分式练习计算练习题(超全)

合集下载

分式练习计算练习试题(超全)

分式练习计算练习试题(超全)

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。

5.约分:①=ba ab 2205__________,②=+--96922x x x __________。

分式运算50练(含详细解答)

分式运算50练(含详细解答)



解法二:
10

40. 化简后得 解析: 原式
,代入值后得 .






代入化简后的式子得:

41. . 解析:
原式


,∴

根据题意,



∴原式 .
42. . 解析: 原式


得,

代入上式得:原式

43.
11
化简后得: 解析: 原式
,代入值后得: .


代入

44. . 解析: 原式

33. . 解析: 原式



∴原式 .
34. . 解析: 原式

8
∵ ∴ ∴原式
, ,

35. . 解析: 原式
∵ ∴ ∴原式
. , . .
36. . 解析: 原式


∴原式

9
37. 解析: 原式





∴原式

38. . 解析:




,即

∴原式

39.

解析:
解法一:
原式

当 原式
时,
. .

12.

解析:
原式

13.

解析:

14.

解析:
. 15. .
3
解析:
原式

16.

小学数学分式练习题

小学数学分式练习题

小学数学分式练习题分数的四则运算1. 计算:(1/4) + (2/3) =(2/5) - (1/8) =(3/7) × (4/9) =(5/6) ÷ (2/3) =2. 将以下分数的混合数形式转换为带分数形式:4 + 2/5 =8 + 3/4 =10 + 1/3 =9 + 5/6 =3. 将以下带分数形式转换为分数的混合数形式:3 1/2 =5 3/4 =6 2/3 =7 5/6 =分数的化简与比较大小4. 将下列分数化简为最简分数:(12/16) =(20/24) =(36/48) =(45/60) =5. 比较以下分数的大小,使用 "<"、"=" 或 ">" 进行填空:(2/3) ___ (3/4)(5/8) ___ (2/5)(7/10) ___ (5/6)(1/4) ___ (3/8)分数的扩展与还原6. 将以下分数扩展为相同分母的形式:(3/4) 和 (5/6)(2/5) 和 (1/3)(7/8) 和 (4/9)7. 将以下分数还原为最简分数:(16/24) =(36/40) =(21/42) =(75/100) =分数的乘法与除法8. 计算:(2/5) × (3/4) =(4/7) × (2/9) =(1/3) ÷ (2/5) =(5/6) ÷ (3/4) =9. 将以下分数化简为最简形式,然后进行乘法运算:(2/3) × (9/10) =(4/5) × (7/9) =(5/8) × (4/7) =(3/4) × (2/5) =10. 将以下分数化简为最简形式,然后进行除法运算:(2/3) ÷ (4/5) =(5/6) ÷ (3/4) =(3/8) ÷ (7/9) =(5/6) ÷ (2/3) =以上是小学数学分式的练习题。

分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)

分式⽅程计算30题(附答案、讲解)郭⽒数学公益教学博客中考分式⽅程计算30题(附答案、讲解)⼀.解答题(共30⼩题)1.(2011?⾃贡)解⽅程:.2.(2011?孝感)解关于的⽅程:.3.(2011?咸宁)解⽅程.4.(2011?乌鲁⽊齐)解⽅程:=+1.5.(2011?威海)解⽅程:.6.(2011?潼南县)解分式⽅程:.7.(2011?台州)解⽅程:.8.(2011?随州)解⽅程:.9.(2011?陕西)解分式⽅程:.10.(2011?綦江县)解⽅程:.11.(2011?攀枝花)解⽅程:.12.(2011?宁夏)解⽅程:.13.(2011?茂名)解分式⽅程:.14.(2011?昆明)解⽅程:.15.(2011?菏泽)解⽅程:16.(2011?⼤连)解⽅程:.17.(2011?常州)解分式⽅程;18.(2011?巴中)解⽅程:.(2)解分式⽅程:=+1.20.(2010?遵义)解⽅程:21.(2010?重庆)解⽅程:+=1 22.(2010?孝感)解⽅程:.23.(2010?西宁)解分式⽅程:24.(2010?恩施州)解⽅程:25.(2009?乌鲁⽊齐)解⽅程:26.(2009?聊城)解⽅程:+=1 27.(2009?南昌)解⽅程:28.(2009?南平)解⽅程:29.(2008?昆明)解⽅程:30.(2007?孝感)解分式⽅程:.答案与评分标准⼀.解答题(共30⼩题)1.(2011?⾃贡)解⽅程:.考点:解分式⽅程。

专题:计算题。

分析:⽅程两边都乘以最简公分母y(y﹣1),得到关于y的⼀元⼀⽅程,然后求出⽅程的解,再把y的值代⼊最简公分母进⾏检验.解答:解:⽅程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原⽅程的解,∴原⽅程的解为y=.点评:本题考查了解分式⽅程,(1)解分式⽅程的基本思想是“转化思想”,把分式⽅程转化为整式⽅程求解.(2)解分式⽅程⼀定注意要验根.2.(2011?孝感)解关于的⽅程:.考点:解分式⽅程。

