Computational Analysis of Reinforced Concrete Slabs

合集下载

混凝土材料与结构破坏过程模拟分析_顾祥林

混凝土材料与结构破坏过程模拟分析_顾祥林
基金项目:国家自然科学基金资助项目(90715004;50978191)
* 作者简介: 顾祥林(1963-),男, 安徽庐江人, 教授, 博士, 博导, 主要从事工程结构计算机仿真、 结构全寿命设计与维护研究(E-mail: gxl@)
付武荣(1981-),男,山西运城人,博士生,主要从事混凝土构件破坏数值模拟研究(E-mail: fuwurong@); 汪小林(1981-),男,江西玉山人,博士生,主要从事混凝土结构倒塌数值模拟研究(E-mail: wxlin1262005@); 洪 丽(1985-),女,安徽宣城人,博士生,主要从事混凝土细观力学性能研究(E-mail: 10_hongli@).
Abstract:
The damage mechanisms of concrete materials and structures were analyzed by discrete element
method (DEM). On mesoscopic level, a concrete material numerical model was developed based on DEM considering the composition of concrete materials which were coarse aggregates, mortar and their interface. On macroscopic level, a concrete structural numerical model was proposed assuming that the concrete was homogeneous. The simulation results indicated that the failure processes of concrete materials under uniaxial loading conditions could be well predicted by using the two-dimensional mesoscopic numerical model, but the damage processes of concrete materials under combined loading conditions could not be calculated correctly. The failure processes of reinforced concrete members could be accurately simulated by the DEM-based model on macroscopic level, but the calculated results had a great dependency on the shape of the elements. The collapse processes of reinforced concrete structures could also be predicted well by using the macroscopic numerical model, but the computational efficiency of the model should be further improved. Key words: concrete material; reinforced concrete structure; damage process; discrete element method (DEM); numerical simulation 混凝土结构在其服役期间可能遭受爆炸或强震作用而发生局部或整体倒塌[1],其倒塌破坏过程具有明 显跨尺度特征。从结构破坏过程来看,其损伤往往始于材料或局部截面, 而后逐渐扩展至构件及整个结构; 从计算分析的角度来看,若对材料、构件及结构采用同一尺度进行模拟分析,在计算效率上不现实。因此,

框架箱涵的力学特性研究及参数分析

框架箱涵的力学特性研究及参数分析

框架箱涵的力学特性研究及参数分析张海涛;王锦【摘要】Reinforced concrete frame box culverts are widely used in underground structures. At big skew an-gles, the normally used 2D simplified computational models for the reinforced concrete frame box culverts are not suitable. Using the finite element software Midas, the frame culvert was modelled by plate elements and beam elements under different conditions. Comparisons were made between the simplified method and the fi-nite element modeling. The result shows that some design parameters, such as skew angle, base coefficient and box width, have great influence on structural internal forces. The effects were analyzed for future project reference.%框架箱涵作为一种常见的地下空间结构形式,其受力影响因素较为复杂。

在较大的斜交角度存在的情况下,常规的平面简化模型不再适用,给设计带来不安全因素。

采用有限元计算软件 Midas 建立板壳模型和杆系模型,对不同情况下的箱涵进行计算,对结果进行详细对比,对比结果显示斜交角度、地基条件、箱室尺寸布置对结构内力影响较大。

