七年级上册一元一次方程练习(中级)
七年级上册第三章《一元一次方程》列方程解应用题的练习(3)

七年级上册第三章《一元一次方程》列方程解应用题的练习一、解下列方程(每题6分,共30分)1、6751413-=--y y2、246231x x x -=+--3、22836x x -=+4、126231-=+--x x x5、33-a 2211与--a 互为相反数,求a二、列一元一次方程解应用题。
(每题10分,共40分)1、某班组每天需生产50个零件才能在规定的时间内完成一项生产任务,实际上该班组每天比计划多生产6个零件,结果比规定时间提前3天并超额生产了120个零件,求该班组原计划完成的零件任务是多少个?2、某人从家骑自行车到火车站,如果每小时行15千米,那么可以比火车开车时间提前15分钟到达;如果每小时行9千米,则要比开车时间晚15分钟到达;则这个人的家到火车站的距离为多少千米?3、一辆慢车从甲地开往乙地,出发3小时后,一辆快车也从甲地开往乙地,快车比慢车晚20分钟到达乙地,已知慢车速度为20千米/时,快车速度是慢车速度的3倍,求甲乙两地的距离。
4、要加工200个零件。
甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。
已知甲每小时比乙多加工2个零件。
求甲、乙每小时各加工多少个零件?二、工程方面的练习(每题10分,共30分)1、一项工程甲队独做需要8天完成,乙队独做需要9天完成,甲做3天后,乙来支援,再经过多少天完成工程的43。
2、某项工作,甲单独做要4小时,乙单独做要6小时,甲先做30分,然后甲、乙共同做,问甲、乙共同做还要多少小时才能完成全部工作?3、一件工作,甲单独做20小时完成,乙单独做12小时完成。
现在先由甲单独做4小时,剩下的部分由甲、乙合做。
剩下的部分需要几小时完成?。
人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案

人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案一、单选题1.如果,那么下列关系式中成立的是()A.B.C.D.2.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x千克到乙脐橙园,则可列方程为().A.B.C.D.3.一张方桌由一个桌面和四条桌腿组成,如果立方米木料可制作方桌的桌面个或制作桌腿条,现有立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用立方米木料做桌面,那么桌腿用木料立方米,根据题意,得()A.B.C.D.4.若是关于的一元一次方程,则()A.1 B.-1 C.±1 D.05.关于x的一元一次方程的解为,则m的值为()A.3 B.C.7 D.6.小李在解方程(x为未知数)时,误将看作,得方程的解为,则原方程的解为()A.B.C.D.7.宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A.在糖果的称盘上加2克砝码B.在饼干的称盘上加2克砝码C.在糖果的称盘上加5克砝码D.在饼干的称盘上加5克砝8.一件商品的标价为元,比进价高出,为吸引顾客,现降价处理,要使售后利润率不低于,则最多可以降到()A.元B.元C.元D.元二、填空题9.若是关于的方程的解,则的值等于.10.小明在一次比赛中做错了3道题,做对的占,他做对了道题.11.在中国共青团建团100周年时,小明同学为留守儿童捐赠了一个书包.已知一个书包标价58元,现在打折出售,支付时还可以再减免3元,小明实际支付了43.4元,若设打了x折,则根据题意可列方程为.12.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是.13.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题;“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.三、解答题14.解方程:(1) ;(2) .15.小明在对关于的方程去分母时,得到了方程,因而求得的解是,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.16.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?17.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?18.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.参考答案:1.D2.D3.A4.B5.A6.C7.A8.B9.-210.4211.12.171013.2514.