大学物理刚体的定轴转动习题及答案
大学物理 和 习题答案

向走动时,则此平台相对地面旋转的角速度和旋转方向分别为
[A ]
(A) mR2 ( V ),顺时针。 JR
(B) mR2 ( V ),逆时针。 JR
——————3——————
大学物理习题集(上)
(C) mR 2 ( V ),顺时针。 (D) mR 2 ( V ),逆时针。
J mR 2 R
J mR 2 R
F
l 2
1 12
ml 2
A
Fl
1 3
ml 2
B
由上两式可解得 A
6F ml
,B
3F ml
,可见 A
B
所以应选(B)。
9.质量为 m 的小孩站在半径为 R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转动,
转动惯量为 J,平台和小孩开始时均静止,当小孩突然以相对于地面为 v 的速率在平台边缘沿逆时针转
。
2
解答 以圆盘和橡皮沁组成一系统,则系统所受重力对铅直轴 O 的力矩为零,所以系统的角动量守
——————6——————
大学物理习题集(上)
恒,圆盘的角动量为
J0
,橡皮泥(视为质点)对
O
轴的转动惯量为
m
R 2
2
,则有
1 2
MR20
1 2
MR2
m
R 2
2
解得
1 2
MR
20
2M 0
1 2
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2. 均匀细棒 OA 可绕通过某一端 O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自
由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?
大学物理同步训练第 版 刚体定轴转动详解

第三章 刚体定轴转动一、选择题1. 两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若B A J J >,但两圆盘的质量与厚度相同,如两盘的密度各为A ρ和B ρ,则(A )A B ρρ>(B )B A ρρ> (C )A B ρρ=(D )不能确定A ρ和B ρ哪个大答案:A 分析:22m m R R h hρππρ=→=,221122m J mR h πρ==,故转动惯量小的密度大。
2. 有两个半径相同、质量相等的细圆环。
1环的质量分布均匀,2环的质量分布不均匀。
它们对通过环心并与环面垂直的轴的转动惯量分别为1J 和2J ,则(A )12J J >(B )12J J < (C )12J J =(D )不能确定1J 和2J 哪个大 答案:C分析:22J R dm mR ==⎰,与密度无关,故C 选项正确。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度1ω按图1所示方向转动。
将两个大小相等、方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,则(A )12ωω>(B )12ωω= (C )12ωω<(D )不能确定如何变化答案:C分析:左边的力对应的力臂大,故产生的(顺时针)力矩大于右边的力所产生的力矩,即合外力距(及其所产生的角加速度)为顺时针方向,故圆盘加速,角速度变大。
4. 均匀细棒OA 的质量为M ,长为L ,可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )合外力矩从大到小,角速度从小到大,角加速度从大到小(B )合外力矩从大到小,角速度从小到大,角加速度从小到大(C )合外力矩从大到小,角速度从大到小,角加速度从大到小 (D )合外力矩从大到小,角速度从大到小,角加速度从小到大 答案:A分析:(定性)由转动定律M I β=可知,角加速度与力矩成正比,故B 、D 错误;由机械能守恒可知,棒在下落的过程中重力做功,故角速度从小到大,C 错误。
大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
刚体的定轴转动习题

WENKU DESIGN
2023-2026
ONE
KEEP VIEW
刚体的定轴转动习
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 刚体定轴转动的基本概念 • 刚体定轴转动的力学分析 • 刚体定轴转动的运动分析 • 刚体定轴转动的习题解析 • 刚体定轴转动的实际应用案例
PART 03
刚体定轴转动的运动分析
刚体的角速度与角加速度
角速度
描述刚体转动快慢的物理量,用ω表 示。单位是弧度/秒(rad/s)。
角加速度
描述刚体转动角速度变化快慢的物理 量,用α表示。单
转动轨迹
刚体转动的路径是一个圆或椭圆,其形 状取决于刚体的质量和转动轴的位置。
PART 04
刚体定轴转动的习题解析
简单习题解析
题目
一个质量为m,半径为R的 圆盘,以边缘某点为轴, 以角速度ω做定轴转动, 求圆盘的动量。
解析
根据动量的定义,圆盘的 动量P=mv=mrω,其中r 是质点到转动轴的距离, m是质量,v是线速度,ω 是角速度。
题目
一质量为m的杆,长度为l, 一端固定,绕另一端点做 定轴转动,求杆的转动惯 量。
航空航天器姿态调整中的应用
01
02
03
卫星轨道调整
卫星在轨道调整过程中, 通过刚体定轴转动实现姿 态的调整,从而改变推进 力的方向。
飞机飞行控制
飞机飞行过程中,通过刚 体定轴转动实现舵面的操 纵,从而调整飞行姿态和 方向。
火箭发射
火箭发射过程中,通过刚 体定轴转动实现发动机的 转向和稳定。
第5章 刚体的定轴转动 习题解答