钢纤维增强大掺量再生骨料混凝土力学与断裂性能 

钢纤维增强大掺量再生骨料混凝土力学与断裂性能 

第42卷第7期2023年7月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.7July,2023钢纤维增强大掺量再生骨料混凝土力学与断裂性能丁亚红,邹成路,郭㊀猛,张美香,吕秀文(河南理工大学土木工程学院,焦作㊀454003)摘要:通过立方体抗压试验㊁劈裂抗拉试验与三点弯曲试验,探讨再生粗㊁细骨料较高取代率和钢纤维掺量对再生混凝土力学性能与断裂性能的影响㊂测试了试件28d 的立方体抗压强度㊁劈裂抗拉强度与双K 断裂韧度,分析了再生混凝土基本力学性能与断裂性能之间的相关性,提出了钢纤维增强大掺量再生骨料混凝土起裂断裂韧度及失稳断裂韧度与劈裂抗拉强度的计算关系㊂结果表明:再生粗㊁细骨料以50%质量取代率分别替换天然碎石与河砂,钢纤维体积掺量为1.0%时,抗压强度与劈裂抗拉强度达到最高,分别达到天然混凝土的77.12%与93.97%㊂掺加1.0%的钢纤维后,试块的失稳断裂韧度明显增加,并且在再生细骨料掺量为50%时均超过了天然混凝土㊂关键词:再生混凝土;三点弯曲试验;劈裂抗拉强度;立方体抗压强度;起裂断裂韧度;失稳断裂韧度中图分类号:TU528㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)07-2532-09Mechanical and Fracture Properties of Steel Fiber Reinforced Concrete with Large Amount of Recycled AggregateDING Yahong ,ZOU Chenglu ,GUO Meng ,ZHANG Meixiang ,LYU Xiuwen (School of Civil Engineering,Henan Polytechnic University,Jiaozuo 454003,China)Abstract :Through cube compression test,splitting tensile test,and three point bending test,the effects of high replacement ratio of recycled coarse and fine aggregate,and steel fiber content on the mechanical and fracture properties of recycled concrete were investigated.The cube compressive strength,splitting tensile strength,and double K fracture toughness of the sample for 28d were tested,and the correlation between the basic mechanical properties and fracture properties of recycled aggregate concrete was analyzed.The computational relationships between the initiation fracture toughness,unstable fracture toughness,and splitting tensile strength of steel fiber reinforced concrete with large amounts of recycled aggregate were proposed.The results show that,the compressive strength and splitting tensile strength of recycled coarse and fine aggregate with a mass substitution ratio of 50%replace natural crushed stone and river sand and 1.0%volume fraction of steel fiber reach the highest,reaching 77.12%and 93.97%of those of natural concrete,respectively.After adding 1.0%volume fraction of steel fiber,the unstable fracture toughness of the test block significantly increases,and unstable fracture toughness exceedes that of natural concrete when the recycled fine aggregate content is 50%.Key words :recycled aggregate concrete;three-point bending beam test;splitting tensile strength;cube compressive strength;initiation fracture toughness;unstable fracture toughness 收稿日期:2023-02-20;修订日期:2023-04-20基金项目:国家自然科学基金(U1904188)作者简介:丁亚红(1973 ),女,博士,教授㊂主要从事再生混凝土材料相关方面的研究㊂E-mail:dingyahong@ 0㊀引㊀言将废弃混凝土破碎㊁筛分制成再生骨料,将其按照一定比例或全部替代天然砂石材料制成再生混凝土(recycle aggregates concrete,RAC)㊂由于再生骨料性能劣于天然骨料[1-2],再生混凝土相较于天然混凝土往第7期丁亚红等:钢纤维增强大掺量再生骨料混凝土力学与断裂性能2533㊀往表现出强度低㊁耐久性差等缺陷[3-5]㊂丁进炜[6]对再生混凝土的力学性能进行研究㊂结果表明试块的立方体抗压强度随着再生细骨料掺量的增加而减少㊂肖建庄等[7]通过改变再生细骨料掺量得出抗压强度的正态分布概率密度曲线,并指出再生细骨料的取代率不宜大于30%(质量分数)㊂为解决RAC的各种缺陷,国内外学者采用不同种类的纤维对RAC进行加强[8-11],纤维的桥接作用能够有效地限制其内部空隙与微裂缝的产生与扩展,能够明显改善RAC的韧性㊁延性与抗裂能力[12-15]㊂我国学者徐世烺与Reinhardt[16]提出的双K断裂模型,有效诠释了混凝土断裂行为机理㊂在国内工程实践中,再生骨料运用于混凝土中的掺量普遍较低,通常只有30%左右,不利于 绿色建筑绿色生产 的开展,因此本文采取再生粗㊁细骨料配制大掺量再生骨料混凝土进行力学性能与断裂性能试验,研究再生粗㊁细骨料取代率对再生混凝土的影响,同时采用钢纤维对其进行加强,为钢纤维增强大掺量再生骨料混凝土工程实践中的推广应用提供数据和理论支持㊂1㊀实㊀验1.1㊀原材料试验用的P㊃O42.5级水泥来自河南省焦作市千业水泥厂,天然细骨料是细度模数为2.9的河砂,天然粗骨料选用连续级配的天然碎石,再生粗骨料取自河南理工大学废弃混凝土,经过破碎筛分制成,试验用水为焦作市自来水,骨料与钢纤维性能见表1㊁表2㊂减水剂为复合型高效聚羧酸减水剂,以上试验材料均来自同一批次㊂表1㊀骨料性能Table1㊀Aggregate propertiesAggregate type Aggregate size/mm Apparent density/(kg㊃m-3)Water absorption/%Crushing value/% Natural coarse aggregate 4.75~202673.1 1.3215.75 Recycled coarse aggregate 4.75~202540.08.9122.89 Natural fine aggregate0.15~4.752630.1 1.1011.25 Recycled fine aggregate0.15~4.752594.68.5027.36表2㊀钢纤维性能Table2㊀Performance of steel fiberSteel fiber type Average length/mm Length-diameter ratio Density/(kg㊃m-3)Tensile strength/MPa Corrugated milled steel fiber384278.5ˑ103>6001.2㊀试验方案以及配合比设计本文主要探讨大掺量再生粗㊁细骨料质量取代率及钢纤维掺量对再生混凝土基本力学性能与断裂性能影响的规律㊂试验中再生细骨料采用50%㊁70%㊁100%三个质量取代率取代天然碎石,再生粗骨料采用50%㊁70%㊁100%三个质量取代率取代河砂,钢纤维体积掺量为0%和1.0%㊂设计19组试验组包括立方体抗压试块每组三个,劈裂抗拉试块每组三个,三点弯曲试块每组三个,试验分组见表3㊂表3㊀试验分组Table3㊀Test groupsSample No.Replacement rate of recycledcoarse aggregate/%Replacement rate of recycledfine aggregate/%Steel fiber content/%NC000 R50-5050500 R50-7050700 R50-100501000 R70-5070500 R70-7070700 R70-1007010002534㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷续表Sample No.Replacement rate of recycled coarse aggregate /%Replacement rate of recycled fine aggregate /%Steel fiber content /%R100-50100500R100-70100700R100-1001001000SFR50-5050501SFR50-7050701SFR50-100501001SFR70-5070501SFR70-7070701SFR70-100701001SFR100-50100501SFR100-70100701SFR100-1001001001㊀㊀注:R100-100表示再生粗骨料质量取代率为100%,再生细骨料质量取代率为100%;SFR100-100表示再生粗骨料质量取代率为100%,再生细骨料质量取代率为100%,钢纤维体积掺量为1.0%㊂再生粗骨料与再生细骨料分别判定为Ⅱ类再生粗骨料㊁Ⅱ类再生细骨料,根据陕西省工程建设标准中的‘再生混凝土结构技术规程“(DBJ61/T 88 2014)中规定,Ⅱ类再生粗骨料宜配制强度等级为C40及以下强度等级的再生混凝土㊂混凝土的配合比按照‘普通混凝土配合比设计规程“(JGJ 55 2011)设计计算,设计强度等级为C30,水胶比为0.50,砂率为34.5%,所有试块坍落度控制在30~180mm,基础配合比见表4㊂表4㊀混凝土配合比设计Table 4㊀Mix proportion design of concreteComposition Water Cement Coarse aggregate Fine aggregate Water-reducing agent Mix proportion /(kg㊃m -3)20039811776200.861.3㊀试块制作与养护图1㊀三点弯曲梁试验Fig.1㊀Three-point bending beam test 考虑再生骨料吸水率较高,用清水预浸泡24h,再处理为饱和面干状态后再进行浇筑,在试块浇筑过程中采用统一的投料顺序以及搅拌时间,在模具内部涂抹疏水材料,保证脱模时试块的完整㊂试块浇筑完成后,静置24h,然后脱模并书写编号以作记录㊂养护时间为28d㊂1.4㊀试验装置及试验方法试块在最高3000kN 电液伺服万能材料试验机进行试验㊂立方体抗压试验与劈裂抗拉试验参照‘普通混凝土力学性能试验方法标准“(GB /T 50081 2019)进行㊂断裂试验采取三点弯曲试验,通过预埋钢片的方式预制裂缝㊂试验全程采用速率为0.1mm /min 的位移控制模式,裂缝口张开位移采用夹式引伸计测量,跨中挠度采用千分表测量,试验装置示意图如图1所示,D 