分式练习计算练习题(超全)

分式练习计算练习题(超全)

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。

5.约分:①=ba ab 2205__________,②=+--96922x x x __________。

分式练习题(附答案)

分式练习题(附答案)

分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。

小学数学分式运算练习题

小学数学分式运算练习题

小学数学分式运算练习题
在小学数学学习中,分式运算是一个重要的知识点。

掌握分式运算的方法和技巧对于解决数学题目和日常生活中的实际问题都非常有帮助。

下面是一些小学数学分式运算练习题,帮助你巩固和提升分式运算的能力。

1. 计算下列分式的值:
① 1/3 + 1/4 = ?
② 2/5 - 1/10 = ?
③ 3/4 × 2/5 = ?
④ 2/3 ÷ 4/5 = ?
2. 请用分式表示以下图形的阴影部分面积与整个图形面积的比值:
①正方形,阴影部分为一个边长为2的小正方形。

②长方形,阴影部分为一个长为3,宽为2的长方形。

3. 将下列分式化简为最简形式:
① 12/16
② 18/24
③ 20/40
④ 28/35
4. 小明用1小时完成3/5的作业,求他完成全部作业需要多久?
5. 小华爸爸给他买了4/7千克的苹果,小华又自己买了1/3千克的苹果,他一共买了多少千克的苹果?
6. 一个水池原有2/3的水,倒出了1/4的水后,还剩下多少比例的水?
7. 甲乙两个人一起完成一项任务需要5天,如果由甲单独完成,需要10天。

那么由乙单独完成,需要多少天?
8. 用分式表示以下几个数之间的大小关系:
① 1/4, 3/8, 2/5
② 3/7, 4/9, 5/12
以上是一些小学数学分式运算的练习题,通过练习这些题目,相信你能够更加熟练地掌握分式运算的方法和技巧。

希望你能够认真思考并解答出这些题目,不断提升自己的数学能力。

祝你取得好成绩!。

小学数学分式解法练习题

小学数学分式解法练习题

小学数学分式解法练习题随着学生们在数学学习中的深入,分式成为了他们接触的一个重要概念。

分式不仅仅是数学中的一种运算形式,更是解决实际问题的有效工具。

在本篇文章中,我将为大家提供一些小学数学分式解法的练习题,并给出详细解答,帮助大家更好地理解和掌握分式的运用。

1. 将以下分数化成整数:a) 3/1b) 9/3c) 12/4d) 27/9解答:a) 3/1 = 3b) 9/3 = 3c) 12/4 = 3d) 27/9 = 32. 简化以下分数:a) 6/8b) 15/25c) 20/30解答:a) 6/8 = 3/4b) 15/25 = 3/5c) 20/30 = 2/3d) 45/60 = 3/43. 求以下分数的和:a) 1/3 + 1/3b) 2/5 + 3/5c) 1/4 + 2/4d) 3/8 + 4/8解答:a) 1/3 + 1/3 = 2/3b) 2/5 + 3/5 = 5/5 = 1c) 1/4 + 2/4 = 3/4d) 3/8 + 4/8 = 7/84. 求以下分数的差:a) 4/5 - 1/5b) 3/4 - 2/4d) 5/6 - 3/6解答:a) 4/5 - 1/5 = 3/5b) 3/4 - 2/4 = 1/4c) 7/8 - 1/8 = 6/8d) 5/6 - 3/6 = 2/6 = 1/35. 求以下分数的积:a) 2/3 × 1/2b) 3/4 × 2/3c) 4/5 × 3/4d) 5/6 × 4/5解答:a) 2/3 × 1/2 = 2/6 = 1/3b) 3/4 × 2/3 = 6/12 = 1/2c) 4/5 × 3/4 = 12/20 = 3/5d) 5/6 × 4/5 = 20/30 = 2/36. 求以下分数的商:a) 3/4 ÷ 2/3c) 5/6 ÷ 3/4d) 6/7 ÷ 5/6解答:a) (3/4) ÷ (2/3) = (3/4) × (3/2) = 9/8b) (4/5) ÷ (1/2) = (4/5) × (2/1) = 8/5c) (5/6) ÷ (3/4) = (5/6) × (4/3) = 20/18 = 10/9d) (6/7) ÷ (5/6) = (6/7) × (6/5) = 36/35通过以上练习题,我们可以更好地理解和掌握小学数学中分式的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式1x +的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。

5.约分:①=ba ab 2205__________,②=+--96922x x x __________。

6.化简分式xx ---112的结果是________. 7.将分式的分子与分母中各项系数化为整数,则b a b a 213231++=__________. 8.不改变分式的值,使分式的首项分子与分式本身都不含“-”号:2a b a b ---=________;(2)2a b a b----=___________. 9.不改变分式的值,把分式0.420.51x x +- 中分子、分母各项系数化成整数为________. 10.分式2241b a 与cab x 36的最简公分母是__________. 11. 将ba 1,1,31通分后,它们分别是_________, _________,________. 12. 分式acb b ac c b a 107,23,5422的最简公分母是_________,通分时,这三个分式的分子分母依次乘以________, _______, ____________.13.分式b a a 233-、222ab b -与3385bca c -的最简公分母是 。