对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
大学物理习题册及解答 第二版 刚体的定轴转动

Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
(2)由垂直轴定理有: J J 1 J MR2
由平行轴定理有:
J
xC
J
yC
2
MR2
zC
3
2 MR 2
PP
xC
(3)复摆的摆动周期为 T 2π J
2
mgl
T 2 2R T 2 3R
T1 4 1.1547
2.力矩的定义式为_M_____r__F_.
在力矩作用下,一个绕轴转动的物体作_变__角__动_量_运动. 若系统所受的合外力矩为零,则系统的____角__动_量_____守恒.
3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒.
(E) 动量、机械能和角动量都不守恒.
7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,
转动惯量为J0,角速度为0,然后她将两臂收回,使转动惯量减少
为J0
/3,这时她转动的角速度变为
(A) 1 (B) 1
分析:
2as
2 0
2 02
a r
0 r0
s
r
N
2
13.3圈
02 0.024rad / s2 2
4.一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为()75.03.060/2300021⨯π⨯π⨯===r r t B Aβωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ωϖ相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()22220200212121BR m J mgR J v ++=+ωωω ② 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即: ()R mg m C 2212=v , gR C 4=v 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
刚体定轴转动的功和能

《大学物理》练习题 刚体定轴转动的功和能班级 ___________ 学号 __________ 姓名 _________ 成绩 ________基本要求:(1) 掌握力矩的功、转动动能、动能定理、含刚体的机械能守恒定律及应用内容提要: 1. 力矩的功:⎰=θMd A2 转动动能:刚体的转动惯量与角速度平方乘积的一半。
221ωJ E k =3 刚体定轴转动的动能定理:合外力矩对定轴转动刚体所做的功等于刚体转动动能的增量21222121ωωJ J A -=若在刚体转动过程中,只有重力做功,其他非保守内力不做功,则刚体在重力场中机械能守恒.常量=+=C mgh J E 221ω一、选择题1. 如图所示, 一匀质细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动. 杆长 l = (5/3)m,今使杆从与竖直方向成60°角的位置由静止释放(g 取10m/s 2), 则杆的最大角速度为 [ ] (A) 3rad/s.(B) rad/s (C) 9 rad/s.60° 图(D)3rad/s.2.一人站在旋转平台的中央,两臂侧平举,整个系统以2rad/s 的角速度旋转,转动惯量为.如果将双臂收回则系统的转动惯量变为.此时系统的转动动能与原来的转动动能之比E k / E k0为[ ] (A)2.(B) 2. (C) 3. (D) 3.3.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴旋转,初始状态为静止悬挂。
现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ ] (A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒. (D) 机械能、动量角和动量均守恒. 二.填空题1.一匀质细杆AB,长为l ,质量为m . A 端挂在一光滑的固定水平轴上, 细杆可以在竖直平面内自由摆动.杆从水平位置由静止释放开始下摆,当下摆 时,杆的角速度为 .2.将一质量为m 的小球, 系于轻绳的一端, 绳的另一端穿过光滑水平桌面上的小孔用手拉住, 先使小球以角速度1在桌面上做半径为r 1的园周运动, 然后缓慢将绳下拉, 使半径缩小为r 2, 在此过程中小球的动能增量是 .○· O 图三.计算题1.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相撞,设碰撞时间极短,已知小滑块在碰撞前后的速度分别为v 1和v 2,如图所示. 求碰撞后从细棒开始转动到停止转动的过程所需的时间 (以知棒绕O 点的转动惯量J=m 1l 2/3).2.一长l=0.4m 的均匀木棒,质量M=1.0kg ,可绕水平轴O 在竖直内转动,开始时棒自然地竖直悬垂,今有质量m=8g 的子弹以s m v 200 地速率从A 点射入棒中,假定A 点与O 点的距离为43l ,求:(1)、棒开始运动时的角速度; (2)、棒的最大偏转角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理刚体的定轴转动习题及答案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快(2)如果它们的角速度相同,哪个轮子的角动量大答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数;(2) 开始制动后5秒时飞轮的角速度。
解:(1)由题意飞轮的初角速度为飞轮作均减速转动,其角加速度为故从开始制动到停止转动,飞轮转过的角位移为因此,飞轮转过圈数为/2θπ∆=100圈。
(2)开始制动后5秒时飞轮的角速度为6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量。
解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和。
由此可得7. 如图所示,一半径为r ,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度。
