic Field768 坯料制备:blank production769 补缩通道:feeding channel770 水基涂料:water-based coating771 球铁件:Ductile Iron Castings772 稀土Er:rare earth Er773 陶瓷型壳:Ceramic shell774 精密电铸:precision electroforming 775 发气性:Gas evolution776 充型凝固:Mold Filling and solidification 777 铝带:aluminum strip778 新SIMA法:new SIMA method779 AZ91HP镁合金:AZ91HP magnesium alloy780 电子束冷床熔炼:electron beam cold hearth melting781 粘砂:metal penetration782 物理冶金学:physical metallurgy783 砂处理:Sand preparation 784 铸造裂纹:casting crack785 气冲造型:air impact molding786 金属模:metal mould787 磷共晶:phosphor eutectic788 近液相线半连续铸造:nearby liquidus semi-continuous casting789 液固反应:liquid-solid reaction790 呋喃树脂:furane resin791 汽缸盖:Cylinder Cap792 充型模拟:Simulation of mold filling 793 铸造工艺CAD:casting technology CAD 794 粘土砂:Clay sand795 冲天炉熔炼:cupola smelting796 射料充填过程:filling process797 半固态金属:semisolid metals798 大型铸件:heavy casting799 电机端盖:motor cover800 熔铸工艺:casting process801 加入方法:Joined technique802 区域熔化:zone melting803 真空除气:Vacuum Degassing804 相平衡热力学:phase equilibrium thermodynamics805 溢流系统:overflow system806 Al-Ti-C中间合金:Al-Ti-C master alloys 807 晶界碳化物:grain boundary carbide 808 净化装置:purification equipment809 液穴形状:sump shape810 铝合金铸造:Aluminum Alloy Casting 811 修模:Tool modification812 SKD61钢:SKD61 steel813 软化退火:Softening Annealing814 大齿轮:Large Gear815 合金渗碳体:Alloy cementite816 工艺性能试验:technological property tests817 硅碳比:Si/C ratio818 冷却曲线:Cooling Curves819 壁厚不均:non-uniform wall thickness 820 V法铸造:V process821 铸造系统:casting system822 电渣加热:electroslag heating823 残余内应力:residual stress824 表面清理:surface cleaning825 黄斑:macular region826 电磁振荡:Electromagnetic Oscillation 827 初始组织:initial structure828 气密性能:air permeability performance 829 电极调节:electrode adjustment830 气体速度:gas velocity831 抑制方法:suppressing method832 孔洞率:void ratio833 废品率:reject rate834 气动装置:pneumatic actuator835 应急发电机:emergency generator836 缺陷修复:Error repair837 有机高聚物:organic polymer838 理论成果:theoretical achievements 839 凝固曲线:Solidification curve840 元胞自动机法:cellular automaton841 ZL101铝合金:ZL101 Al alloy842 高韧性球墨铸铁:High toughness ductile iron843 搅拌方式:stirring method844 沉积坯尺寸:deposit dimension845 高锌镁合金:high zinc magnesium alloy 846 雕铣机:carves-milling machine847 铸造模拟:Casting simulation848 精益设计:lean design849 无余量精密铸造:Investment Casting 850 热顶铸造:hot-top casting851 羊油:mutton tallow852 压射速度:injection speed853 DOE试验:DOE experiment854 超声波振荡:ultrasonic oscillation855 酯固化:ester cured856 缸盖罩:cylinder head cover857 尺寸变化率:dimension variance rate 858 大型铸铁件:heavy iron castings859 单晶铜线材:copper single crystal wire 860 厚大断面球墨铸铁:heavy section ductile iron861 钛镍合金:Ti-Ni alloy862 实型铸造:Full Mold863 6082合金:6082 Alloy864 奥贝球铁:austenite-bainite nodular-iron 865 白口组织:white microstructure866 铸轧工艺参数:casting process parameters867 铸铁轧辊:cast iron milling roll868 强化处理:strengthen treatment869 半固态成型:semi-solid processing870 深腔:deep cavity871 耐热镁合金:Heat resistant magnesium alloys872 斜滑块:inclined sliding block873 回炉料:recycled scrap874 半固态坯:semi-solid billet875 感应熔炼:inductive melting876 链板:chain board877 含泥量:sediment percentage878 模料:mould material879 复合界面:compounded interface880 铸造方法:casting methods881 模温:mold temperature882 轻合金:light alloys883 增碳工艺:recarburation process884 定位装置:location equipment885 加压速率:pressurization