(1)解:移项得:合并同类项得:系数化为1得:(2)解:方程两边同时乘以6得:去括号得:移项得:合并同类项得:系数化为1得:15.解:不正确;把代入∴解得:∴原方程为去分母,得解得:;16.解:设甲种零件制作x天,乙种零件制作(30-x)天根据题意得: 200x× 3=2×150(30-x)x=1030-x=30-10=20 天答:甲种零件制作10天,乙种零件制作20天.17.(1)解:设商场销售种型号计算器的销售价格是元,则销售种型号计算器的销售价格是元由题意得:解得答:商场销售种型号计算器的销售价格是42元.(2)解:设需要购进型号的计算器台,则购进型号的计算器台由题意得:解得答:需要购进型号的计算器40台.18.(1)解:设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000x=52∴92﹣x=40答:甲校有52人参加演出,乙校有40人参加演出.(2)解:乙:92﹣52=40人甲:52﹣10=42人两校联合:50×(40+42)=4100元而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装即比实际人数多买91﹣(40+42)=9套。
七年级数学上册 一元一次方程计算题练习 50题(含答案)

七年级数学上册一元一次方程计算题练习 50题(含答案)一元一次方程计算题练习50题解方程:3x+.解方程:.=32{3[4(5x-1)-]-20}-7=1;x﹣7(x﹣1)=3﹣2(x+3)3x+7=32-2x2(x﹣3)﹣(3x ﹣1)=1﹣0.7=6.x3x-7(x-1)=3-2(x+3)7+4-4(x-3)=2(9-x)﹣=16.参考答案 1.解:去分母得,1x+3(x﹣1)=1﹣2(2x﹣1),去括号得,1x+3x﹣3=1﹣4x+2,移项得,1x+3x+4x=1+2+3,合并同类项得,2,系数化为1得,x=2.解:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,.解得:x=30.3.解:原方程化为4.5.x=56.x=7.原方程可化为:去分母,得40x+60=5(1-1x)-3(10x),,整理得12x=6.解得x=.去括号得40x+60=90-90x-45+90x,移项,合并得40x=-15,系数化为1,得x=.9.10.11.解:,,12.解:2{3[4(5x-1)-]-20}-7=1,2{3[20x-12]-20}-7=1,2{60x-56}-7=1,60x-56=4,60x=60,x=1;13.x=-414.x=115.,.16.解:(1)移项得:x=6.5+0.7,合并同类项得:6.3x=7.2,化系数为1得:x=.17.去括号得:3x﹣7x+7=3﹣2x ﹣6,移项合并得:﹣3x=﹣10,解得:x=1.;19.去括号得:2x﹣6﹣3x+1=1,移项合并得:﹣x=6,解得:x=﹣6;20.x=-121.解:,,,.22.解:去分母得:2(x﹣1)﹣(3x﹣1)=,去括号得:2x﹣2﹣3x+1=,移项合并得:﹣x=9,解得:x=﹣9.23.24.x=16.25.解:26.x=0.727.去分母得,6(x+2)+3x﹣2(2x﹣1)﹣24=0,去括号得,6x+12+3x﹣4x+2﹣24=0,移项得,6x+3x﹣4x=24﹣2﹣12,合并同类项得,5x=10,系数化为1得,x=2.2.x=-3;29.30.31.x=.32.33.34.x=535.x=-1.5;36.x=;37.x=3;3.x=-;39.x=0.240.x=-41.x=-42.x=1;43.x=-;44.-3445.-146.47.4.x=﹣1;49.x=﹣14.。
七年级数学上册一元一次方程专项练习题

一.选择题(共10小题)1.下列是一元一次方程的是()A.x+3=B.x2+3x=1C.x+y=5D.7x+1=32.下列等式变形正确的是()A.由x﹣1=5,得x=4B.由4x=2,得x=2C.由ax=bx,得a=b D.由﹣3x=6,得x=﹣23.在解方程3x+5=﹣2x﹣1的过程中,移项正确的是()A.3x﹣2x=﹣1+5B.﹣3x﹣2x=5﹣1C.﹣3x﹣2x=﹣5﹣1D.3x+2x=﹣1﹣54.若和3﹣2x互为相反数,则x的值为()A.﹣3B.3C.1D.﹣15.已知A=2x+1,B=5x﹣4,若A比B小1,则x的值为()A.2B.﹣2C.3D.﹣36.在如图所示的三阶幻方中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为()A.20B.21C.30D.317.小强同学想根据方程7x+6=8x﹣6编一道应用题:“几个人共同种一批树苗,_____,求参与种树的人数.”若设参与种树的有x人,那么横线部分的条件应描述为()A.若每人种7棵,则缺6棵树苗;若每人种8棵,则剩下6棵树苗未种B.若每人种7棵,则缺6棵树苗;若每人种8棵,则缺6棵树苗C.