解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= (1)对于滑轮按转动定律有212Tr mr β=(2) 由角量线量关系有a r β= (3)联立以上三式解得8. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两aLd 1d 2轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β。
解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2。
对重物3m 按牛顿第二定律有3133m g T m a -= (1)对重物4m 按牛顿第二定律有2444T m g m a -= (2)对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭(3)由角量线量之间的关系有 31a r β=(4)42a r β= (5)联立以上五式解得9. 如图所示,一半径为R ,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动。
现将它平放在一水平板上,盘与板表面的摩擦因数为μ。
(1)求圆盘所受的摩擦力矩;(2)问经过多少时间后,圆盘转动才能停止解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩。
另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间。
(1)圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为负号表示摩擦力矩为阻力矩。
对上式沿径向积分得圆盘所受的总摩擦力矩大小为(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的时间为10. 飞轮的质量m =60kg ,半径R =0.25m ,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:(1)设F =100 N ,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转(2)如果在2s 内飞轮转速减少一半,需加多大的力F解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ= N N '=∴ F l l l N F r 121+='=μμ 又∵ ,212mR I =∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为可知在这段时间里,飞轮转了1.53转.(2)10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 用上面式(1)所示的关系,可求出所需的制动力为11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动。
若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β。
解:设两轮之间摩擦力为f对主动轮按转动定律有:111M fr I β-= (1)对从动轮按转动定律有222fr I β= (2)由于两个轮边沿速率相同,有1122r r ββ= (3)联立以上三式解得12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12(a)图所示.设R =0.20m, r =0.10m ,m =4 kg ,M =10 kg ,1m =2m =2 kg ,且开始时1m ,2m 离地均为h =2m .求: (1)柱体转动时的角加速度;(2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12(b)图.(1)1m ,2m 和柱体的运动方程如下:2222a m g m T =- ①1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,, 而 222121mr MR I +=由上式求得 (2)由①式 由②式13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘(如题2-31图所示方向).(1)开始时轮是静止的,在质点打入后的角速度为何值(2)用m ,0m 和θ表示系统(包括轮和质点)最后动能和初始动能之比. 解: (1)射入的过程对O 轴的角动量守恒∴ Rm m v m )(sin 000+=θω(2) 020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υ 与杆下端小球m 作对心碰撞,碰后以021υ的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:而 222212()2()333I m l m l ml =+=所以 2023mv l ml ω=由此得到:032v lω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ;(2) 两轮各自所受的冲量矩. 解:(1) 两轮啮合过程满足角动量守恒:所以 A AA BI I I ωω=+ 因为 2n ωπ=m210v l故 10600200/min 1020A A AB I n n r I I ⨯===++ (2) 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯=== A 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅B 轮各所受的冲量矩:16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径).解:(1) 球体收缩过程满足角动量守恒:所以17. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.解:(1) 子弹击中圆盘过程满足角动量守恒:所以 002211()22mRv mv mR MR m M R ω==++ (2)圆盘受到的摩擦力矩为由转动定律得 M I β'=。