为试件高度,l 为试件长度,S 为支座跨度,a 0为初始裂缝长度,P 为外荷载㊂2㊀双K 断裂参数的确定起裂断裂韧度按式(1)~(2)计算㊂K ini Ⅰc =3P ini ㊃S 2D 2㊃B a 0f 1(α)(1)第7期丁亚红等:钢纤维增强大掺量再生骨料混凝土力学与断裂性能2535㊀f 1(α)=1.99-a 0D 1-a 0D ()2.15-3.93a 0D +2.7a 0D ()2[]1+2a 0D ()1-a 0D ()3/2(2)式中:K ini Ⅰc 为起裂断裂韧度,MPa㊃m 1/2;P ini 为起裂荷载,kN;a 0为初始裂缝长度,mm;D 为试件高度,mm;B 为试件厚度,mm;S 为支座跨度,mm㊂失稳断裂韧度按式(3)~(7)计算㊂K un Ⅰc =3P max ㊃S 2D 2㊃B a c f 2(α)(3)f 2(α)=1.99-a c D 1-a c D ()2.15-3.93a c D +2.7a c D ()2[]1+2a c D ()1-a c D ()3/2(4)a c =2π(D +H 0)arctan B ㊃E 32.6P max CMOD c -0.1135-H 0(5)CMOD i =24P i ㊃a 0B ㊃D ㊃E f 3(α)(6)f 3(α)=0.76-2.28a 0D +3.87a 0D ()2-2.04a 0D ()3+0.661-a 0D ()2(7)式中:P max 为峰值荷载,kN;CMOD c 为峰值荷载对应的裂缝张口位移,μm;a c 为临界等效裂缝长度,mm;P i 与CMOD i 为试验P -CMOD 曲线上线性上升段任找三点的对应值(P 1,CMOD 1),(P 2,CMOD 2),(P 3,CMOD 3);H 0为试件高度加上刀口厚度;E 为弹性模量㊂3㊀结果与讨论3.1㊀试验过程与破坏形态立方体抗压试验中,未掺纤维试件最终的破坏形态往往呈沙漏状㊂掺入钢纤维的试件由于钢纤维的桥接作用,无大块剥落的现象,整体形状接近柱状,呈现出裂而不碎的形态,破坏形态如图2㊁图3所示㊂图2㊀再生混凝土受压破坏形态Fig.2㊀Compression failure mode of recycled aggregate concrete 图3㊀钢纤维再生混凝土受压破坏形态Fig.3㊀Compression failure mode of steel fiber recycled aggregate concrete 再生混凝土劈裂抗拉试验过程中,未掺加纤维的试件表面形成一条垂直于受力面且贯穿试件的裂缝,试件迅速失去承载力㊂掺入钢纤维的试块的破坏面能够观察到跨越裂缝的钢纤维,且钢纤维的波纹形状出现了不同程度的拉直情况,破坏形态如图4㊁图5所示㊂三点弯曲试验过程中,在预制裂缝正上方施加荷载,随着荷载的增加,试块表面形成明显的宏观裂缝,承载力快速下降㊂未掺钢纤维试块承载力瞬间下降,裂缝快速扩大,夹式引伸计脱落㊂掺加钢纤维的试块表现2536㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷出一定的韧度,多根钢纤维跨越裂缝面,破坏形态如图6㊁图7所示㊂图4㊀再生混凝土劈裂受拉破坏形态Fig.4㊀Splitting tension failure mode of recycledaggregateconcrete图5㊀钢纤维再生混凝土劈裂受拉破坏形态Fig.5㊀Splitting tensile failure mode of steel fiber reinforced recycled aggregateconcrete图6㊀再生混凝土三点弯曲破坏形态Fig.6㊀Three-point bending failure mode ofrecycled aggregateconcrete图7㊀钢纤维再生混凝土三点弯曲破坏形态Fig.7㊀Three-point bending failure mode of steel fiberreinforced recycled aggregate concrete3.2㊀立方体抗压强度的影响因素图8㊁图9分别为再生混凝土㊁钢纤维再生混凝土抗压强度,可以看出,再生粗骨料的加入为试块的立方体抗压强度带来了明显的负面影响,再生粗骨料(RCA)质量取代率为50%,再生细骨料(RFA)质量取代率为50%,掺加体积掺量1.0%钢纤维的试样抗压强度最高,达到了天然混凝土的77.17%㊂掺入钢纤维后,强度虽有所提高但依然随再生粗骨料的增多而降低,出现这种情况的原因主要是钢纤维自身性能较好,在混凝土内部能够提供一定的抗压能力;再生粗骨料表面附着老旧砂浆,随着再生粗骨料的增加,混凝土基体中的负面因素不断累积,混凝土基体更容易发生破坏,试件失去承载力㊂再生细骨料对试块的抗压强度有明显的抑制表现,再生细骨料相较于天然河砂具有均质性差㊁吸水率高㊁压碎值大等诸多缺陷,混凝土基体更容易产生微小裂缝,受到应力集中的影响,裂缝迅速扩大从而被破坏㊂图8㊀再生混凝土抗压强度Fig.8㊀Compressive strength of recycledaggregateconcrete图9㊀钢纤维再生混凝土抗压强度Fig.9㊀Compressive strength of steel fiber reinforcedrecycled aggregate concrete第7期丁亚红等:钢纤维增强大掺量再生骨料混凝土力学与断裂性能2537㊀3.3㊀劈裂抗拉强度的影响因素图10为再生混凝土劈裂抗拉强度,可以看出,随着再生粗骨料的增多,试件劈裂抗拉强度逐渐下降㊂再生粗骨料自身缺陷导致试件强度下降,更容易发生破坏㊂当再生粗骨料质量掺量为70%时,劈裂抗拉强度受再生细骨料影响最为明显,当再生粗骨料完全取代碎石材料时,劈裂抗拉强度受变化幅度最小㊂再生粗骨料质量取代率越高,劈裂抗拉强度受再生细骨料质量取代率的影响越明显㊂在纤维混凝土材料中,砂浆与钢纤维的黏结占据了主导地位㊂再生细骨料大大减弱了砂浆的强度进而导致钢纤维在混凝土基体内的黏结程度降低[17],试块在受力过程中更容易发生钢纤维的拔出破坏,从而失去承载力㊂钢纤维再生混凝土劈裂抗拉强度试验结果如图11所示㊂图10㊀再生混凝土劈裂抗拉强度Fig.10㊀Splitting tensile strength of recycled aggregateconcrete 图11㊀钢纤维再生混凝土劈裂抗拉强度Fig.11㊀Splitting tensile strength of steel fiber reinforced recycled aggregate concrete 3.4㊀荷载-裂缝开口位移曲线图12㊁图13分别为再生混凝土和钢纤维再生混凝土的P -CMOD 曲线,可以非常明显地看出三点弯曲下的试块中,试块的峰值荷载因再生粗㊁细骨料的增加而逐渐下降,再生粗㊁细骨料分别50%质量替换碎石与河砂,掺加体积掺量1.0%钢纤维,再生混凝土峰值荷载达到最高,峰值荷载达到天然混凝土的84.40%㊂相较于素再生混凝土P -CMOD 曲线,钢纤维再生混凝土具有更高的峰值荷载,下降段的残余强度更高,有效提高了再生混凝土的韧性㊂图12㊀再生混凝土P -CMOD 曲线Fig.12㊀P -CMOD curves of recycled aggregate concrete㊀图13㊀钢纤维再生混凝土P -CMOD 线Fig.13㊀P -CMOD curves of steel fiber reinforced recycled aggregate concrete 3.5㊀起裂断裂韧度与失稳断裂韧度再生混凝土与钢纤维再生混凝土断裂韧度如图14所示,试块的起裂断裂韧度随着再生粗㊁细骨料增加呈负增长的趋势,再生粗㊁细骨料分别50%质量替换碎石与河砂材料,钢纤维体积掺量为1.0%时,起裂断裂韧度达到最高,为0.645MPa㊃m 1/2㊂2538㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图14㊀素再生混凝土与钢纤维再生混凝土断裂韧度Fig.14㊀Fracture toughness of plain recycled aggregate concrete and steel fiber reinforced recycled aggregate concrete 在三点弯曲试验中,试块预制裂缝端口处在应力集中的情况下更早出现宏观裂缝,直接导致起裂断裂韧度明显下降㊂掺入钢纤维后,钢纤维能够增强再生混凝土的整体性,减少再生混凝土基体在水化过程中因收缩形成的微小裂缝与有害空隙,在荷载不断增加的试验过程中延缓宏观裂缝产生的时间点,提高再生混凝土的起裂断裂韧度㊂当再生粗㊁细骨料分别70%质量取代天然砂石时,钢纤维对起裂断裂韧度的优化作用最高,提升了24.73%㊂钢纤维体积掺量为0%,再生粗骨料质量取代率为50%,再生细骨料质量取代率为50%㊁70%㊁100%时,失稳断裂韧度分别为天然混凝土的99.29%㊁91.80%㊁75.92%;掺入钢纤维后,失稳断裂韧度大幅提高,甚至超过天然混凝土,分别达到天然混凝土的124.41%㊁116.33%㊁101.29%㊂钢纤维体积掺量为0%,再生粗骨料质量取代率为70%,再生细骨料质量取代率为50%㊁70%㊁100%时,失稳断裂韧度分别为天然混凝土的95.34%㊁87.91%㊁67.51%;加入钢纤维后,失稳断裂韧度分别达到天然混凝土的106.17%㊁102.17%㊁95.66%㊂钢纤维体积掺量为0%,再生粗骨料完全取代天然骨料后,失稳断裂韧度水平较低,分别只达到天然混凝土的76.99%㊁75.78%㊁71.13%;掺加钢纤维后,失稳断裂韧度达到天然混凝土的100.02%㊁93.3%㊁83.39%㊂根据图14中的数据,试块的失稳断裂韧度受再生粗㊁细骨料增加而产生负面影响,再生粗㊁细骨料分别50%质量取代天然砂石,钢纤维体积掺量为1.0%时,失稳断裂韧度达到最高,为1.096MPa㊃m 1/2㊂试件预制裂缝端口处在应力集中作用下发生开裂后,荷载达到峰值后,试块的承载能力快速下降,在极短时间内失去承载能力㊂掺加1.0%的钢纤维后,试块的失稳断裂韧度明显增加,并且在再生细骨料质量掺量为50%时均超过了天然混凝土,这是因为钢纤维在混凝土基体中的 桥接作用 ,将裂缝两侧受到的拉力转化为沿钢纤维分布的拉力以及异形钢纤维与新砂浆的黏结力与机械咬合,阻碍了宏观裂缝的进一步延伸扩展㊂当再生粗骨料质量取代率为70%,再生细骨料全部取代天然河砂时,钢纤维对起裂断裂韧度的优化作用最高,较未掺钢纤维试件提升了41.70%㊂3.6㊀断裂韧度与劈裂抗拉强度的换算关系裂缝延伸过程中在裂缝最前端形成微裂区,并以此为先导开始扩展㊂在此区域内产生黏聚力㊂K Ⅰσ为黏聚力作用产生的应力强度因子,失稳断裂韧度与起裂断裂韧度的差值由黏聚力提供,即为:K ini Ⅰc +K Ⅰσ=K un Ⅰc ㊂诸多学者提出直线型㊁折线型㊁曲线型的混凝土软化本构曲线[18-22],给出了黏聚力的不同表达式,如表5所示㊂表5㊀文献中混凝土软化本构模型[18-22]Table 5㊀Softening constitutive model of concrete in literature [18-22]Type Model Literature Straight type σ(ω)=f t 1-ωω0()[18]Folded line type σ(ω)=f t -(f t -σs )ωω0,0ɤωɤωs σs (ω0-ω)(ω0-ωs ),ωs <ω<ω00,ω0<ωìîíïïïï[19]σ(ω)=f t ,ωɤω1f t -0.7f t (ω-ω1)(ω2-ω1),ω1<ω<ω20.3f t (ω0-ω)(ω0-ω2),ω2<ωɤω0ìîíïïïï[20]第7期丁亚红等:钢纤维增强大掺量再生骨料混凝土力学与断裂性能2539㊀续表TypeModel Literature Curve type σ(ω)=f t exp(AωB )[21]σ(ω)=f t 1-ωω0()η[][22]因此认为,混凝土的起裂断裂韧度㊁失稳断裂韧度与其劈裂抗拉性能有密切关系㊂则将混凝土的起裂断裂韧度㊁失稳断裂韧度与劈裂抗拉强度进行拟合(见图15㊁图16),计算关系如式(8)~(9)所示㊂K ini Ⅰc =0.22541f t -0.19271(8)K un Ⅰc =0.29072f t -0.10137(9)拟合结果可以看出,试件的起裂断裂韧度㊁失稳断裂韧度均与劈裂抗拉强度呈正相关,这与上述预测模型趋势类似,也进一步印证本文的分析结果㊂图15㊀起裂断裂韧度与劈裂抗拉强度的拟合曲线Fig.15㊀Fitting curve of initiation fracture toughness and splitting tensilestrength 图16㊀失稳断裂韧度与劈裂抗拉强度的拟合曲线Fig.16㊀Fitting curve of unstable fracture toughness and splitting tensile strength 4㊀结㊀论1)再生粗㊁细骨料大掺量取代天然砂石材料导致试件基本力学性能有较为明显的下降,并且随着掺量的增加下降幅度也增加㊂再生粗㊁细骨料均完全取代天然砂石,未掺加钢纤维时,劣化幅度最大分别达到了52.17%㊁32.33%㊂2)钢纤维自身强度较高,加入钢纤维后,再生混凝土抗压强度与劈裂抗拉强度均有明显改善,增幅最高分别达29.95%㊁25.23%㊂再生粗㊁细骨料质量取代率均为50%,钢纤维体积掺量为1%时,抗压强度与劈裂抗拉强度达到最高,分别达到天然混凝土的77.12%与93.97%㊂3)再生粗㊁细骨料对再生混凝土的起裂断裂韧度与失稳断裂韧度起到负面作用,再生粗㊁细骨料质量取代率均为50%,钢纤维掺量为1.0%时,起裂断裂韧度与失稳断裂韧度达到最高,分别为0.645㊁1.096MPa㊃m 1/2㊂4)钢纤维的掺加能够有效提升再生混凝土断裂性能,当再生粗㊁细骨料均为70%质量取代天然碎石与河砂材料时,钢纤维对起裂断裂韧度的优化作用最高,提升了24.73%;当再生粗骨料质量取代率为70%,再生细骨料质量取代率为100%时,钢纤维对失稳断裂韧度的优化作用最高,提升了41.70%㊂参考文献[1]㊀肖建庄,林壮斌,朱㊀军.