初二数学因式分解技巧

合集下载

初中数学微专题讲义 专题1.6 例谈因式分解的方法与技巧

初中数学微专题讲义  专题1.6 例谈因式分解的方法与技巧

【专题综述】因式分解是初中代数中一种重要的恒等变形,是处理数学问题重要的手段和工具,也是中考和数学竞赛试题中比较常见的题型。

对于特殊的因式分解,除了掌握提公因式法、公式法、分组分解法、十字相乘法等基本方法外,还应根据多项式的具体结构特征,灵活选用一些特殊的方法和技巧。

这样不仅可使问题化难为易,化繁为简,复杂问题迎刃而解,而且有助于培养探索求新的学习习惯,提高数学思维能力。

【方法解读】一、巧拆项:在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。

例1:因式分解32422+++-b a b a 解:原式=22423a b a b -+++224241a b a b =-+++-22(44)(21)a ab b =++--+22(2)(1)a b =+--(1)(3)a b a b =++-+【解读】根据多项式的特点,把3拆成4+(-1),即可利用完全平方公式、平方差公式进行因式分解。

【举一反三】因式分解:611623+++x x x 【答案】(1)(2)(3)x x x +++二、巧添项:在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可谓方法独特,新颖别致。

例2:因式分解444yx +解:444x y +422422(44)4x x y y x y =++-2222(2)(2)x y xy =+-=2222(22)(22)x xy y x xy y ++-+学&科网【解读】根据多项式的特点,在444x y +中添上22224,4x y x y -两项,,即可利用完全平方公式、平方差公式进行因式分解。

【举一反三】因式分解4323+-x x 【答案】2(1)(2)x x +-三、巧换元:在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单易于分解的多项式,会使问题化繁为简,迅捷获解。

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧初中数学因式分解的几种经典方法因式分解是初中数学的一个重点,涉及到分式方程和一元二次方程,因此学会一些基本的因式分解方法非常必要。

下面列举了九种方法,希望对大家的研究有所帮助。

1.提取公因式这种方法比较常规、简单,必须掌握。

常用的公式有完全平方公式、平方差公式等。

例如,对于方程2x-3x=0,可以进行如下因式分解:x(2x-3)=0,得到x=0或x=3/2.一个规律是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式,这对我们后面的研究有帮助。

2.公式法将式子利用公式来分解,也是比较简单的方法。

常用的公式有完全平方公式、平方差公式等。

建议在使用公式法前先提取公因式。

例如,对于x^2-4,可以使用平方差公式得到(x+2)(x-2)。

3.十字相乘法是做竞赛题的基本方法,但掌握了这个方法后,做平时的题目也会很轻松。

关键是将二次项系数a分解成两个因数a1和a2的积a1.a2,将常数项c分解成两个因数c1和c2的积c1.c2,并使ac正好是一次项b,那么可以直接写成结果。

例如,对于2x^2-7x+3,可以使用十字相乘法得到(x-3)(2x-1)。

总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1.a2,常数项c可以分解成两个因数之积,即c=c1.c2,那么可以使用十字相乘法进行因式分解。

文章中有一些格式错误,需要修正。

另外,第四段中的一些内容似乎有问题,建议删除。

改写后的文章如下:分解因式是数学中的一个重要概念,也是许多数学问题的基础。

在中学数学中,我们通常研究到七种分解因式的方法。

1.公因数法这种方法是最基础的方法之一,它的核心思想是找到表达式中的公因数。

例如,对于表达式6x+9y,我们可以找到它们的公因数3,然后将表达式简化为3(2x+3y)。

2.公式法公式法是通过运用数学公式来分解因式。

例如,对于二次三项式ax2+bx+c,我们可以使用求根公式来求出它的两个根,然后将表达式分解为(a(x-根1)(x-根2))的形式。

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典方法息县六中陈岳因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些基本的因式分解的方法。