若每人种7棵,则剩下6棵树苗未种;若每人种8棵,则剩下6棵树苗未种D.若每人种7棵,则剩下6棵树苗未种;若每人种8棵,则缺6棵树苗8.下边是2020年1月份的日历表,平移表中带阴影的方框,则方框中三个数的和可能是()A.57B.84C.89D.939.2022年卡塔尔世界杯于北京时间11月21日0时正式开幕.某足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场10.某商品原先的利润率为30%,为了促销,现降价30元销售,此时利润率下降为15%,那么该商品的进价是()A.130B.150C.200D.300二.填空题(共6小题)11.关于x的一元一次方程ax﹣5=3的解是2,则a的值为4.12.某钢厂预计今年的钢产量比去年增加15%,可达到230万吨.去年的钢产量是多少?如果设去年产量为x万吨,那么可列方程为,方程的解是x=.13.我们定义一种新的运算:x*y=x+y﹣xy,其中等号右边的运算为正常的加减乘除运算,例如3*2=3+2﹣3×2=﹣1.在上述运算法则下,若2*x=﹣5,则x=.14.幻方是中国古代的一种谜题,又称九宫图,即在正方形网格中填上9个整数,使每行、每列及对角线上的数字之和都相等.图中给出了幻方的部分数字,则x=.15.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为,则所有满足条件的x的值为.16.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为17,当点N移动到点A时,点M所对应的数为5,则点A在数轴上表示的数为.三.解答题(共5小题)17.解下列方程:(1)x+2=12﹣4x;(2).18.一艘船从甲码头顺流而行,用了3小时到达乙码头,该船从乙码头返回甲码头逆流而行,用了5小时,已知水流速度是3千米/小时,求船在静水中的速度.18.我校举行七年级数学运算闯关赛,要求每班选派五位选手参赛,每位选手需要计)算30道题目,只有答对25道题目以上才能获奖.如果以答对25道题为基准,用正数表示超过基准的题数.下面是七年级某班五名同学的答题情况统计表:答题情况统计表张明李丽王杰刘浩徐春4﹣352﹣1(1)该班五位同学中,答对题数最多的同学比答对题数最少的同学多答对几题?(2)若每答对一道题目得4分(不写或写错得0分),求该班五位同学的总分.19.列一元一次方程解应用题:数学老师为了表扬计算擂台赛满分的同学,决定从网店给同学们买一些练习本作为奖品,该网店按表中所示的方式卖本:(1)当老师买多少本时,分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同?20本及以下20本以上单价4元/本超过20本的部分打8折邮费一次5元一次14元(2)临近双十一,对于购买20本以上的顾客,商家给出了更大优惠:所有练习本都按照8折出售.当老师想买20个本时,怎么购买更合理?20.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】数轴上点A表示的数为﹣4,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向终点B匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,Q到达A点后,再立即以同样的速度返回B点,当点P到达终点后,P.Q两点都停止运动,设运动时间为t秒(t>0).【综合运用】(1)填空:A,B两点间的距离AB=,线段AB的中点表示的数为.(2)当t为何值时,P,Q两点间距离为3.(3)若点M为AQ的中点,点N为BP的中点,在运动过程中,的值是否会发生变化?若变化,请说明理由,若不变,请求出相应的数值.21.如图,数轴上点A表示的数为﹣4,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).(1)A,B两点间的距离等于,线段AB的中点表示的数为;(2)用含t的代数式表示:t秒后.点P表示的数为,点Q表示的数为;(3)求当t为何值时,PQ=AB?(4)若点M为PQ的中点,当点M到原点距离为9时,t=.22.如图,已知数轴上点A表示的数为a,B表示的数为b,且a、b满足(a﹣10)2+|b+6|=0.动点P从点A出发,以每秒8个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点A表示的数是,点B表示的数是,点P表示的数是(用含t的式子表示)(2)当点P在点B的左侧运动时,M、N分别是P A、PB的中点,求PM﹣PN的值;(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,点P运动多少秒时P、Q两点相距4个单位长度?。
人教版七年级数学上册第三章 一元一次方程 专题训练(含答案解析)