再生骨料级配对混凝土抗压强度的影响[J].四川大学学报(工程科学版),2014,46(4):154-160.XIAO J Z,LIN Z B,ZHU J.Effects of recycled aggregates gradation on compressive strength of concrete[J].Journal of Sichuan University(Engineering Science Edition),2014,46(4):154-160(in Chinese).[2]㊀肖建庄,孙㊀畅,谢㊀贺.再生混凝土骨料咬合及剪力传递机理[J].同济大学学报(自然科学版),2014,42(1):13-18.XIAO J Z,SUN C,XIE H.Aggregate interlock and shear transfer mechanism in recycled aggregate concrete[J].Journal of Tongji University2540㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷(Natural Science),2014,42(1):13-18(in Chinese).[3]㊀肖建庄,郑世同.再生混凝土梁时变挠度分析与预测[J].工程力学,2017,34(4):57-62.XIAO J Z,ZHENG S T.Analysis on time-dependent deflection of recycled aggregate concrete beams[J].Engineering Mechanics,2017,34(4):57-62(in Chinese).[4]㊀肖建庄,周正久,马修斯.再生骨料混凝土板冲切性能试验[J].同济大学学报(自然科学版),2015,43(1):41-46+53.XIAO J Z,ZHOU Z J,TAWANA M M.Test on punching behavior of recycled aggregate concrete slabs[J].Journal of Tongji University(Natural Science),2015,43(1):41-46+53(in Chinese).[5]㊀肖建庄,胡㊀博,丁㊀陶.再生混凝土早期抗开裂性能试验研究[J].同济大学学报(自然科学版),2015,43(11):1649-1655.XIAO J Z,HU B,DING T.Test of cracking resistance of recycled aggregate concrete at early stage[J].Journal of Tongji University(Natural Science),2015,43(11):1649-1655(in Chinese).[6]㊀丁进炜.碳化再生细骨料对再生混凝土抗压强度的影响[J].福建工程学院学报,2019,17(1):13-16.DING J W.Effects of the replacement ratio of carbonized recycled fine aggregate on the compressive strength of recycled concrete[J].Journal of FuJian University of Technology,2019,17(1):13-16(in Chinese).[7]㊀肖建庄,范玉辉,林壮斌.再生细骨料混凝土抗压强度试验[J].建筑科学与工程学报,2011,28(4):26-29.XIAO J Z,FAN Y H,LIN Z B.Experiment on compressive strength of recycled fine aggregate concrete[J].Journal of Architecture and Civil Engineering,2011,28(4):26-29(in Chinese).[8]㊀陈宇良,吉云鹏,陈宗平,等.钢纤维再生混凝土三轴受压力学性能试验[J].复合材料学报,2022,39(8):4005-4016.CHEN Y L,JI Y P,CHEN Z P,et al.Experiment on mechanical properties of steel fiber recycled aggregate concrete under triaxial compression [J].Acta Materiae Compositae Sinica,2022,39(8):4005-4016(in Chinese).[9]㊀FENG J J,YIN G S,TUO H L,et al.Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycledaggregate concrete[J].Construction and Building Materials,2021,304:124559.[10]㊀AHMED W,LIM C W.Production of sustainable and structural fiber reinforced recycled aggregate concrete with improved fracture properties:areview[J].Journal of Cleaner Production,2021,279:123832.[11]㊀高化东.混杂纤维再生混凝土力学性能及微观结构研究[D].锦州:辽宁工业大学,2018.GAO H D.Study on mechanical properties and microstructure of hybrid fiber recycled concrete[D].Jinzhou:Liaoning University of Technology, 2018(in Chinese).[12]㊀陈爱玖,王㊀静,杨㊀粉.钢纤维再生混凝土抗压强度试验研究[J].混凝土,2012(4):64-66.CHEN A J,WANG J,YANG F.Experiments of compressive strength mechanical properties of steel fiber recycled concrete[J].Concrete,2012(4):64-66(in Chinese).[13]㊀朱海堂,王宝庭,楼志辉,等.钢纤维再生混凝土断裂韧度试验研究[J].新型建筑材料,2008(13):64-68.ZHU H T,WANG B T,LOU Z H,et al.Experimental research on the fracture toughness of steel fiber reinforced recycled concrete[J].New Building Materials,2008(13):64-68(in Chinese).[14]㊀高丹盈,楼志辉,王占桥.钢纤维再生混凝土抗压强度试验研究[J].郑州大学学报(工学版),2007,28(2):5-10.GAO D Y,LOU Z H,WANG Z Q.Experimental research on the compressive strength of steel fiber recycled concrete[J].Journal of Zhengzhou University(Engineering Science),2007,28(2):5-10(in Chinese).[15]㊀刘雁宁,张㊀涛,李㊀杉.混掺精细钢纤维/PVA纤维水泥基复合材料的四点弯曲力学性能试验研究[J].混凝土,2022(9):16-19.LIU Y N,ZHANG T,LI S.Experimental study on four-point bending mechanical behavior of cement-based composites with mixed fine steel fiber and PVA fiber[J].Concrete,2022(9):16-19(in Chinese).[16]㊀XU S L,REINHARDT H W.A simplified method for determining double-K fracture parameters for three-point bending tests[J].InternationalJournal of Fracture,2000,104(2):181-209.[17]㊀杨㊀萌,黄承逵.钢纤维与高强砂浆基体粘结性能试验研究[J].建筑材料学报,2004,7(4):384-389.YANG M,HUANG C K.Bond slip characteristics between steel fiber and high strength mortar[J].Journal of Building Materials,2004,7(4): 384-389(in Chinese).[18]㊀HILLERBORG A.Analysis of one single crack fracture mechanics of concrete[J].Amsterdam:Elsevier Science,1983:223-249.[19]㊀ROELFSTRA R E,WITTMANN F H.A numerical method to link strain sofening with fracture in concrete fracture toughness and fracture energyin concrete[J].Amsterdam:Elsevier Science,1986:163-175.[20]㊀LIAW B M,JEANG F L,DU J J,et al.Improved nonlinear model for concrete fracture[J].Journal of Engineering Mechanics,1990,116(2):429-445.[21]㊀GOPALARATNAM V S,SHAH S P.Softening response of plain concrete in direct tension[J].ACI Journal Proceedings,1985,82(3):310-323.[22]㊀REINHARDT H.Fracture mechanics of an elastic softening material like concrete[J].HERON,1984,29(2):1-42.。