rate886 半固态流变成形:Semi-solid Rheoforming887 复杂铸件:Complicated casting888 高强度灰铸铁:High strength grey cast iron889 针孔度:pinhole degree890 中频感应加热:intermediate frequency induction heating891 石墨转子:graphite rotor892 修磨机:Grinding machine893 动态顺序凝固:dynamic directional solidification894 针状组织:acicular structure895 粒度配比:particle size distribution896 铝合金壳体:aluminum alloy shell897 内冷铁:Internal chill898 铸件质量:quality of casting899 精炼效果:refining effect900 发动机缸体:cylinder body901 增碳剂:carburizing agent902 7005铝合金:7005Al alloys903 复合孕育:Multiple inoculations904 复合孕育剂:compound inoculation905 气孔缺陷:blowhole defect906 铁液质量:quality of molten iron907 钛铝合金:TiAl alloys908 7A09铝合金:7A09 aluminium alloy 909 SiC颗粒增强:SiC particle reinforcement 910 沉淀相:precipitated phases911 铝母线:aluminum bus912 凝固分数:solid fraction913 球化组织:spheroidized microstructure 914 蠕铁:vermicular iron915 组织均匀性:microstructure uniformity 916 压铸型:die-casting die917 镁合金压铸机:magnesium alloy die casting machine918 凝固微观组织:solidification microstructure919 灰铸铁件:Gray iron casting920 最大剪应力:ultimate shear stress921 热挤压成形:hot extrusion922 铝合金铸件:aluminium alloy cast923 抗湿性:humidity resistance924 耳子:rolling edge925 结合面:joint face926 推管:ejector sleeve927 黑点:black spot928 铝铸件:aluminum casting929 固相分数:Solid fraction930 快干硅溶胶:Quick-dry silica sol931 激冷铸铁:Chilled iron932 负压消失模铸造:Negative pressure EPC 933 LC9铝合金:LC9 aluminium alloy934 接触层:Contact layer935 工频炉:main frequency furnace936 消失模涂料:lost foam casting coating 937 高温均匀化:high temperature homogenization938 均热炉:pit furnace939 镁合金轮毂:magnesium wheel940 平砧:flat anvil941 铝合金扁锭:aluminum alloy slab942 凝固界面:solidifying interface943 低温冲击功:Low Temperature Impact Energy944 复合发泡剂:Composite Foaming Agent 945 交叉型芯:Crossed Core946 SCR连铸连轧:SCR continuous casting-rolling947 FS粉:FS powder948 AZ81镁合金:AZ81 alloy949 ZL109活塞:ZL109 piston950 掉砂:dropping sand951 型腔壁厚:cavity wall thickness952 铝件:aluminum part953 导向装置:guide mechanism954 彩色云图:color contour image955 柴油机缸体:Diesel engine cylinder block 956 圆盘铸锭机:casting wheel957 热风冲天炉:Hot-blast cupola958 充氧压铸:pore-free die casting959 铝钛硼细化剂:Al-Ti-B refiner960 保温冒口:Insulating riser961 共晶相:Eutectic phase962 夹砂:sand inclusion963 无冒口铸造:Riserless casting964 充芯连铸:continuous core-filling casting 965 熔体混合:melt mixing966 保护渣道:mold flux channel967 碱性酚醛树脂:alkaline phenolic resins 968 细深孔:Long-deep hole969 行星减速机:planetary reducer970 直接铸型制造:direct casting mold manufacturing971 引锭头:dummy bar head972 静置炉:holding furnace973 工艺出品率:process yield974 真空法:vacuum process975 石灰石砂:limestone sand976 整体浇注:monolithic casting977 混料工艺:mixing procedure978 螺旋套:screwy sheath979 胶凝机理:gelling mechanism980 覆砂铁型:permanent mould with sand facing981 球铁铸件:ductile iron casting982 成型率:molding rate983 球状组织:spherical structure984 电弧冷焊:arc cold welding985 钢液流场:flow field of molten steel。
金属激光3D打印过程数值模拟应用及研究现状