人教版七年级数学上册第三章 一元一次方程 专题训练特殊一元一次方程的解法技巧1.解方程:4310.20.5x x ---=.2.解方程:1250.250.5x x +--=.3.解方程:32122234xx ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦.4.解方程:791246919753x ⎧⎫⎡+⎤⎛⎫+++=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭.5.解方程:111(3)(3)1236x x x x ⎡⎤---=-+⎢⎥⎣⎦.6.解方程:41(7)6(7)55x x -=--.7.解方程:121(2050)(52)(410)0632x x x +++-+=.8.解方程:421263x xx ---=.9.解方程:228425920xx x--+=-.10.解方程:112259797z z +=-.11.解方程:32324343x x -=-.12.[中]解方程:2431362x x +--=.13.解方程223146x x +--=:.14.解方程:2123163234386x x x x -++++=+.15.解方程:16231056x x x x --++=-.参考答案 1.答案:见解析解析:分子、分母同乘10,得10(4)10(3)125x x ---=. 去分母,得5(4)2(3)1x x ---=. 去括号,得520261x x --+=. 移项,得521206x x -=+-. 合并同类项,得3x =15. 系数化为1,得x =5. 2.答案:见解析解析:原方程可化为4(1)2(2)5x x +--=. 去括号,得44245x x +-+=. 移项及合并同类项,得23x =-. 系数化为1,得32x =-. 3.答案:见解析解析:去括号,得1324x x ---=.移项及合并同类项,得364x-=.系数化为1,得8x =-. 4.答案:见解析解析:方程可化为12467153x +⎛⎫+++= ⎪⎝⎭.整理,得1241253x +⎛⎫+=-⎪⎝⎭. 方程两边都乘5,得24603x ++=-.方程两边都乘3,得212180x ++=-. 解得194. 5.答案:见解析解析:去中括号,得111(3)(3)1266x x x x -+-=-+. 将(3)x -看作一个整体, 移项及合并同类项,得112x =. 系数化为1,得x =2. 6.答案:见解析解析:移项,得41(7)(7)655x x -+-=.将(7)x -看作一个整体,合并同类项,得7x -=6. 移项及合并同类项,得x =13. 7.答案:见解析解析:原方程可化为52(25)(25)(25)033x x x +++-+=.将(25)x +看作一个整体,合并同类项,得521(25)033x ⎛⎫+-+= ⎪⎝⎭. 整理,得4(25)03x +=. 故250x +=. 移项,得25x =-. 系数化为1,得52x =-. 8.答案:见解析解析:原方程可化为211233x xx ---=. 去分母,得3(21)12x x x --=-. 去括号,得32112x x x -+=-.移项,得32211x x x -+=-. 合并同类项,得3x =0.系数化为1,得x =0.9.答案:见解析解析:原方程可化为2222595xx x --+=+. 移项及合并同类项,得229x =.系数化为1,得49x =.10.答案:见解析解析:移项,得112529977z z -=--.合并同类项,得1z =-. 11.答案:见解析解析:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 即32(1)(1)043x x -+-=.将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-= ⎪⎝⎭. 所以1x -=0,移项,得x =1.12.答案:见解析解析:原方程可化为221133322x x +-+=.移项及合并同类项,得233x -=-.系数化为1,得x =2. 13.答案:见解析解析:原方程可化为1114232x x +-+=.移项,得1114322x x -=--,合并同类项,得11043x ⎛⎫-= ⎪⎝⎭. 故x =0.14.答案:见解析解析:移项,得2323163213684x x x x +++--=-. 两边分别通分,得4112568x x ++=. 去分母,得4(41)3(125)x x +=+. 去括号,得1643615x x +=+. 移项,得1636154x x -=-. 合并同类项,得2011x -=. 系数化为1,得0.55x =-.15.答案:见解析解析:移项,得26136510x x x x +--+=-. 两边分别通分,得3211610x x +-=. 去分母,得5(32)3(11)x x +=-. 去括号,得1510333x x +=-.移项,得1533310x x -=--.合并同类项,得12 x =-43. 系数化为1,得4312x =-.。