冲击载荷作用下结构的动力响应分析

冲击载荷作用下结构的动力响应分析
常用的第二个重要的理想化是在求解强动载荷作用下的结构动力响应 时,把结构假定为由理想刚塑性材料制成的。这样做不仅忽略了材料的弹性, 而且也忽略材料的应变强化效应和应变率效应。这样做的背景和依据是,在 强动载荷作用下被考察的结构通常要经历相当大的塑性变形,因而外载做的 功绝大部分转化为塑性变形,因而外载做的功绝大部分转化为塑性变形能从 而被耗散掉,只在很小一部分转化为弹性应变能;于是,忽略掉弹性变形及 相应的能量对于上面提到过的那些总体量的估算不致带来很大的误差,却可 以大大简化问题的数学提法以利于求解。
20040501
武汉理工大学硕士学位论文
摘要
在爆炸、撞击等强渤载蘅豹作用下结掏将表现出与准静态情形缀不稽同 的力学行为。由于外加的裁荷随时间变化褥很快,结构的变形也变化得很快, 惯性力的作用将不可忽略。本文对结构受冲击载荷作用下的动力响应做了一 螺磷究,归纳起来主黉蠢以下三个方匿。
1。任意净蠢载瑟佟翔下,篱支粱瑟露蔽交形豹动力确敝褥往。采瘸爨 黧性假定,忽略应变强化效应和应变率的散应并考虑由于有隧变形而导致的 轴力的影响,研究任意时间历程冲击载葡作用下简支粱的塑性动力响应问 题。采用矩形形状的屈服条件,并将粱的邀动依照塑性铰的不间分为四个不 麓黥玲致,其中纂一耧雾瑟玲葭为蕈铰逡动搂式,第二器第三验毅为嚣铰运 动模式。最后给出了饺意时刻梁的运动状态和变形状态的解析表达式。
components have been studied numerically.
3.The numerical simulation of pre—stress reinforced concrete u-shaped
beam impacted by vehicle.The project of Dengzhou bridge using pre-stress

湖南大学城规划专业导师信息

湖南大学城规划专业导师信息
《International Journal of COMPUTATIONAL METHODS》,
World Scientific,Sci源刊,EI收录;
[25]“采用等效平面桁架单元对钢筋混凝土结构进行非线性分析”《建筑结构
学报》,重点期刊,EI收录;
[26]“膨胀玻化微珠保温体系的应用”《城市住宅》,一般期刊;等30余篇。
研究方向:
主要从事既存建筑的再利用研究、开放式建筑及建筑体系化研究、住宅的适应性研究。
教案情况:
除了承担《建筑构造》、《房屋建筑学》、《工业建筑原理》、《建筑安全概论》、《建筑结构选型》等理论课程教案外,还指导土木院建筑工程专业和建筑学院建筑学专业的毕业设计,以及建筑学与城市规划专业课程设计、施工见习等实践性的教案环节。
建设厅,2005-2009;
[7]主持:湖南省建设科技基金计划工程“湖南省民用建筑围护结构节能标准设计研究”,湖南省建设厅,2009-2010;
[8]参与:国家“十一五”科技支撑计划重点工程“村镇低品位能源利用关键技术研究”,2006BAJ04,国家科技部,2007-2010;
[9]参与:国家“十一五”科技支撑计划工程“复合楼板体系的开发应用研究”2006BAJ02B07,2007-2010;
[15]“Analysis of Campus Environment Design Based on Triadic Reciprocal Determinism”《proceedings of the 9th international symposium for invironment-behavior studies. EBRA》,环境行为学国际会议发表论文;
[4]《长沙市民用建筑围护结构节能设计技术规程(四)节能型塑钢门窗标准图集》湖南科学技术出版社;

关于针对承担项目情况的解释

关于针对承担项目情况的解释

HR Planning System Integration and Upgrading Research ofA Suzhou Institution承担项目情况:1)国家自然科学基金“镁合金板材大变形成形机制与过程模拟研究”,编号:50405014,经费:23万元,项目起止年月:2005.1~2007.12,负责人。

2)国家自然基金项目,“辊弯成形全流程动态模拟技术研究”,编号:50375095, 经费:24万元,起止年月:2004.1~2006.12,主要参加人。

3)国家自然基金重点项目,“材料智能化近终成形加工技术的若干基础问题”,编号:50634010, 经费:180万元,起止年月:2007.01~2010.12,主要参加人。

4)国家973计划前期研究项目“材料制备新方法探索及性能研究”,编号:2006CB708600,总经费:1094万元,起止年月:2006.12~2008.11,主要参加人。

5)国家863计划重点项目,“高强高韧镁合金及其应用技术研究”,编号:002AA331120,经费:340万元,起止年月:2002.6~2005.6,主要参加人。

6)国防科工委民口配套项目,“XXX轴承的研究”,编号:MKPT-05-268,经费:165万元,起止年月:2005.1~2006.12,主要参加人。

7)上海市创新科技支撑计划项目子课题,“薄带连铸带钢力学性能及表面裂纹形成机理研究”,编号:07DZ1103,经费:80万元,起止年月:2008.2-2009.12,负责人。

8)教育部新世纪优秀人才计划项目,“镁合金板材变形机理与成形性能的宏微观研究”,编号:NCET-07-0545,经费:50万元,起止年月:2008.1-2010.12,负责人。

9)上海市重点基础研究项目,“ERW焊管排辊成形理论与工艺设计方法研究”,编号:09JC1407000,经费:30万元,起止年月:2009.9~2011.8,负责人。

玻璃纤维铝合金层板(FMLs)的疲劳损伤特性及S-N曲线

玻璃纤维铝合金层板(FMLs)的疲劳损伤特性及S-N曲线

玻璃纤维铝合金层板(FMLs)的疲劳损伤特性及S-N曲线马玉娥;王博;熊晓枫【摘要】根据国内外标准和参考文献,针对玻璃纤维增强铝合金层板(FMLs)的特点设计出FMLs疲劳试验件,进行了不同载荷下的R=0.1等幅拉-拉疲劳试验.疲劳试验过程中FMLs最先在表面铝层内出现裂纹,随后表面铝层可见多条裂纹.随着循环载荷数的增加,裂纹不断扩展,并在界面出现分层现象,然后分层损伤快速扩展直至完全断裂破坏.测得了FMLs的疲劳裂纹起裂寿命和裂纹扩展寿命,给出了其疲劳寿命的规律性.得到了FMLs和同样厚度碳纤维复合材料CCF300的S-N曲线,并进行了对比.FMLs的疲劳寿命随载荷变化平缓,近似成对数趋势;在载荷大于400 MPa时FMLs的疲劳寿命与CCF300碳纤维复合材料层板相当;当疲劳载荷最大值低于300 MPa,FMLs的疲劳寿命比CCF300复材板要低.为飞机结构设计师们提供了材料基础性能和信息.【期刊名称】《西北工业大学学报》【年(卷),期】2016(034)002【总页数】5页(P222-226)【关键词】玻璃纤维增强铝合金层板;疲劳裂纹起裂寿命;裂纹扩展寿命;分层扩展;S-N曲线【作者】马玉娥;王博;熊晓枫【作者单位】西北工业大学航空学院118号,陕西西安 710072;西北工业大学航空学院118号,陕西西安 710072;中航工业成都飞机设计研究所,四川成都 610041【正文语种】中文【中图分类】V215.5材料的疲劳性能是飞机结构设计选材考察的重点之一。