材料工程Journal of Materials Engineering第4 9卷 第4期2021年4月第52-62页Vol. 4 9 No. 4Apr. 2021 pp. 52―62金属激光3D 打印过程数值 模拟应用及研究现状Application and research status of numerical simulation of metallaser 3D printing process杨 鑫1,王 犇】,谷文萍2,张兆洋】,刘世锋3,武 涛1(1西安理工大学材料科学与工程学院,西安710048;2长安大学材料科学与工程学院,西安710061 ;3西安建筑科技大学冶金学院,西安710055) YANG Xin 1, WANG Ben 1 ,GU Wen-ping 2 , ZHANG Zhao-yang 1 , LIU Shi-feng 3 ,WU Tao 1(1 Department, of Materials Science and Engineering ,Xi ?an University ofTechnology, Xi an 71 0048, China ; 2 Department, of Materials Scienceand Engineering , Chang ? an University , Xi ? an 710061 , China ;3 School of Metallurgical and Engineering ,Xi ?an Universityof Architecture & Technology, Xi an 71 0055, China)摘要:数值模拟可以高效、有针对性地对金属激光选区熔化成型过程中的温度场、熔池形状、残余应力和变形、凝固过程 微观组织演变等过程建立相应的模型并对成形件的相关性能做出准确预测,为工艺优化提供科学的依据,显著降低工艺开发成本和缩短工艺开发周期,有力推动金属增材制造向工业级应用的转变。
210t钢包钢水温降规律的数值模拟

Numerical simulation on molten steel temperature drop of 210 t ladle
YANG Zhili,ZHU Guangjun,WANG Hongdan,LONG Xiao ( School of Metallurgy & Material Engineering, Chongqing University of Science and Technology, Chongqing 401331 , China) Abstract: By means of establishment of a finite element heat transfer mathematical model the transient temperature fields of the ladle during heat transfer process are simulated. The effect of different baking temperature and different adiabatic layer material of 210 t ladle on molten steel temperature drop is investigated by employing typical value method and energy conservation method. Molten steel temperature drop rate in different conditions has been predicted and the predicted values are compared with the measured ones. The results show that the temperature drop of the liquid steel is greatly affected by the baking temperature of the ladle; and the temperature drop rate of the hot metal in the process of casting is greater than that of the hot metal at stand by status; the onsite measured temperature drop rate lies in between the calculated value by the energy conservation method and by the typical value method. The simulation results provide a theoretical basis for reduction of the molten steel temperature drop in the Steelmaking Plant of Chongsteel. Key words: transient temperature field; finite element; heat transfer; baking temperature; molten steel; temperature drop 钢包作为炼钢过程中的重要设备, 承担着盛 , 放钢液 向精炼炉和连铸输送钢水的任务。 钢包 内钢水温度控制的优劣直接影响到后续连铸工艺 的顺行与铸坯的质量。不同的钢包状态会影响出 钢过程温降、 钢水在精炼工位时的升温及降温速 率等。要控制好钢水温度, 弄清钢水在钢包内的 传热行为至关重要
帽口保温砖结构对大型钢锭凝固过程的影响分析

《大型铸锻件》HEAVY CASTING AND FORGINGNo.3 May2021帽口保温砖结构对大型钢锭凝固过程的影响分析宫惠爽(丹佛斯(天津)有限公司,天津301700)摘要:对大型钢锭冒口处的保温砖采用实验检测的保温砖物性参数进行数值模拟,对比了不同保温砖结构对钢锭冒口区凝固过程的影响,结果表明,轻质砖和WDS的使用能够延长冒口处钢液的凝固时间,有利于钢锭的补缩,提高钢锭质量,建议减薄粘土砖的厚度,以充分发挥轻质砖和WDS的保温作用。
关键词:保温砖;钢锭;数值模拟中图分类号:TG244+.4文献标志码:BEEect of Insulation Brick Structure of Riseeon Solidification Process of Larae IngotGong HuishuangAbstract:Numerical simulations have been perfooned on the insulation bricks at the risee of larae steeC ingots with the expeOmentally tested physical popeOy parameterr of insulation bocks.The effects of difeont insulation bock structures on the solidification process of the steel ingot Oser area have been compared.The results showthat the us oI light brick and WDS can prolong the solidification tice of molten steel at the risee,which ic beneficial te feed the ingot and inipTove the quality of ingot.It m suggested te Teduce the thickness of clay beick te give fuli piay to the insulation©佻妣of light brick and WDS.Key wordt:insulation brick;ingot;numericai siniulation钢锭在凝固过程中,会发生收缩,产生缩孔缩松,为了提高钢锭的质量,保证钢锭重量,需要设置冒口,用以补充因钢锭收缩而损失的钢液,因此,冒口处的钢液必须要最后凝固,才能对钢锭锭身的缩孔缩松进行补充,减轻锭身的缩孔缩松缺陷,提高钢锭的致密度。