下面列举了九种方法,希望对大家的学习能有所帮助。

【1】提取公因式这种方法比较常规、简单,必须掌握。

常用的公式有:完全平方公式、平方差公式等2x-3x=0例一:2解:x(2x-3)=0x=0,2x=3/21这是一类利用因式分解的方程。

总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式这对我们后面的学习有帮助。

【2】公式法将式子利用公式来分解,也是比较简单的方法。

常用的公式有:完全平方公式、平方差公式等注意:使用公式法前,建议先提取公因式。

例二:2x-4分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)【3】十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数21.a a 的积21.a a ,把常数项c分解成两个因数21.c c 的积21.c c ,并使1221c a c a 正好是一次项b ,那么可以直接写成结果例三: 把22x -7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3+2×1 =51 3╳2 11×1+2×3 =71 -1╳2 -31×(-3)+2×(-1) =-51 -3╳2 -11×(-1)+2×(-3) =-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式2ax +bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=21.a a ,常数项c 可以分解成两个因数之积,即c=21.c c ,把2121,,,c c a a ,排列如下:╳按斜线交叉相乘,再相加,得到1221c a c a +,若它正好等于二次三项式2ax +bx +c 的一次项系数b ,即1221c a c a +=b ,那么二次三项式就可以分解为两个因式1a x+c1与22c x a +之积,即2ax +bx+c=(1a x+1c )(2a x+2c ).这种方法要多实验,多做,多练。

八年级数学重点知识点(全)

八年级数学重点知识点(全)