为克服传统铝合金结构疲劳性能相对较差的问题,同时充分利用复合材料对疲劳载荷不敏感的特性,国外研究者提出了金属和复合材料的混杂材料。

根据金属和复合材料的不同,研制出不同的纤维增强合金层合板类型,如第一代的Arall(aluminum with aramid fibers)是由铝合金层和芳纶纤维交替组成,CARALL(aluminum with carbon fibres)由铝合金和碳纤维组成,GLARE(aluminum with glass fibers)是由铝合金和玻璃纤维组成,还有最近发展由钛合金和碳纤维组成的TiGr(titanium with carbon fibers)和由镁合金和玻璃纤维组成的MgFML(magnesium with glass fibers)。

很高的强度承受载荷 英语

很高的强度承受载荷 英语

很高的强度承受载荷英语High-Intensity Load-Bearing CapacityIn engineering and construction, the ability to withstand high-intensity loads is crucial for ensuring the safety and longevity of structures. This capability is fundamental in various fields, from building bridges and skyscrapers to designing vehicles and machinery. In this essay, I will discuss the importance ofhigh-intensity load-bearing capacity, the factors influencing it, and its implications for modern engineering.Firstly, the importance of high-intensity load-bearing capacity cannot be overstated. Structures and systems that can handle significant loads are essential for maintaining stability and safety. For instance, bridges must endure the weight of vehicles, pedestrians, and environmental forces such as wind and earthquakes. Similarly, skyscrapers must withstand the combined load of their own weight, occupants, and external pressures. Ensuring that these structures can handlehigh-intensity loads is critical to preventing failures that could lead to catastrophic consequences.Several factors influence the load-bearing capacity of a structure. Material selection is one of the most important considerations. High-strength materials, such as reinforced concrete, steel, and advanced composites, provide the necessary support and durability. These materials are engineered to endure extreme conditions and are often tested to ensure they meet rigorous standards. Additionally, the design and construction methods used play a significant role. Engineers must consider factors such as load distribution, structural reinforcement, and safety margins to achieve the desired load-bearing capacity.The implications of high-intensity load-bearing capacity extend beyond safety and structural integrity. For example, in the aerospace industry, aircraft must be designed to handle the forces encountered during flight, including takeoff, turbulence, and landing. In the automotive sector, vehicles must be able towithstand the stresses of acceleration, braking, and collision. In each case, high load-bearing capacity contributes to performance, reliability, and overall safety.Moreover, advancements in materials science and engineering have led to the development of innovative solutions for enhancing load-bearing capacity. Techniques such as computational modeling and stress analysis allow engineers to design structures that can handle unprecedented loads. Additionally, the use of smart materials and adaptive systems can improve a structure's ability to respond to changing conditions, further enhancing its load-bearing capabilities.In conclusion, high-intensity load-bearing capacity is a fundamental aspect of modern engineering and construction. It ensures the safety, stability, and performance of structures and systems across various industries. By focusing on material selection, design, and technological advancements, engineers can create robust solutions that meet the demands of today'scomplex and challenging environments.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