14.分式2x y xy +,23y x ,26x y xy -的最简公分母为 ; 15.1x 2x 11x 222++-和的公分母是 ; 16.化简x xx x 2-+的结果为 ; 17.约分:22222b a b ab a -+-= 。

18.若分式442++m m 的值为0,则=m 。

19.计算:012)2006(5)21()1(π-÷-+--= 。

20.计算:(1)b a ÷22b a =_______;(2)3252a b c ·53410c a b =________;(3)23x x ÷23x x =________;(4)x ÷1y ×1y =________;(5)21a a -÷22a a a-=_______;(5)=÷-ab 3b a 2123 ;(6)432a )a 21(÷= (7)÷m 2a =n m a +;(8)=-+-x y y y x x ;(9)b1b a ⋅÷= ; 21.(1)已知115x y +=,则分式2322x xy y x xy y -+++的值为_______ ; (2)已知113x y -=,则分式2322x xy y x xy y+---的值为 ; (3)已知bab 2a b ab 3a ,2b 1a 1+++-=+则=____________. (4)已知x-y=4xy ,则2322x xy y x xy y +---的值为 22.计算:201()( 3.14)3π--+-= ; 23.若0(2)1a +=,则a 必须满足的条件是 ;24.(1)某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务。

设原计划每天固沙造林x 公顷,根据题意列出方程为 。

(2)从甲地到乙地全长S 千米,某人步行从甲地到乙地t 小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式)(3)某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.(4)一艘船顺流航行n 千米用了m 小时,如果逆流航速是顺流航速的qp ,那么这艘船逆流航行t 小时走了__________千米.(5)某项工作,甲单独做需a 天完成,在甲做了c 天(a c <)后,剩下的工作由乙单独完成还需b 天,若开始就由甲乙共同合做,则完成这项任务需_________天.(6)A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为a 千米/时,从B 地返回A 地的速度为b 千米/时,则在A,B 两地间往返一次的平均速度为___________千米/时.(用a ,b 的式子表示)(7)甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的_______倍.(8)一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。

(9)某工厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用天。

(10)甲、乙两人组成一队参加踢毽子比赛,甲踢m 次用时间1t (s ),乙在2t (s )内踢n 次,现在二人同时踢毽子,共N 次,所用的时间是T (s ),则T 是________.25.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132L L 中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .26.若记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (用含n 的代数式表示)27.若-1,则x+x -1=__________. 28.(1)已知31=+x x ,则_________122=+xx (2)已知=+=+22a1a ,3a 1a 则_______________; (3)若=+=-22121xx x x 则 29.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 30.已知u=121s s t -- (u ≠0),则t=___________. 31.用科学记数法表示:12.5毫克=________吨. 32.当x 时,分式x x --23的值为负数. 33.计算(x+y)·2222x y x y y x+-- =____________. 34.计算:()()12211--+-n n =______________(n 为整数) 35.计算:()____________221=---36.化简:()))((2211---+-+y x y x y x =______________37.已知:57,37==nm ,则=-n m 27________________. 38.已知:9432827321=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--x x , 则x=_____________ 39.用科学记数法表示﹣0.0003097= 。

(保留两个有效数字)40.2003年10月15日,航天英雄杨利伟乘坐 “神舟五号”载人飞船,于9时9分50秒准确进入预定轨道,开始巡天飞行,飞船绕地球飞行了十四圈后,返回舱与推进舱于16日5时59分分离,结束巡天飞行,飞船共用了20小时49分10秒,巡天飞行了约5106⨯千米,则 “神舟五号”飞船巡天飞行的平均速度约为_____________千米/秒(精确到0.1).41.人类的遗传物质就是DNA,人类的DNA 是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是___________.42.计算()()___________1031032125=⨯÷⨯--.43.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为__________.44.已知at v v +=0(a 不为零),则t = .45.关于x 的方程a mx = ()0≠m 的解为 .46.当x= 时,分式2x x x-的值为0. 47.已知222222M xy y x y x y x y x y--=+--+,则M= . 48.不改变分式的值,使分子、分母首项为正,则 x y x y-+--= . 49.化简:22ax ay x y+-= . 50.已知11x -有意义,且2111A x x =--成立,则x 的值不等于 . 51.计算:223.9y xy x-= . 52.李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书.解题方案:设李明原计划平均每天读书x 页,用含x 的代数式表示:(1)李明原计划读完这本书需用 天;(2)改变计划时,已读了 页,还剩 页;(3)读了5天后,每天多读5页,读完剩余部分还需 天;(4)根据问题中的相等关系,列出相应方程 .53.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:111u v f+=.若f=6厘米v=8厘米,则物距u= 厘米.54.已知22334422,33,44,112233⨯=+⨯=+⨯=+L 若1010a a b b ⨯=+(a 、b 都是整数),则a+b 的最小值是 . 55.(1)已知14x x+=,则2421x x x =++ . (2)若=++=-1,31242x x x x x 则__________。

相关文档
最新文档