初二数学知识点因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法就是相反的两个转化、2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”、3.公因式的确定:系数的最大公约数·相同因式的最低次幂、注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3、4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序就是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式、6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子瞧作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项、7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q就是完全平方式 ”、分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式、2.有理式:整式与分式统称有理式;即、3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义、4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单、5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解、6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式、7.分式的乘除法法则:、8.分式的乘方:、9.负整指数计算法则:(1)公式: a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式: (-1)-2=1, (-1)-3=-1、10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母、11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂、12.同分母与异分母的分式加减法法则:、13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x就是未知数,a与b就是用字母表示的已知数,对x来说,字母a就是x的系数,叫做字母系数,字母b就是常数项,我们称它为含有字母系数的一元一次方程、注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数、14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就就是解含有字母系数的方程、特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0、15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程就是整式方程、16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根、17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根就是增根,这时原方程无解;若值不为零,求出的根就是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能就是原方程的增根、18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序、数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根就是x);注意:(1)a叫x的平方数,(2)已知x 求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算、2.平方根的性质:(1)正数的平方根就是一对相反数;(2)0的平方根还就是0;(3)负数没有平方根、3.平方根的表示方法:a的平方根表示为与、注意:可以瞧作就是一个数,也可以认为就是一个数开二次方的运算、4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为、注意:0的算术平方根还就是0、5.三个重要非负数: a2≥0 ,|a|≥0 ,≥0 、注意:非负数之与为0,说明它们都就是0、6.两个重要公式:(1) ; (a≥0)(2) 、7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根就是x)、注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方、8.立方根的性质:(1)正数的立方根就是一个正数;(2)0的立方根还就是0;(3)负数的立方根就是一个负数、9.立方根的特性:、10.无理数:无限不循环小数叫做无理数、注意:π与开方开不尽的数就是无理数、11.实数:有理数与无理数统称实数、12.实数的分类:(1)(2)、13.数轴的性质:数轴上的点与实数一一对应、14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示、注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:、三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线、(如图)几何表达式举例: (1) ∵AD平分∠BAC∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD就是角平分线2.三角形的中线定义:在三角形中,连结一个顶点与它的对边的中点的线段叫做三角形的中线、(如图) 几何表达式举例:(1) ∵AD就是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD就是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点与垂足间的线段叫做三角形的高线、(如图) 几何表达式举例:(1) ∵AD就是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD就是ΔABC的高※4.三角形的三边关系定理:三角形的两边之与大于第三边,三角形的两边之差小于第三边、(如图) 几何表达式举例: (1) ∵AB+BC>AC∴……………(2) ∵ AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、几何表达式举例:(1) ∵ΔABC就是等腰三角形(如图) ∴ AB = AC(2) ∵AB = AC∴ΔABC就是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形、(如图) 几何表达式举例:(1)∵ΔABC就是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC就是等边三角形7.三角形的内角与定理及推论:(1)三角形的内角与180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于与它不相邻的两个内角的与;(如图) ※(4)三角形的一个外角大于任何一个与它不相邻的内角、(1) (2) (3)(4) 几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90°∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴…………………8.直角三角形的定义:有一个角就是直角的三角形叫直角三角形、(如图) 几何表达式举例:(1) ∵∠C=90°∴ΔABC就是直角三角形(2) ∵ΔABC就是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰几何表达式举例:(1) ∵∠C=90° CA=CB直角三角形、(如图) ∴ΔABC就是等腰直角三角形(2) ∵ΔABC就是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等、(如图) 几何表达式举例:(1) ∵ΔABC≌ΔEFG∴ AB = EF ………(2) ∵ΔABC≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”、 (如图)(1)(2) (3) 几何表达式举例:(1) ∵ AB = EF∵∠B=∠F又∵ BC = FG∴ΔABC≌ΔEFG(2) ………………(3)在RtΔABC与RtΔEFG中∵ AB=EF又∵ AC = EG∴RtΔABC≌RtΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相几何表达式举例: (1)∵OC平分∠AOB等;(如图)(2)到角的两边距离相等的点在角平分线上、(如图)又∵CD⊥OA CE⊥OB∴ CD = CE (2) ∵CD⊥OA CE⊥OB 又∵CD = CE∴OC就是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线、(如图) 几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF就是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理: (1)线段垂直平分线上的点与这条线段的两个端点的距离相等;(如图)(2)与一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上、(如图) 几何表达式举例:(1) ∵MN就是线段AB的垂直平分线∴ PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都就是60°、(如图)(1) (2) (3) 几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC就是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形就是等边三角形;(如图)(3)有一个角等于60°的等腰三角形就是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边就是斜边的一半、(如图)(1)(2)(3)(4) 几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC就是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC就是等边三角形(4) ∵∠C=90°∠B=30°∴AC =AB17.关于轴对称的定理(1)关于某条直线对称的两个图形就是全等形;(如图) 几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称(2)如果两个图形关于某条直线对称,那么对称轴就是对应点连线的垂直平分线、(如图)∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方与等于斜边c的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1) ∵ΔABC就是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC就是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线就是斜边的一半;(如图)(2)如果三角形一边上的中线就是这边的一半,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1)∵ΔABC就是直角三角形∵D就是AB的中点∴CD = AB(2) ∵CD=AD=BD∴ΔABC就是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空与选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数、二常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之与、2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而八年级数学重点知识点(全)第三个交点可在三角形内,三角形上,三角形外、注意:三角形的角平分线、中线、高线都就是线段、3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA、4.三角形能否成立的条件就是:最长边<另两边之与、5.直角三角形能否成立的条件就是:最长边的平方等于另两边的平方与、6.分别含30°、45°、60°的直角三角形就是特殊的直角三角形、7.如图,双垂图形中,有两个重要的性质,即:(1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A 、8.三角形中,最多有一个内角就是钝角,但最少有两个外角就是钝角、9.全等三角形中,重合的点就是对应顶点,对应顶点所对的角就是对应角,对应角所对的边就是对应边、10.等边三角形就是特殊的等腰三角形、11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明、12.符合“AAA”“SSA”条件的三角形不能判定全等、13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法、14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线、15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图、16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该就是几何基本作图、17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图、※18.几何重要图形与辅助线:(1)选取与作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;八年级数学重点知识点(全)③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图、(2)已知角平分线、(若BD就是角平分线)①在BA 上截取BE=BC构造全等,转移线段与角;②过D点作DE∥BC交AB于E,构造等腰三角形、(3)已知三角形中线(若AD就是BC的中线)①过D点作DE∥AC交AB于E,构造中位线 ; ②延长AD到E,使DE=AD连结CE构造全等,转移线段与角;③∵AD就是中线∴SΔABD= SΔADC(等底等高的三角形等面积)(4) 已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全等三角形; ②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形、八年级数学重点知识点(全) (5)其它①作等边三角形ABC一边的平行线DE,构造新的等边三角形; ②作CE∥AB,转移角; ③延长BD与AC交于E,不规则图形转化为规则图形;④多边形转化为三角形; ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形; ⑥若a∥b,AC,BC就是角平分线,则∠C=90°、。

八年级数学因式分解12种常见方法整理

八年级数学因式分解12种常见方法整理

八年级数学因式分解12种常见方法整理1.提公因式法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

如,和的平方、差的平方3.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)4.十字相乘法(经常使用)对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

7.换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

8.求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )9.图像法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )10.主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

11.利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

12.待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

初中数学初中二年级因式分解

初中数学初中二年级因式分解

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

八年级数学因式分解方法总结

八年级数学因式分解方法总结

八年级数学因式分解方法总结嘿,同学们!咱今天就来好好聊聊八年级数学里的因式分解呀!这可真是个有趣又重要的玩意儿呢!因式分解,就好像是把一个大拼图拆成一个个小拼图,然后再看看能组合出啥花样来。