人教版初中数学七年级上册第三章《一元一次方程》测试题(含答案)

第三章《一元一次方程》测试题一、单选题1.下列四个方程中,是一元一次方程的是( )A .236x x +=B .342x x =-C .230y +=D .124x y +=- 2.由m =4﹣x ,m =y ﹣3,可得出x 与y 的关系是( )A .x+y =7B .x+y =﹣7C .x+y =1D .x+y =﹣1 3.2x =是以下哪个方程的解( )A .1102x -=B .1102x +=C .210x +=D .210x -= 4.根据“x 的3倍与5的和比x 的13多2”可列方程( ) A .()3523x x +=+ B .3523x x +=- C .()3523x x +=- D .3352x x =++ 5.若多项式3x+5与5x -7的值相等,则x 的值为( )A .3B .4C .5D .6 6.若方程()2230a x ax -+-=是关于x 的一元一次方程,那么a 的值是( )A .0B .2C .±2D .-27.已知x =2是关于x 的一元一次方程(m -2)x +2=0的解,则m 的值为( ) A .-1 B .0 C .1 D .28.下列通过移项变形错误的是( )A .由227x x +=-,得272x x -=--B .由324y y +=-,得423y y +=-C .由2324t t t -+=-,得2243t t t ++=-+D .由123m -=,得213m =-9.若三个连续偶数的和是30,则它们的积是( )A .960B .140C .990D .1680 10.由方程211123x x -+-=,去分母得( ) A .2116x x --+= B .()()321216x x --+=C .()()221316x x --+=D .33226x x ---=11.小明在解方程21133x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为( )A .x =0B .x =﹣1C .x =2D .x =﹣2 12.某商品按原来的8折出售,仍可获利10%,若商品的原价是3300元,此商品的进货价是( ).A .2400元B .2460元C .2480元D .2680元二、填空题13.5与x 的差等于x 的2倍,根据前面的描述直接列出的方程是________________________.14.已知(1)8k k x 是关于x 的一元一次方程,则k =______. 15.若方程360x -=与关于x 的方程328x k +=的解相同,则k =______. 16.如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)17.某市按如下规定收取每月煤气费:用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分按每月1.5元收费.已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户用煤气_______立方米.三、解答题18.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2) (2)13(x ﹣5)=3﹣23(x ﹣5)(3)24x +﹣1=326x - (4)x ﹣19(x ﹣9)=13[x+13(x ﹣9)](5)210.5x --30.6x +=0.5x+219.已知关于x 的方程(m+5)x |m|﹣4+18=0是一元一次方程.试求:(1)m 的值;(2)3(4m ﹣1)﹣2(3m+2)的值.20.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=.(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.21.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?22.某工厂车间有21名工人,每人每天可以生产12个螺钉或18个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,车间应该分配生产螺钉和螺母的工人各多少名.23.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时,(1)两车同向而行,快车在后,求经过几小时快车追上慢车?(2)两车相向而行,求经过几小时两车相距50千米?参考答案1.B2.A3.A4.D5.D6.B7.C8.C9.A10.B11.A12.A13.52x x -= 14.1 15.1; 16.3217.100. 