International Journal of Integrated Engineering, Vol. 4 No. 2 (2012) p.70-76Computational Analysis of Reinforced Concrete Slabs Subjected to Impact LoadsShahrul Niza Mokhatar1, Redzuan Abdullah21Department of Structures and Materials Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400, MALAYSIA. 2 Department of Structures and Materials, Faculty of Civil Engineering, University Technology of Malaysia, MALAYSIAAbstract: Nowadays, the numerical models for the impact load assessment are starting to become more accurate and reliable. Combined with modern computer hardware, the computational time for such an assessment has been reduced to a satisfactory level. In this study, an attempt has been made to present the simulation technique and examine the accuracy of modern software with regards to assessing the response of reinforced concrete slabs subjected to impact loading near the ultimate load ranges. The response such as time-impact force graph, damage wave propagation, effectiveness of mesh density, effect of projectile size and final crack pattern are verified against existing experimental results. It is shown that the present general purpose Finite Element Analysis (FEA) is able to simulate and predict the impact behavior of structural systems satisfactorily. Keywords: Computational Simulation, Reinforced Concrete Slabs, ABAQUS, Impact Loads1. IntroductionIn the last decade, investigation in structural engineering has progressively more considered on behavior of the reinforced concrete (RC) element further than the elastic range and situation where dynamic response is encountered such as by Saatci et al, Abbas et al and Nazem et al. Structural elements might initiate failure when expose to various extreme loading conditions during their serviceability process. Impact loading is the one of the important loading types that a structural element may have to sustain. RC structures are often subjected to extreme dynamic loading conditions due to direct impact. Typical examples include transportation structures subjected to vehicle crash impact, marine and offshore structures exposed to ice impact, protective structures subjected to projectile or aircraft impact, and structures sustaining shock and impact loads during explosions [4]. Understanding the structural behavior especially slabs element to impact load is essential to protect this critical members from collapse and fail. Moreover, in order to ascertain a reliable impact-resistant design procedure of slabs elements, a series of practical tests are required. Estimating the response of RC structures to impact loading through full-scale tests is expensive in terms of providing the necessary test material, test equipment, and time to perform. Many researchers such as [5] – [7], have successfully investigated the impact failure of RC elements by practical tests. However, the modeling technique still requires wide exploration and discussion in order to simulate the impact mechanism on RC structures. Thus, this paper describes the numerical modellingtechnique and investigations into the response of an RC slabs as well as the steel reinforcement failure mechanism when subjected to impact loading in aspects of failure. In order to gain the better understanding of the behavior of the structure, the Finite Element (FE) analysis has been carried out using ABAQUS software by utilizing different non-linear material models which are available in the ABAQUS/Explicit material library. The numerical results are further discussed by validating with experimental.2. Experimental WorkPractical test were carried out at Heriot-Watt University in Edinburgh by Chen et al investigating high mass – low velocity impact behavior of reinforced concrete slab and the resulting dynamic response of the total structure. Tests were carried out on several concrete slabs with grade 40 under drop-weight loads as shown in Figure 1.Impact mass 2.4m height Steel frameRC slabFigure 1: Schematic diagram of the RC slab experiment setup70*Corresponding author: shahruln@.my2011 UTHM Publisher. All right reserved. .my/ojs/index.php/ijieS.N. Mokhatar and R.Abdullah, Int. J. Of Integrated Engineering Vol. 4 No. 2 (2012) p.70-76The total size of the slab is 760 mm x 760 mm in length and width, 76 mm in depth. The size of the concrete region is 725 mm x 725 mm in length and width, 76 mm in depth. The slab is reinforced with 6 mm diameter high yield steel bars as top and bottom reinforcement. The concrete cover between the main reinforcement bars and the top and bottom edges of the slab is 12 mm. The main reinforcement bars are spaced at 60 mm intervals. In addition, a cylindrical impact mass is used. The diameter of it is 100 mm, and the weight of it is 98 kg. The steel drop-weight is acted vertically from a certain height 2.15 m (correspond to the impact speed 6.5 m/s). The outputs of the test set-up (load cell, accelerometers, strain gauges and electronic triggers) were amplified and then fed in a data logger that can operate at rates of up to 50 MHz. The details of steel reinforcement arrangement and the dimension of projectile are shown in Figure 2.760data, loads and boundary conditions, analysis type, and output requests were addressed.Element’s modellingFirstly, the eight-node continuum elements (C3D8R) for slabs with three different materials were created. Secondly, the steel reinforcement was modeled by twonode beam elements connected to the nodes of adjacent solid elements. In addition, 6-mm diameters for top and bottom reinforcement were developed. For the steel support of an RC slab model, discrete rigid element was developed. Finally, the impact load (steel projectile) was developed by continuum solid and revolved to 3600 for produce the cylindrical shape.Element’s interactionThe individual modelled elements should be connected properly to each other after assembling the structural and non-structural elements. Tie contact technique was utilized to create proper interaction between un-deformable discrete rigid element (steel support) and solid element (concrete slab) as shown in Figure 3. This technique can avoid the shear interaction between these two elements. In this investigation, the embedded technique was used to constraint the two-node beam elements (steel reinforcement) into solid element (concrete slab) in order to create a proper bond action. Surface-to-surface contact (explicit) is defined for interaction between the impact load (steel projectile) and solid element (concrete slab). Furthermore, the kinematic contact method for mechanical constraint formulation was employed in defining the contact property option. In this simulation, a friction coefficient of 0.2 is used for all contact surfaces.11Y6-2-60 (11Y8-4-60) 11Y6-1-60 (11Y8-3-60) 760(a)Figure 3: Render model of simulation (wireframe)Constitutive model of concrete(b) Figure 2: The details of the (a) RC slabs and (b) steel projectile For non-linear FE analysis, material model can play an essential role in order to predict the strength of concrete. In this study, the model is consists of two behaviors, which are ductile model and brittle-cracking model. Therefore, three different types of material behavior such as linear pressure dependent (i) DruckerPrager (DP) model (ii) Cap-Plasticity (CP) model are characterized as ductile model, and meanwhile, (iii) Concrete Damage Plasticity (CDP) model is represented for brittle-cracking model. These models have been addressed to enhance the understanding of visco-elastic,3.0 Computational non-linear simulationsThe simulation of finite element models of reinforced concrete slabs were developed by using three dimensional solid elements. The modelling process including discretized geometry, element section properties, material71S.N. Mokhatar and R.Abdullah, Int. J. Of Integrated Engineering Vol. 4 No. 2 (2012) p.70-76visco-plastic and post-cracking in RC structures subjected to impact loading. For DP model, the constitutive equation is written in equation (1) and can be illustrated in Figure 4; (1) f DP = J 2 D − αI1 − k where J2D is a second invariant of the deviatoric tensor, while α and k is positive material constant which α is defined as dilation angle.√J2D fDP = DP model-(1) fPC = PC model -(2)Figure 5: Stress-strain relationships for DP model For CP model, the elliptic strain-hardening cap model is utilized to control the plastic volumetric change. The constitutive equation is shown in (2) and plotted as in Figure 4. (2) f PC = (I1 − l )2 + R 2 J 2 D − (x − l )2 where l is denoted as initial cap yield surface and R is ratio of major to minor axis of elliptic cap, which may be a function of l. The parameters used in this model are shown in Table 3. Table 3: Cap Plasticity concrete model parameters Material Material Cap Cohesion (Pa) Angle of Eccentricty Friction (β) Parameter (R) 4705672 51 0.65 Initial Cap Yield Flow Stress Strain Rate Surface Position Ratio Effect 0.0011 1 1.5 Finally, the CDP model is employed to predict the impact behavior of RC slabs. In this model, the constitutive parameters are properly studied in order to simulate the reliable response of structural system. The function of this model is expressed in equation (3) and (4). (3) f CDP = ω 3 J 2 D + α I1 + β σ max − γ − σ max withlx-lI1Figure 4: DP and PC surface on I1 and √J2D plot In order to get the better and realistic simulation performance, the parameters are considered from conventional properties of normal strength of concrete, in which, some of the data taken from previous work by [6], example from [8]-[9] and also individual experimental tests data by [5] were used. Table 1 indicates the details of the parameters used in this analysis, while Table 2 shows the sub-option of DP hardening parameters during plasticity takes place. Table 1: Drucker-Prager parameters Angle of friction Flow stress Dilation angle ratio 300 1 200 Table 2: Drucker-Prager hardening parameters Yield Stress Abs Plastic (Pa) Strain 13000000 0 20000000 0.0007 24000000 0.001 37500000 0.002 22500000 0.0034 16000000 0.05 The parameter in Table 2 corresponds to the Figure 5 in order to illustrate the plasticity behavior of concrete when utilizing DP model.Stress, Mpa 37.5 16.0[]ω=where β and γ are dimensionless constants. Further explanation regarding CDP model can be obtained in study of [8]. Table 4 shows the constitutive parameters used in this model for both tension and compression region. Table 4 Concrete Damage Plasticity model parameters Plasticity Main option Dilation Eccentricity fbo/fco K Viscocity Angle Parameter 380 1 1.12 1 0.666 Compression behavior Main-option Sub-option Inelastic Rate Damage Inelastic Yield Parameter Strain Strain Stress (MPa) 13.0 1.5 0 0 0 20.0 1.5 0 0.0007 7.473x10-5 24.0 1.5 0 0.001 9.885x10-5 37.5 1.5 0 0.002 0.0001541 22.5 0.0034 1.5 0 0.0007615 16.0 1.5 0.05 0.195402 0.00255761 1−α(4)0.0020.05Strain (mm/mm)72S.N. Mokhatar and R.Abdullah, Int. J. Of Integrated Engineering Vol. 4 No. 2 (2012) p.70-760.596382 0.0056754 0.894865 0.0117331 Tension behavior Main-option Sub-option Inelastic Cracking Rate Damage Yield Parameter Strain Stress Strain (MPa) 1.5 3.500 0 0 0 1.750 0.800 0.250 0.00015 0.00035 0.0006 1.5 1.5 1.5 0 0.406411 0.69638 3.333x10-5 0.0001604 0.00027984.7028 x10+8 5.00 x10+8 5.80 x10+80.191 0.2324 0.2728Predefined fieldTo simulate the motion of the projectile (drop weight), each of the nodes are given an initial velocity (6.5 m/s) in a direction perpendicular to the slabs. Therefore, the projectile struck the slab at a constant velocity of 6.5 m/s. This velocity value is given as in experimental works.Mesh generationIn the first three-dimensional model, there are 11520 linear tetrahedral elements of type C3D8R and 14406 nodes are used to represent the concrete; 2640 linear line beam elements of type B31 with 2541 nodes to represent the reinforcement bars; 820 linear quadrilateral elements of type R3D4 and 4 linear triangular elements of type R3D3 with 822 nodes to represent the un-deformable (rigid body) steel frame; and 413 total number of linear hexahedral elements of type C3D8R with 576 number of nodes to represent the steel projectile. Furthermore, in this investigation, the Hourglass control and distortion mesh control techniques were utilized.As shown in the Table 4, rate of 1.5 is used as the effectiveness of the strain rate from impact loads, in which to model the increasing of compressive and tensile strength due to the short period action. In this non-linear simulation, the material properties for concrete and steel reinforcement as well as steel projectile are shown in Table 5 and 6, respectively. Table 5 Concrete materials properties Poisson’s Ratio Density Young’s (kg/m3) Modulus (N/m2) +10 3.00x10 0.2 2400 Fracture Concrete fcu Concrete fct Energy (N/m) (N/mm2) (N/mm2) 100 53 2.1 Note: fcu is the concrete compressive strength. fct is the concrete tensile strength. Table 6 Steel reinforcement and steel projectile materials properties Young’s Poisson’s Ratio Density Modulus (kg/m3) (N/m2) 2.1x10+11 0.29 7800 Yield stress (N/mm2) Ultimate stress (N/mm2) 5.60x10+8 6.3x10+8 In order to simulate the behavior of steel reinforcement, the elastic-plastic hardening behaviors are utilized in this study. See Table 7 for the preferred parameter. Table 7 Elastic-plastic behavior for impact mass (steel projectile) parameters Poisson’s Ratio Density Young’s (kg/m3) Modulus 2 (N/m ) 2.1x10+11 0.29 7800 Plasticity Yield stress (N/mm2) Plastic strain 3.046x10+8 0 3.4419 x10+8 0.0244 3.8551 x10+8 0.0951 4.5039x10+8 0.1384Output requestThe critical output parameters from the numerical simulation should be compared with the experimental results, therefore, the field output request parameters were defined such as deflection, stress, strain and contact force versus time.4.0 Results and Discussion Impact force and rebar failure pointThe first stage of this dynamic numerical analysis is to determine the time-impact force graph of each model. Then, the numerical graph pattern result is validated with the experimental results. In Figure 6, it can be seen the maximum impact force for experiment results is 140 kN. This figure also shows that impact force curve of these three models give similar pattern as compared to practical tests. However, the ductile behavior (PC) can simulate the behavior of dynamic loading in reinforced concrete structures as closely as an experiment, where, the value of impact force of PC model is approximately 130 kN.180 160 140 120 100 80 60 40 20 0Impact Force (kN)Drucker Prager Cap Plasticity Brittle-Cracking Experimental_results02357 8 10 11 13 14 Time (s)73S.N. Mokhatar and R.Abdullah, Int. J. Of Integrated Engineering Vol. 4 No. 2 (2012) p.70-76Figure 6: Time-impact force graph To validate the failure point of rebar between numerical simulations and the experiment result, the comparisons were investigated through these two graph as shown in Figure 7. The higher stress value for steel reinforcement that obtained from numerical simulation as shown in Figure 7 (a), gives comparable failure region to the practical work in Figure 7 (b).reasonable agreement with experimental results rather than Brittle-Cracking. In addition, by using finer mesh of ductile model, the maximum value of impact force is similar to the practical results. Therefore, in this analysis, models using ductile behavior can give more realistic results than the Brittle-Cracking model. However, refining the mesh elements can increase the computational costs (time, available powerful computer processor, etc).180 160 140 original mesh coarser mesh finer mesh experimental 100 80 60 40 20 0 0 2 3 5 7 8 10 Time (s) 11 13 14Impact Force (kN)120(a) Ductile mode Higher stresses value shows the failure pointImpact Force (kN)160 140 120 100 80 60 40 20 0 0 2 3 5 7 8 10 Time (s) 11 13 14 original mesh coarser mesh finer mesh experimental(a) Numerical resultsFailure region(b) Experimental results(b) Brittle-crackingFigure 7: Failure point for the steel reinforcementFigure 8: Time-Impact Force Graph with different mesh densities (Ductile Model) and (Brittle-Cracking)Effect of projectile size Effectiveness of mesh densityFor every FE simulation, the whole domain is discretized into elements and some assumptions are made. In order to provide a reasonably accurate result for FE analysis, sufficiently refined element meshes are used. To achieve this requirement, refining the mesh can be applied by changing the number of seeds (element per edge) in the developed models. The results of the refining mesh of the slab can then be compared with the results obtained by the initial mesh. Table 8 Number of element and nodes for each case (for Slab meshes) Mesh type Number of Number of elements nodes Coarser Mesh 100 242 Original Mesh 11520 14406 Finer Mesh 41472 47961 Table 8 shows the number of element for each case. According to the Figure 8, the values of impact force for the finer mesh of Drucker- Prager or Cap/Plasticity are in Figure 9 (a) shows the development of cracks (damage line indicator) closer to the centre of the slab. Furthermore, the region of the cracking area for the Figure 9 (a) is larger than the one in Figure 9 (b). It also can be seen that the cracking in Figure 9 (a) is denser than the one in Figure 9 (b). There is some new cracking developed on the top face of the slab. The reason of it is: with the same mass, the smaller size of projectile will produce higher pressure. That will result in more cracks in the vicinity of the impact. The damage area indicated by red color of the impacted slab by half projectile is quite small as compared to the original diameter of projectile. There is another thing that can be mentioned: because the size of projectile was reduced, the areas of damages were affected by the size of the projectile. However, it does still produce the higher pressure to the slab.Denser cracking patternCracking pattern(a) Impacted by half original diameter projectile(b) Impacted by original diameter projectile74S.N. Mokhatar and R.Abdullah, Int. J. Of Integrated Engineering Vol. 4 No. 2 (2012) p.70-76Figure 9: Numerical simulation result by using different size of projectilethere is no effects of spallation could be observed in ABAQUS results.Damage wave propagationThe Concrete Damage Plasticity or (BrittleCracking) models were utilized in order to obtain the realistic wave propagation in the slab models. Figure 10 (a), (b), (c), (d) and (e) show the mechanism of damage wave propagation from the initial potential fracturing region under the zone of impact towards the support. In Figure 10 (d), the first crack appears at the bottom of the slab and propagating from the projectile towards the support. The reason of it is the energy wave propagates to the support and then reflected. Then, Figure 10 (e) shows the existing crack continues to propagate towards the support and covers the whole slab including the area in the top centre of the slab.(a) Experimental result (b) Numerical result (Bottom face)(a) Stage 1(b) Stage 2 (a) Experimental result (b) Numerical result (Top face)(c) Stage 3(d) Stage 4Figure 11: Crushing and final crack pattern of the impacted reinforced concrete slab[1]Conclusion(e) Stage 5Figure 10: Damage wave propagation between 0s to 0.015sFinal crack patternThe final crack pattern (bottom face) obtained by the experimental work is shown in Figure 11 (a). It can be seen from the test results, the shape of the cracking region is a ring: the outer diameter of the region is approximately 400 mm, and the inner diameter is approximately 180 mm. The final crack pattern (bottom face) obtained by Brittle-Cracking model simulation is shown in Figure 11 (b). This pattern corresponds well to the experimental one. Although the inner diameter of the cracking zone is smaller than the experimental, the outer diameter of the cracking zone is almost the same as the one obtained in experimental work which is approximately 400 mm. The final crack patterns (top face) obtained by both experimental work and numerical analysis are shown in Figure 11 (c) and (d). It can be seen from the figures, there only has very small cracking in the region of compressive stresses. That does not correspond to the results obtained by experiment. In the other words,According to the modelling result as explained in the above topics, the numerical simulation by using ABAQUS software could produce the result as closed as an experimental result. The non-linear material models which are available in the ABAQUS/Explicit material library such as Drucker-Prager and Cap-Plasticity that represent Ductile behavior give better and realistic results than the Brittle-Cracking model (Damage Concrete Plasticity). Furthermore, finite element analysis by using ABAQUS software is capable of developing reasonable and realistic estimations available in order to investigate the possible damage modes of reinforced concrete slabs under impact loads.References[1] Saatci, S., and Vecchio F. J. Nonlinear finite element modeling of reinforced concrete structures under impact loads. ACI Structural Journal, Vol. 106, (2009), pp. 717-725. [2] Abbas, H., Gupta, N. K., and Alam, M. Nonlinear response of concrete beams and plates under impact loading. International Journal of Impact Engineering, Volume 30, (2004), pp. 1039 – 1053. [3] Nazem, M., Rahmani, I., and Rezaee-Pajand, M. Nonlinear FE analysis of reinforced concrete structures75S.N. Mokhatar and R.Abdullah, Int. J. Of Integrated Engineering Vol. 4 No. 2 (2012) p.70-76using a Tresca-type yield surface. Transaction A: Civil Engineering, Volume 16, No. 6, pp.512 - 519. [4]Zineddin, M., and Krauthammer, T. Dynamic response and behaviour of reinforced concrete slabs under impact loading. International Journal of Impact Engineering, Volume 34, (2007), pp.1517-1534. [5]Chen, Y., and May, I. M., Reinforced concrete members under drop-weight impacts. Proceeding of the Institution of Civil Engineers, 162(SBI): (2009) pp.45-56. [6]Faham, T. Numerical modelling of reinforced concrete slabs subjected to impact loading. Master of Engineering (Research), Faculty of Civil Engineering, University of Wollongong, Australia. (2008). pp. 4878.N. [7] Kishi, H. Mikami, K. G. Matsuoka and T. Ando, Impact Behavior of Shear-Failure-Type RC Beams without Shear Rebar. International Journal of Impact Engineering. Vol. 27. 955-968, 2002. [8]ABAQUS Analysis User’s Manual Online Documentation. (Version 6.8), Dassault Systèmes Simulia Corp., Providence, RI, USA. (2008). [9] Lubliner, J. A plastic-damage model for concrete. International Journal Solids Structures. Volume 25, No. 3 (1989). Pp. 299-326.76。

相关文档
最新文档