咱先说说提公因式法吧,这就好比是从一堆糖果里把相同口味的挑出来,简单直接!你看,一个式子里面要是有相同的部分,咱就直接把它提出来,一下子就把式子变简单啦。

然后呢,公式法也不能小瞧呀!平方差公式,就像是一把神奇的钥匙,能打开那些看似复杂的式子的大门。

a²-b²,嘿,这不就是两个数的平方差嘛,一下子就能分解成(a+b)(a-b),多神奇呀!还有完全平方公式,就像是给式子穿上了一套合适的衣服,让它变得整整齐齐的。

(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,记住这些公式,就像是记住了自己家的钥匙在哪里一样重要。

分组分解法呢,就有点像分组做游戏啦。

把式子分成几个小组,然后在每个小组里找线索,最后把它们组合起来,哇,因式分解就完成啦!十字相乘法,这可是个厉害的角色!就像是玩连连看一样,找到合适的数字组合,一下子就能把式子分解出来。

哎呀呀,你们想想,要是不会因式分解,那数学题可不得难倒我们呀!就好比走路没有了方向,那得多迷茫呀!所以呀,一定要好好掌握这些方法哦。

在做因式分解的时候,可不能马虎呀!要像侦探一样细心,不能放过任何一个小细节。

有时候可能就因为一个小数字没注意到,整个式子就解不出来啦。

而且哦,多做练习也是很重要的呢!就像跑步一样,跑得多了,自然就跑得快啦。

多做几道因式分解的题,那以后再遇到,不就轻松搞定啦!同学们呀,八年级的数学可不简单呢,但只要我们把因式分解这些方法掌握好,那数学的大门就会为我们敞开啦!加油吧,让我们在数学的海洋里畅游,把因式分解这个小怪兽给征服咯!相信自己,我们一定行!。

(完整版)初二数学因式分解技巧

(完整版)初二数学因式分解技巧

(完整版)初⼆数学因式分解技巧因式分解技巧⽅法第⼀部分:⽅法介绍多项式的因式分解是代数式恒等变形的基本形式之⼀,它被⼴泛地应⽤于初等数学之中,是我们解决许多数学问题的有⼒⼯具.因式分解⽅法灵活,技巧性强,学习这些⽅法与技巧,不仅是掌握因式分解内容所必需的,⽽且对于培养学⽣的解题技能,发展学⽣的思维能⼒,都有着⼗分独特的作⽤.初中数学教材中主要介绍了提取公因式法、运⽤公式法、分组分解法和⼗字相乘法.本讲及下⼀讲在中学数学教材基础上,对因式分解的⽅法、技巧和应⽤作进⼀步的介绍.⼀、提公因式法.:ma+mb+mc=m(a+b+c)⼆、运⽤公式法.在整式的乘、除中,我们学过若⼲个乘法公式,现将其反向使⽤,即为因式分解中常⽤的公式,例如:(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下⾯再补充两个常⽤的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是ABC ?的三边,且222a b c ab bc ca ++=++,则ABC ?的形状是()A.直⾓三⾓形 B 等腰三⾓形 C 等边三⾓形 D 等腰直⾓三⾓形解:222222222222a b c ab bc ca a b c ab bc ca ++=++?++=++222()()()0a b b c c a a b c ?-+-+-=?==三、分组分解法.(⼀)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运⽤公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为⼀组,后两项分为⼀组先分解,然后再考虑两组之间的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解技巧方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a (9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a . 解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。

于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++=)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2(-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a (5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++ (9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、换元法。

例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。

原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x 练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x(3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。

这种多项式属于“等距离多项式”。

方法:提中间项的字母和它的次数,保留系数,然后再用换元法。

解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x xx x 设t x x =+1,则21222-=+t xx ∴原式=[]6)2222---t t x (=()10222--t t x=()()2522+-t t x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x =)2)(12()1(2--+x x x (2)144234+++-x x x x解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x 设y x x =-1,则21222+=+y xx ∴原式=22(43)x y y -+=2(1)(3)x y y --=)31)(11(2----xx x x x =()()13122----x x x x 练习14、(1)673676234+--+x x x x(2))(2122234x x x x x +++++六、添项、拆项、配方法。

相关文档
最新文档