18.解:(1)去括号得:20﹣y=﹣1.5y ﹣2,移项合并得:0.5y=﹣22,解得:y=﹣44;(2)去分母得:x ﹣5=9﹣2x +10,移项合并得:3x=24,解得:x=8;(3)去分母得:3x +6﹣12=6﹣4x ,移项合并得:7x=12,解得:x=127; (4)去括号得:x ﹣19x +1=13x +19x ﹣1, 去分母得:9x ﹣x +9=3x +x ﹣9,移项合并得:4x=﹣18,解得:x=﹣92; (5)方程整理得:4x ﹣2﹣5153x +=0.5x +2, 去分母得:12x ﹣6﹣5x ﹣15=1.5x +6,移项合并得:5.5x=27,解得:x=5411. 19.解:(1)依题意有|m|﹣4=1且m+5≠0,解得m=5;(2)3)4m)1))2)3m+2)=12m)3)6m)4=6m)7)当m=5时,原式=6×5)7=23)20.解:(1)当m 2=时,原方程为3x 10--=. 解得,1x 3=-. (2)当m 5≠时,方程有解.3m 2x 1m 5m 5-==----. ∵方程有整数解,且m 是整数.∴m 51-=±,m 52-=±.解得,m 6=或m 4=,m 7=或m 3=.故答案为:(1)x=-13;(2)m=3或4或6或7. 21. 解:设每件衬衫降价x 元,依题意有120×400+(120﹣x )×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标. 22. 解:设分配x 名工人生产螺母,则(21-x )人生产螺钉,由题意得 11812(21)2x x ⨯=⨯-, 解得:x=12,则21-x=9,答:车间应该分配生产螺钉和螺母的工人9名,12名.23. 解:(1)设求经过x 小时快车追上慢车.115x -85x=450解得x=15答:经过15小时快车追上慢车)2)求经过a 小时两车相距50千米.两种情况:①相遇前两车相距50千米,列方程为:115a+85a+50=450 解得a=2②相遇后两车相距50千米,列方程为:115a+85a -50=450解得a=2.5 答:经过2或2.5小时两车相距50千米.。
七年级数学上册 一元一次方程专题练习(word版

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。
(1)求饮用水和蔬菜各有多少件。
(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。
已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程练习题
一.选择
1.在a -(b -c )=a -b +c ,4+x =9,C =2πr ,3x +2y 中等式的个数为( ). (A)1个 (B)2个 (C)3个 (D)4个
2.在方程6x +1=1,,32
2=
x 7x -1=x -1,5x =2-x 中解为3
1的方程个数是( ). (A)1个 (B)2个 (C)3个 (D)4个 3.根据等式性质5=3x -2可变形为( ). (A)-3x =2-5 (B)-3x =-2+5 (C)5-2=3x (D)5+2=3x 4.下列方程中,解是x =4的是( ).
(A)2x +4=9
(B)
4322
3
-=+x x (C)-3x -7=5 (D)5-3x =2(1-x )
5.已知关于y 的方程y +3m =24与y +4=1的解相同,则m 的值是( ). (A)9 (B)-9 (C)7 (D)-8 6.方程
3
1
41=x 正确的解是( ). (A)x =12 (B)12
1=x (C)34=x (D)43
=x
7.将3(x -1)-2(x -3)=5(1-x )去括号得( )
(A)3x -1-2x -3=5-x (B)3x -1-2x +3=5-x (C)3x -3-2x -6=5-5x (D)3x -3-2x +6=5-5x 8.已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ). (A)-2
(B)0
(C)
3
2 (D)
2
3 9.已知y =1是方程y y m 2)(31
2=--的解,关于x 的方程m (x -3)-2=m (2x -5)的解是( )
(A)x =10 (B)x =0
(C)3
4=
x (D)4
3=
x 10.方程6
1513--=-x x 的解为( ) (A)
37 (B)
3
5 (C)
3
35 (D)
3
37 11.若关于x 的方程)1(42
2-=+x a
x 的解为x =3,则a 的值为( ). (A)2 (B)22 (C)10 (D)-2
12.方程52
1
=--
x x 的解为( ). (A)-9 (B)3 (C)-3 (D)9
13.方程,4
17
2753+-=+-x x 去分母,得( ).
(A)3-2(5x +7)=-(x +17) (B)12-2(5x +7)=-x +17 (C)12-2(5x +7)=-(x +17) (D)12-10x +14=-(x +17)
14.将103
.001.05.02.0=+-x x 的分母化为整数,得( ). (A)
13
01.05.02=+-x x (B)1003505=+-
x
x (C)1003
01.05.020=+-x x
(D)13
505=+-x
x 15.方程12=+a x 与方程2213+=-x x 的解相同,则a 的值为( ) A. -5 B . -3 C. 3 D. 5
16.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为( ). (A)3200元 (B)3429元 (C)2667元 (D)3168元 17.某种手机卡的市话费上次已按原收费标准降低了b 元/分钟,现在又下调20﹪,使收费标准为a 元/分钟,那么原收费标准为( )
A. B. C. D. 18.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价 ( ) A.40% B.20% C25% D.15%
19..某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电原价是( ) (A)2150元 (B)2200元 (C)2250元 (D)2300元 20.某书店按标价的八折售出,仍可获利20﹪,若该书的进价为18元,则标价为( )
A. 27元
B. 28元
C. 29元 D ,30元 二.填空:
1.(1)x =1是方程4kx -1=0的解,则k =________;
(2)x =-9是方程b x =|3
1
|的解,那么b =________.
2.列出方程,再求x 的值:
(1)x 的3倍与9的和等于x 的3
1
与23的差.方程:________________,解得x =______;
(2)x 的25%比它的2倍少7.方程:___________,解得x =_______. 3.关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________.
4.小李在解方程135=-x a (x 为未知数)时,误将x -看作x +,解得方程的解2-=x ,则原方程的解为___________________________. 5.关于
x
的方程729+=-kx x 的解是自然数,则整数k 的值
为 6.已知等式0352
=++m x
是关于x 的一元一次方程,则m =____________.
b a
-4
5b a +45b a +43b a +3
4
7.已知方程
()7421
=+--m x m 是关于x 的一元一次方程,则m=_________ .
8,某企业存入银行甲、乙两种不同用途的存款20万元,甲存款的年利率为5.5%,乙存款的年利率为4.5%,该企业一年可获利息9500元,则存款数目为甲______元,乙______元. 9.一个两位数,十位上的数字比个位上的数字小1,个位与十位上的数字的和是这个两位数的
1
5
, 则这两位数是_______. 三.计算: (1)2x +3=3x (2)02
3
31=+x
(3)-0.1x =10 (4)014
3
7=+-x
(5)5y -9=7y -13 (6)2
1323-=-x
(7)3(x -1)-2(2x +1)=12 (8)7
57875x
x -=
- (9)3.15
.03
2.04-=--+x x (10)
14
17
10352212+-=+--x x x (11)2
11
05.0)25(35.63.0303.0--=--x x
(12)16
8421x
x x x x ++++
=
四.解答题:
1.若关于x 的方程3x 4n -
7+5=17是一元一次方程,求n .
2. 某村2003年粮食人均占有量6650千克,比1949年人均占有量的50倍还多40千克, 问1949年人均占有量是多少千克?
3.已知:y 1=4x -3,y 2=12-x ,当x 为何值时, (1)y 1=y 2;(2)y 1与y 2互为相反数;(3)y 1比y 2小4. 4.已知21
=
x 是方程x x a +=+2
1125的解,求关于x 的方程ax +2=a (1-2x )的解.
5.解关于y 的方程-3(a +y )=a -2(y -a ).
6.甲、乙两车分别从相距360千米的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?
7.A 、B 两地相距31千米,甲从A 地骑自行车去B 地,1小时后乙骑摩托车也从A 地去B 地.已知甲每小时行12千米,乙每小时行28千米.(1)问乙出发后多少小时追上甲;(2)若乙到达B 地后立即返回,则在返回路上与甲相遇时距乙出发多长时间? 8.某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.
9.某中学组织初一同学春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.已知45座客车日租金为每辆220元,60座客车日租金为每辆300元.试问:
(1)初一年级人数是多少?原计划租用45座客车多少辆?
(2)要使每个同学都有座位,怎样租车更合算?
10.某城市有50万户居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水.若每个漏水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年因此而浪费多少吨水(一年按365天计算).
11.当m取什么整数时,关于x的方程1514
()
2323
mx x
-=-的解是正整数?
12.一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.
13.公园门票价格规定如下表:
某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱。