早期断奶仔猪肠粘膜免疫与氨基酸关系的研究
早期断奶仔猪蛋白质营养的研究进展

早期断奶仔猪蛋白质营养的研究进展选择饲喂早期断奶仔猪日粮的蛋白质来源时,要考虑蛋白质的消化率、氨基酸的平衡、适口性以及能否为仔猪提供免疫力等方面。
限制早期断奶仔猪生产性能的主要氨基酸是赖氨酸,大多数研究表明,仔猪随赖氨酸含量的增加,其生长速度和饲料转化率均提高。
Owen 等(1995c)报道隔离的早期断奶仔猪需赖氨酸占日粮1.65%~1.80%。
为了取得最大的生产性能,其它氨基酸必须与赖氨酸维持合适的比例。
然而,也有证据表明早期断奶仔猪的理想蛋白质平衡与较重的仔猪不一样。
Owen等(1995a)报道含1.6%赖氨酸的日粮包含的喷雾干燥血浆粉应含0.41%~0.42%蛋氨酸(0.36%~0.37%明显的易消化)。
而且,日粮蛋氨酸含量占日粮赖氨酸含量的27.5%时,仔猪生长速度(断奶后0d~21d)达到最大。
Bergstron等(1997a)报道,断奶仔猪所需的可消化异亮氨酸需要量不大于赖氨酸的60%,而且异亮氨酸需要量下降很快。
对10kg~20kg的猪,这种可消化的异亮氨酸需要量不大于赖氨酸的50%(Bergstron等,1997b)。
谷酰胺通常不被认为是猪的必需氨基酸,但是在最近的研究中引起很大的关注。
断奶仔猪普遍存在肠道萎缩,这与肠道内容物的缺乏或异化应激有关,这种萎缩可能是缺乏谷酰胺引起的。
因为这种氨基酸不仅是肠细胞的基本呼吸燃料,而且可提供生物合成核苷酸所需的氨化氮(Windmueller,1984)。
仔猪断奶后,由母乳提供的主要的谷酰胺源被切断,而且由于仔猪采食量很少,因此谷酰胺的外源补充通常很少。
Ayonrinde等(1995a,b)报道:断奶仔猪与哺乳仔猪相比,其血浆谷酰胺和谷氨酸的浓度显著降低,仔猪断奶后其血浆谷酰胺的下降表明内源谷酰胺源不能满足这个时期的血浆含量。
因此,仔猪在断奶后应补充谷酰胺。
而且如果谷酰胺对维持肠内浓度是必需的,那么它的可利用性下降可能与出现在刚断奶仔猪的肠道萎缩有关。
断奶仔猪肠黏膜免疫与功能性氨基酸的营养

《 饲料工业》 2 1 ・0 0年第 3 卷第 1 1 期
断 奶 仔 猪 肠 黏 膜 免 疫 与功 能 性 氨 基 酸 的 营 养
高玉云 余 钗 袁 智勇 陈启 青
摘ቤተ መጻሕፍቲ ባይዱ
要
黏膜免 疫 系统是机 体抵 抗病原 体入侵 的第一道 免疫屏 障 ,文 中综述 了肠黏 膜免疫 系统
的结构和 功能 、 肠黏膜 免疫应 答过程 、 功能性 氨基酸 的营养 与免疫 作用 。断奶 仔猪 日粮 的合理配制 需 考虑 胃肠道的发 育和 功能性氨基 酸的 添加 ,研 究促进 肠道黏 膜免 疫的 营养物质并探 讨其作 用机 理具
有重要 意义。
关键 词 断奶仔猪 ; 肠黏 膜免 疫 ; 功能性氨 基酸 ; 营养
中 图分 类 号 ¥ 2 88
仔 猪 断 奶 后 , 于 母 乳 中 被 动 免 疫 成 分 的 停 止 供 南 应 以及 自身 免 疫 系统 尚未 发 育 成 熟 , 能 有 效 利 用 日 不 易 受 到 疾 病 的 感 染 ( erz ,9 6 , 奶 会 导 致 仔 D pe 等 1 8 )断
粮 中 的 复 杂 多 糖 和 植 物 蛋 白 fr s a G i t d等 ,0 0 , 容 lmp odis e , 派 氏结 ( a e ac P ) 肠 系膜 淋 ne 2 0 )且 y h it u ) 如 s P y rp th, P 、
淋 巴滤 泡 。 这些淋 巴组织是 肠道黏膜免疫 系统 的诱 导 位点 ( d ci i ) i u t es e 。其 中 , 别要指 出 的是 P n v t 特 P区域
淋 巴细 胞 ( ta pteillmp oye I L)及 固 有 层 i re i l y h c t ,E n h a
断奶前后猪的肠道免疫

断奶前后猪的肠道免疫小肠有两个同样重要的功能,即饲粮营养物质的消化吸收和防御经由胃肠道途径的感染。
这两个任务之间存在拮抗作用,因为肠道消化和吸收面积的任何增加都会加大肠道免疫系统必须保护的面积。
肠道提供了吸收营养物质的巨大面积,通过抗原激活的免疫应答作用形成了一个对付大多数的肠腔抗原的天然屏障。
肠道的免疫系统一直接触着一系列的抗原物质,这些抗原物质包括与致病性细菌病毒有关的危险抗原和存在于饲粮中的无害抗原。
肠道经过发育形成了一个复杂的系统,该系统通过诱导有效的免疫应答反应来对抗有害抗原,但对那些无害抗原也形成了耐受力。
仔猪出生时,胃肠道的免疫系统尚未发育完全,在出生后的早期其发育特别重要。
现代养猪中一般采用早期断奶,这种突然断奶的生产方式对于仔猪来说是非常不自然的,正常情况下,仔猪应在较大日龄和较高的发育成熟水平上逐渐进行断奶。
现在的断奶措施使仔猪突然失去了母猪乳源免疫球蛋白和其他保护性免疫因子的被动保护作用,不得不面对新的饲料和环境中的抗原。
伴随着这些变化,这就需要仔猪迅速适应饲料形态及其组成和环境的变化,同时保持一种高水平的生长速度和生产性能。
在这些心理和生理障碍下,断奶期无疑会出现生长性能变差.断奶通常会伴随着肠道免疫力(Vega-Lbpez等,1995 ; McCracken等,1999;Pluske等,1999;Solano-Aguila:等,2001)和肠道免疫应答的显著改变,特别是直接对抗饲料和细菌抗原的炎症反应,这一反应在断奶综合征的发病机理中已经提到(Li等,1990;Pluske等,1997)。
现代早期突然断奶的实践意味着对肠道免疫系统的巨大的挑战,我们必须面对断奶引起的肠道免疫的巨大变化。
然而,在断奶这种多种应激因素中,确定不同囚素的相对重要性是非常困难的,而且结果可能会因微小的不可预测的因素而变化。
更确切地说,这使得我们很难确定导致断奶后生产性能差、变异大的主要原因。
大量的证据支持肠腔营养和大豆蛋白过敏反应的推论。
精氨酸对仔猪肠道的保护机理及作用

文 。 姜文
赵 鑫 福建 傲 农生物 科 技集 团股 份 有限 公司 命 周 期 的各 个阶 段 ( 如 胎 儿 生 长 受 限 、新 生 儿 发 病 率
和 死 亡 率 、 断奶 相 关 的 肠 功 能 障 碍 和 消化 综合 征 ) , 优 化 机 体 代 谢 转 化 率 。 早 产 儿 一 般 占 到 新 生 儿 的 l o %~1 2 %,均 表 现 出精 氨 酸缺 乏 。对 仔 猪 来说 ,母乳
P r a c t i c e I 实 践I 饲 料 用
精氨 酸 是仔 猪 的必 需 氨基 酸 ,可 以直 接 或 间接影 响 仔猪 肠 道机 械
屏障 ,对仔 猪 肠道 黏 膜 生长 、绒 毛 高 、细 胞 生长 、肠 道 通透 性 等方 面
均 有 重 要作 用 。
2 精 氨 酸 对 仔 猪 肠 道 的 保 护 作 用
2 . 1肠道黏膜结构的影响
肠道 黏 膜 在 机 体 吸 收 营 养物 质 、抵 抗 病 原 入侵 等 方 面 发 挥 着 重 要作 用 。动 物 小 肠 黏膜 绒毛 高度 与 细 胞 数 量 呈 显 著 相 关 ,黏 膜 绒 毛 高 ,表 示 成熟 的 绒毛 上 皮
通 过 体 内相 应酶 的 作 用 产 生鸟 氯 酸 、一 氧 化 氮 、脯 氨
白,而 热休 克 蛋 白对细 胞 应 激 、 代谢 、增 殖 和调 亡 均
酸 、谷氨 酰胺 和 腐胺 等物质 。
具 有 重 要 的 调 控 作 用 ,此 外 ,N0还 可 增 强 巨噬 细 胞
的活 性 ,增 加 对 内毒 素 的 清 除 ,抑 制 白细 胞 和 内皮 细
所 含 精 氨 酸 并不 能满 足 其 生 长 所 需 ,精 氨 酸 的 内 源合 成 或补 充 显 得 格 外 重要 。研 究表 明 ,精 氨 酸 除 了 参 与
谷氨酰胺对早期断奶仔猪肠黏膜的营养调控作用

3 小 结
于断奶后仔猪受损肠道 的恢复。wu 等 对 2 1日 龄 断 奶 仔 猪 进 行试 验 发 现 ,添 加 G l n对 十 二 指 肠 绒 毛高 度改 变无 影响 ,对 空肠 绒 毛高度 改 变有 显著 作
D N A含 量 、3 5日龄 黏 膜厚 度 和 4 9日龄 空肠 绒 毛高
度 ,但 对 回肠 D N A和 肠 道 蛋 白质 无 显 著影 响 ,对 十二指 肠 绒毛 高度 和黏 膜厚 度也 无显 著 影响 。 电镜
观 察 表 明 ,饲 粮 添 加 G l n可 以改善 3 5日龄 仔 猪 空 肠 中段微 绒 毛 的形 态 和结 构 ,减少 小 肠上 皮细 胞 的 损伤 。
厚度 以 1 7 k t 龄 断奶 仔 猪 变 化 明显 。从 小 肠 各 部 位
道上皮细胞 的完整性 ,维持消化道的正常功能等作 用 。断 奶 后 ,仔 猪 肠 固有 层 s l g A分 泌 细 胞 数 量 显
著 减少 。G l n是 细胞 增 殖 的 主要 能 源物 质 ,如淋 巴
维普资讯
维普资讯
毛宽度 、肠 壁厚 度均 有不 同程 度 的变 化 ,且 断奶 日
龄越早 ,对 仔猪 肠 黏膜 的影 响越 大 ,其 巾绒毛 高 度 下 降幅 度 越 大 ,恢 复 时 间越 长 。一 般 在 断 奶 8 ~ l 2 天 降至 最 低 ,随 后恢 复 较 快 。 1 7 日龄 断奶 仔 猪 十 二 指肠 、空 肠上段 、回肠 隐 窝深 度显 著下 降 ,各 断 奶 日龄各 部 位绒 毛宽 度呈 先 变窄 后变 宽趋 势 ,肠壁
细 胞 的解化 和小 肠上 皮 细胞 的增 殖 。在 断奶 仔猪 饲
粮 中添 加 1 %G l n ,断 奶 后 2 0日龄 ,试 验组 血 清I
苏氨酸对断奶仔猪肠道粘蛋白含量和肠道功能的影响

You might find this additional info useful...27 articles, 14 of which you can access for free at:This article cites /content/292/5/G1293.full#ref-list-1 5 other HighWire-hosted articles: This article has been cited by/content/292/5/G1293#cited-by including high resolution figures, can be found at:Updated information and services /content/292/5/G1293.full can be found at:AJP - Gastrointestinal and Liver Physiology about Additional material and information /publications/ajpgi This information is current as of July 26, 2012.published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. It is publishes original articles pertaining to all aspects of research AJP - Gastrointestinal and Liver Physiology by guest on July 26, 2012/Downloaded fromAdequate oral threonine is critical for mucin production and gut function in neonatal pigletsGarson w,1Robert F.Bertolo,2Alfred Adjiri-Awere,1Paul B.Pencharz,3and Ronald O.Ball11Department of Agricultural,Food and Nutritional Science,University of Alberta,Edmonton,Alberta;2Department ofBiochemistry,Memorial University of Newfoundland,St.John’s,Newfoundland;and3The Research Institute,The Hospitalfor Sick Children,and Departments of Paediatrics and Nutritional Sciences,University of Toronto,Toronto,Ontario,Canada Submitted18May2006;accepted infinal form13January2007Law GK,Bertolo RF,Adjiri-Awere A,Pencharz PB,Ball RO. Adequate oral threonine is critical for mucin production and gut function in neonatal piglets.Am J Physiol Gastrointest Liver Physiol 292:G1293–G1301,2007.First published January18,2007; doi:10.1152/ajpgi.00221.2006.—In previous experiments,we found that the threonine requirement of neonatal piglets fed parenterally was 40%of that when fed intragastrically;we hypothesized that much of the oral supply of threonine is being used for mucin production.To investigate this hypothesis,intragastrically fed2-day-old piglets were fed one of three treatments for8days:1)a threonine-adequate diet (IG-A;0.6g threonine⅐kgϪ1⅐dayϪ1fed intragastrically);2)a threo-nine-deficient diet(IG-D;0.1g threonine⅐kgϪ1⅐dayϪ1fed intragas-trically);or3)a threonine-deficient diet with adequate threonine delivered parenterally(IV-A;0.5g threonine⅐kgϪ1⅐dayϪ1fed par-enterally plus0.1g threonine⅐kgϪ1⅐dayϪ1fed intragastrically).IG-D piglets experienced higher nitrogen excretion,higher plasma urea,and lower plasma threonine concentrations versus both of the other groups(PϽ0.05),indicating profound threonine deficiency. Mucosal mass and total crude mucin content were lower in the colons of IG-D pigs(PϽ0.05).Histopathological analysis showed lower numbers of acidic mucin-producing goblet cells in the duodenum and ileum of IG-D pigs.In IG-D pigs,acidic mucin subtypes were lower in the small intestine but higher in the colon,which corresponded with persistent diarrhea.The parenteral supply of threonine was adequate to maintain most outcome parameters,although IV-A pigs did have smaller colonic goblet cells with more acidic mucins compared with IG-A pigs.Overall,our results suggest that adequate dietary threonine was critical in the production of mucus and that a parenteral threonine supply can ameliorate most of the symptoms of oral threonine defi-ciency.small intestine;colon;parenteralIN A PREVIOUS STUDY,we(3)determined that the threonine require-ment for piglets ofϳ8days of age was0.20g⅐kgϪ1⅐dayϪ1when fed intravenously and0.55g⅐kgϪ1⅐dayϪ1when fed intragastri-cally.These results suggested that a substantial portion of the oral threonine requirement is used by the healthy gut and is not required when the gut is relatively inactive and atrophied,as during parenteral feeding(4).Recent studies(24,27,29,30) have demonstrated that the portal-drained viscera,metaboli-cally dominated by the small intestine,extracts60–90%of dietary threonine on thefirst pass,whereas extraction of other essential amino acids is limited to about a third.The vast majority of this threonine is incorporated into mucosal proteins and only2–9%is oxidized(24).The disproportionate require-ment for threonine by intestinal tissues has significant nutri-tional implications,especially in situations of altered gut me-tabolism.The difference between enteral and parenteral threonine requirements can be explained by threonine’s importance in the maintenance of the mucus lining of the gastrointestinal tract(3, 17).Threonine is an integral constituent of intestinal mucin proteins(17,31).Mucin proteins provide the structural back-bone of the mucus gels that provide lubrication and protection from pathogens(25).Without a well-formed mucus gel layer, the underlying mucosa is more susceptible to attack by bacteria such as Escherichia coli(15,25).We therefore reasoned that mucin production would be impaired by restricting the dietary intake of threonine.Another potential reason for the difference in threonine requirement between oral and parenteral nutrition could be due to the route of nutrient delivery.There is growing evidence that mucosal cells preferentially recruit amino acids from either the luminal or arterial supply depending on dietary and physiolog-ical conditions(23,26,30).It is feasible that the exclusively intravenous supply of threonine during parenteral nutrition is not available to gut mucosal cells to synthesize mucin.There-fore,this study investigated the relationship between threonine and gut mucin production to elucidate the difference in intra-venous and oral threonine requirements.The objectives of the following experiment were to evaluate the effect of amount and route of dietary threonine on the quantity,location,and type of gut mucins.Specifically,the effect of an inadequate supply of threonine on gut mucins was compared with an adequate supply of threonine.Also,the difference in gut mucins was compared between threonine supplied orally versus intrave-nously.MATERIALS AND METHODSAnimals and surgery.Twenty-one intact male Yorkshire piglets(2 days of age,1.8Ϯ0.3kg),obtained from the minimal disease herd atthe University of Alberta,were randomly assigned to one of threeenteral dietary treatments:a threonine-adequate diet(IG-A;0.6gthreonine⅐kgϪ1⅐dayϪ1fed intragastrically);a threonine-deficient diet(IG-D;0.1g⅐kgϪ1⅐dayϪ1fed intragastrically);or a threonine-deficient diet with adequate threonine delivered parenterally(IV-A;0.5g⅐kgϪ1⅐dayϪ1fed intravenously).All procedures used in this study were approved by the Faculty Animal Policy and Welfare Committee of the University of Alberta.Upon arrival,piglets were anesthetized,and catheters were placed in the stomach for intragastric feeding,in the left femoral vein for blood sampling,and in the left jugular vein for the intravenous infusion of saline and/or threonineAddress for reprint requests and other correspondence:R.O.Ball,Dept.of Agricultural,Food and Nutritional Science,Univ.of Alberta,Edmonton,AB, Canada T6G2P5(e-mail:ron.ball@ualberta.ca).The costs of publication of this article were defrayed in part by the paymentof page charges.The article must therefore be hereby marked“advertisement”in accordance with18U.S.C.Section1734solely to indicate this fact.Am J Physiol Gastrointest Liver Physiol292:G1293–G1301,2007.First published January18,2007;doi:10.1152/ajpgi.00221.2006.by guest on July 26, 2012/Downloaded fromusing previously described procedures (3);the femoral catheter was advanced to the inferior vena cava just caudal to the heart,and the jugular catheter was advanced to the superior vena cava just cranial to the heart.Elemental and complete (except for threonine)diets (32)were fed via the gastric catheter continuously for 8days following surgery.Vitamins (MVI Paediatric,Rhone-Poulenc Rorer,Montreal,PQ,Canada),minerals (Micro ϩ6concentrate,Sabex,Boucherville,PQ,Canada),and lipids (20%Intralipid,Fresenius-Kabi,Stockholm,Sweden)were added to the sterile diet solutions immediately before they were used.Following surgery,all piglets were adapted to diet infusions as previously described (3).Piglets were weighed each morning,and the infusion rates were adjusted accordingly.Diets were administered through a tether-swivel system (Alice King Chatham Medical Arts,Los Angeles,CA)using pressure-sensitive infusion pumps.The infusion regimen was designed to supply all nutrients required by piglets (32),and the targeted intakes were as follows:15g amino acids ⅐kg Ϫ1⅐day Ϫ1and 1.1MJ metabolizable energy ⅐kg Ϫ1⅐day Ϫ1,with glucose and lipids each supplying 50%of nonprotein energy.The amino acid pattern (except threonine),which was similar to that of a commercial parenteral nutrition solution that is based on human milk protein (Vaminolact,Fresenius-Kabi),consisted of the following (in mg/g total L -amino acids):92alanine,61arginine,61aspartic acid,15cysteine,105glutamic acid,33glycine,31histidine,46isoleucine,104leucine,56lysine,19methionine,32phenylala-nine,83proline,56serine,5taurine,21tryptophan,27tyrosine (supplied as the soluble dipeptide glycyl-L -tyrosine),and 53valine.In the IG-D group,threonine was supplied at a rate of 0.1g ⅐kg Ϫ1⅐day Ϫ1(6.7mg/g amino acids)via the gastric catheter,and sterile saline solution was administered via the jugular catheter at a rate of 2ml/h;the diet was kept isonitrogenous by increasing the concentration of alanine.In the IG-A group,dietary threonine was supplied at a rate of 0.6g ⅐kg Ϫ1⅐day Ϫ1(40mg/g amino acids)via thegastric catheter,and a sterile saline solution was administered as in IG-D pigs.In the IV-A group,threonine was supplied via the gastric catheter at a rate of 0.1g ⅐kg Ϫ1⅐day Ϫ1,and threonine (dissolved in saline)was administered into the jugular catheter at a rate of 0.5g ⅐kg Ϫ1⅐day Ϫ1(33.3mg/g amino acids)and 2ml/h to maintain equal total threonine intake to that of the IG-A group.In all three treatments,diets were fed intragastrically throughout the study period;only threonine was infused intravenously in the IV-A group.Tissue collection.Blood samples were collected daily,and the plasma was isolated by centrifugation (3min at 3,000g )and stored at Ϫ80°C for later analysis of plasma amino acids and urea.Total urine was collected on ice in acidified containers for 24-h periods through-out the protocol;volumes were measured,and samples were stored at Ϫ20°C.The diarrhea score of each piglet was also assessed daily,according to the method of Ball and Aherne (2).The incidence and severity of diarrhea were observed by a visual inspection of the consistency of fecal material on a scale of 0–3:0,no diarrhea;1,slight diarrhea;2,moderate diarrhea;and 3,severe,highly fluid diarrhea.Diarrhea scores were taken for six of seven piglets in each treatment group;because diarrhea was not anticipated,scoring was incomplete for the first replicate of three piglets.On the last day of the study,piglets were anesthetized,and the abdominal cavity was opened.The distal end of the colon was tied off at the rectum,and the duodenum was tied off at the pyloric sphincter and ligament of Treitz.The entire length of the intestines was then removed and placed in ice-cold saline.The mesentery was removed,and the length of the small intestine was measured.The duodenum was excised,and a 2-cm sample from the middle of the section was processed for histological analysis.The remaining duodenal tissue was then emptied of its luminal contents by squeezing,and the mucosa was scraped.The luminal contents,mucosa,and remaining muscularis were weighed,frozen in liquid nitrogen,and stored at Ϫ80°C for further analyses.The ileum,taken as the last 10%of the length of the small intestine to the ileocaecal valve,was tied off and removed.The remaining jejunum was tied off into three equal lengths and removed.The colon was tied off at its midpoint,uncoiled,and separated as proximal and distal sections.Sampling of each section for histology,removal of luminal contents,scraping of mucosa,and freezing of resulting samples were all performed as for the duodenum.Nitrogen retention.Nitrogen in diets and daily urine samples were determined by Kjeldahl analysis (6).Nitrogen retention (%)was equal to the nitrogen balance (the difference between total nitrogen intake from the diet and output from urine)divided by total nitrogen intake.Plasma analyses.Plasma amino acid concentrations in daily bloodsamples were determined by reverse-phase HPLC using phenyliso-thiocyanate derivatives as previously described (5).Plasma urea concentrations in daily blood samples were determined using a spec-trophotometric assay kit (Sigma Chemical,St.Louis,MO);conver-sion of absorbance to urea concentration used a standard curve of urea samples of known concentrations.Isolation of crude mucin.Crude mucin (subdivided into native or undigested mucin and pronase-digested mucin)was isolated from mucosal scrapings according to modified procedures (17)of Allen (1)and Miller and Hoskins (20).Mucosal scrapings were lyophi-lized,and 0.5g was weighed into a 50-ml polystyrene test tube;25ml of NaCl (0.15mol/l with 0.02mol/l sodium azide)were added and homogenized for 1min at 4°C using a Polytron homogenizer (Brinkmann Instruments,Rexdale,ON,Canada).Samples were centrifuged immediately at 4°C for 30min at 12,000g ,and 16ml of the aqueous supernatant were added to 24ml of ice-cold ethanol.Samples were allowed to precipitate overnight at Ϫ20°C and then centrifuged at 4°C for 10min at 1,400g .The supernatant was decanted,and the pellet was resolubilized in 16ml NaCl (0.15mol/l),cooled in an ice bath,and then mixed with 24ml of ice-cold ethanol.Samples were again allowed to precipitate overnight at Ϫ20°C and then centrifuged;this procedure was repeated until a clear supernatant was obtained.The final precipitate was resolu-bilized in 1ml of distilled deionized water (ddH 2O)and lyophi-lized.Mucin quantification by carbohydrate analysis.Carbohydrate anal-ysis was based upon the method of Lien (17)with modifications.Exactly 1.5ml H 2SO 4(12mol/l)was added to 50mg of isolated crude mucin and left to stand for 1h at room temperature.The solution was diluted to 3mol/l with 4.5ml ddH 2O and hydrolyzed for 1h at 110°C;200l internal standard was added (N -methylglucamine for amino sugars and myo-inositol for neutral sugars,10mg/ml),and a 1-mlaliquot of the acid hydrolysate was cooled in an ice bath and madebasicwith 700l of concentrated ammonium hydroxide.Of this,100l were taken,and 1ml of sodium borohydride (30mg/ml in anhydrous dimethylsulfoxide)was added.The Ring-opening reduc-tion reaction was allowed to occur for 90min at 40°C.Excess sodium borohydratewas decomposed with 200l glacial acetic acid,and 200l of 1-methylimidazole were added,followed by 2ml of acetic anhydride.The acetylation reaction was allowed to occur for 10–15min at room temperature.Excess acetic anhydride was decomposed with 5ml ddH 2O and cooled to room temperature.Alditol acetates were then extracted into 4ml dichloromethane by vigorous shaking and removal of the upper aqueous layer.Acetates were washed twice with 4ml ddH 2O and dried under nitrogen.Alditol acetates were redissolved in 1ml dichloromethane,and 0.5l were injected onto the gas chromatography column.The column used was a DB-17fused silica capillary column (0.25mm inner diameter ϫ30m),using He (1.5ml/min)as the carrier gas.The injector temperature was set to rise from 60to 270°C at 150°C/min and maintained for 20min.The oven temperature was set to rise from 50to 190°C at 30°C/min,maintained for 3min,then set to 270°C at 5°C/min,and maintained for 5min.The flame ionization detector temperature was set at 270°C.Analysis of histological samples.Portions of the intestinal tract of ϳ2cm in length were taken from the duodenum,midjejunum,ileum,and proximal colon.Samples were submerged in fresh chilled fixative G1294DIETARY THREONINE AND GUT MUCIN SYNTHESISby guest on July 26, 2012/Downloaded from(Bouin’s solution)for 24h,soak rinsed several times in absolute alcohol,and then further stored (fixed)in 10%neutral bufferedformalin.After fixation,longitudinal strips of the intestine were trimmed from the antimesenteric border and routinely processed (Fisher model 266Histomatic Tissue Processor,Fisher Scientific,Pittsburgh,PA)and embedded in paraffin (Paraplast Tissue Embed-ding Medium,Oxford Labware,St.Louis,MO).Serial 5-m longi-tudinal sections were cut on a microtome (Reichert-Jung Scientific Instruments,Belleville,ON,Canada)and dried,and representative sections were then routinely stained with Gill’s hematoxylin and eosin (H&E).For the histochemical evaluation of gut mucins,other repre-sentative sections were stained with 1%Alcian blue (AB),pH 2.5,for 1h (AB 2.5)for the demonstration of all acidic mucins,comprising both sialomucins (sialated or carboxylated)and/or sulfomucins (sul-fated)mucins;1%AB,pH 1.0,for 1h (AB 1.0)for the selective identification of sulfomucins (8,16);or a combination AB 2.5/periodic acid (5min)-Schiff base (15min)(PAS)reaction allowing unsubstituted ␣-glycol-rich neutral mucins and acidic mucins to be differentiated (19).Duplicate sections were stained with the PAS reaction after amylase digestion (PASa)to exclude any possible confounding effects of glycogens (18).PASa/AB 2.5-stained sections were used for histochemical analyses.All of the histochemical stain-ing procedures were followed by H&E counterstaining,allowing thedifferentiation of mucin-secreting cells (goblet cells)from other cellular components of the gut or colonic mucosa (22).To ensure comparability between the different groups of animals,sections from all experimental groups were stained in a single batch.The histochem-ical staining results were interpreted as follows:1)with PASa/AB 2.5,neutral mucins were stained red,acidic mucins were stained blue,and a purple color represented both neutral and acidic mucins present within the same goblet cell;2)AB 2.5stained all acidic mucins (sialomucins and sulfomucins)blue;and 3)AB 1.0stained sulfomu-cins blue.Histochemical,light microscopic,and histomorphometric analyses of stained sections were performed by an experienced certified pa-thologist (A.Adjiri-Awere)using a binocular light microscope at ϫ10ocular magnification with a ϫ10objective.For histochemical analy-ses,semiquantitative staining intensities (regardless of color)were subjectively evaluated using a scale ranging from 0(unreactive)to 3(intensely stained).In addition,cells in the intestinal mucosa stainedwith AB 1.0,AB 2.5,or PASa/AB 2.5were counted in 10well-oriented gut crypt-villus or colon gland-ridge units in each animal.Counts for 10crypt-villus (or gland-ridge units)from the base of the crypt (or gland)to the tip of the villus (or edge of the glandular ridge)were pooled and expressed as means due to variations in villus or gland lengths and orientation.As a means of understanding the effects of treatment on mucin production,the product of staining intensity and the number of goblet cells observed was calculated to give anestimate of total stain (see Table 5).Histomorphometric analyses were performed on H&E-stained tis-sue sections.The parameters measured were as follows:villus height (h ;measured from the tip of the villus to the villus-crypt junction),crypt depth (d ;measured from the crypt-villus junction to the base of the crypt),villus width at midvillus height (mh ),and villus surface area [calculated as VSA ϭ(ϫmh ϫh )ϩϫ(mh /2)2].From each tissue section,10vertically oriented crypt-villous units (small intes-tine)and 10colon gland-ridge units were selected,if elongated,straight,possessed a lumen that opened to the mucosal surface at the luminal margin,and had cryptal or glandular base in contact with the muscalaris mucosae.Statistical analyses.Statistical comparisons of measured parame-ters between treatment groups were performed by ANOVA followed by the least-significant difference multiple-comparison test (SAS version 6.07,Cary,NC).Differences were considered to be significant if P Ͻ0.05.RESULTSDaily weight gain.During the course of the study,piglets in the IG-A and IV-A treatment groups were healthy and active,whereas piglets in the IG-D group became listless after 1–2days.Initial weights (1.84Ϯ0.37kg,n ϭ21),final weights (2.73Ϯ0.45kg,n ϭ21),and daily gains (0.11Ϯ0.03kg,n ϭ21)were not different among treatment groups.Nitrogen retention and plasma analyses.Nitrogen intake over the course of the study did not differ among the treatment groups (P Ͼ0.10;Table 1).From day 4to day 8of the study,nitrogen excretion and plasma urea were higher and nitrogen retention was lower in the IG-D group compared with the IG-A and IV-A groups (P Ͻ0.05;Table 1).Plasma threonine concentrations were higher in IV-A pigs versus those in IG-A and IG-D pigs (Table 1);due to the high pooled SDs,plasma threonine in IG-D pigs (44mol/l)was not different than that in IG-A pigs (183mol/l).Incidence of diarrhea.Mean daily scores for all IG-D pigs over the entire study period was 2.1,which was significantly greater (P Ͻ0.0001)than that for IG-A (0.06)or IV-A (0.25)pigs (Fig.1).All six IG-D piglets (in which scores weremeasured)exhibited diarrhea on 35of a possible 48pig days,with an average severity of 2.82over the diarrhea days.The change to severe diarrhea was abrupt by day 4of the study.In the IG-A group,only one piglet exhibited diarrhea over a total of 2days (of a possible 48pig days),with an average severity of 1.5.In the IV-A group,two piglets were observed to have slight and moderate diarrhea,over 2and 7days (1.3score).Tissue weights.Mucosal weights were not different across treatments in the duodenum (IG-A,91mg/cm;IG-D,57mg/cm;IV-A,80mg/cm;pooled SD,29),proximal jejunum (IG-A,103mg/cm;IG-D,82mg/cm;IV-A,98mg/cm;pooled SD,21),midjejunum (IG-A,106mg/cm;IG-D,100mg/cm;IV-A,104mg/cm;pooled SD,28),distal jejunum (IG-A,106mg/cm;IG-D,105mg/cm;IV-A,107mg/cm;pooled SD,31),and ileum (IG-A,111mg/cm;IG-D,88mg/cm;IV-A,112mg/cm;pooled SD,28).Relative small intestinal lengths werenot different among groups (IG-A,211cm/kg;IG-D,194cm/kg;IV-A,215cm/kg;pooled SD,21).In the large intestine,IG-D piglets had significantly lower amounts of mucosa and luminal contents per centimeter in both sections (Table 2);in addition,relative lengths of the large intestine were lower in IG-D piglets.Table 1.Nitrogen retention and plasma urea and threonine concentrations in IG-A,IG-D,and IV-A pigletsNitrogen Intake,g ⅐kg Ϫ1⅐day Ϫ1Nitrogen Output,g ⅐kg Ϫ1⅐day Ϫ1Nitrogen Retention,%Plasma Urea,mmol/l Plasma Threonine,mol/l IG-A 1.970.30b 84a 2.00b 183b IG-D 20.71a 66b 7.82a 44b IV-A 2.090.30b 84a 2.49b 572a Pooled SD 0.450.137 1.42115Values are means;n ϭ7piglets/group.Piglets were fed a threonine-adequate diet intragastrically (IG-A),a threonine-deficient diet intragastrically (IG-D),or a threonine-deficient diet intragastrically with adequate threonine intravenously (IV-A).Plasma urea and plasma threonine concentration data within piglets were averaged from day 4to day 8.a,b For data with lettersuperscripts within a row,those not sharing a letter are different (P Ͻ0.05,least-significant difference comparisons).G1295DIETARY THREONINE AND GUT MUCIN SYNTHESIS by guest on July 26, 2012/Downloaded fromHistomorphometry.The morphology of goblet cells was typical:basally compressed nuclei and abundant apical cyto-plasm.In the midjejunum and ileum,villus heights and villus height-to-crypt depth ratios were lower in IG-D pigs (Table 3).VSAs (estimated as a cylinder with a diameter equaling the villus width at the midvillus height)were lower in both IG-D and IV-A duodena.In the colon,there were no differences in crypt depth (data not shown).Carbohydrate analysis for mucin quantification.As our elemental diets contained only glucose as a source of carbo-hydrates,any glucosamine and galactosamine measured by this procedure was assumed to be from endogenous production.Native,undigested mucin was estimated as a measure of totalglycosylated mucin production,and pronase-digested mucin was estimated as a measure of unglycosylated mucin.Both native and pronase-resistant total mucin were significantly lower in the duodenum and colon of IG-D pigs versus both ofthe other groups (Table 4).The vast majority of native mucin was resistant to pronase digestion.Histochemistry.The histochemical methods employed inthis study stained the surface mucus of the intestinal mucosa,mucus granules of goblet cells (small intestine and colon),crypt secretory cells (small intestine),and glandular secretory cells (colon).These cells hereafter are referred to collectively as mucin-containing goblet cells.PASa/AB 2.5staining of acidic and neutral mucins.The PASa/AB 2.5stain revealed red-stained mucin-containg goblet cells,indicating predominantly neutral mucins;blue-stained goblet cells,indicating acidic mucins;and purple-stained cells,indicating a mixture of neutral and acidic mucins.Significantly greater numbers of mucin-containing goblet cells wereob-Fig.1.Diarrhea scores of piglets fed a threonine-adequate diet intragastrically (IG-A),a threonine-deficient diet intragastrically (IG-D),or a threonine-deficient diet intragastrically with adequate threonine intravenously (IV-A).The incidence and severity of diarrhea were assessed using a scale of 0–3:0,no diarrhea;1,slight diarrhea;2,moderate diarrhea;and 3,severe,highly fluid diarrhea.Daily scores for each pig (F )were averaged over 8days;lines represent mean daily scores for groups.Diarrhea scores were taken for 6of 7piglets in each treatment group.Table rge intestinal parameters in IG-A,IG-D,and IV-A piglets IG-A IG-D IV-A Pooled SD Large intestine Length,cm/kg body weight 44.0a,b 34.3b 48.1a 9.6Proximal colon Mucosa,mg/cm 64a 39b 59a 16Muscularis,mg/cm 20615719260Luminal contents,mg/cm 129a 25b 120a 67Distal colon Mucosa,mg/cm 63a 37b 46a,b 21Muscularis,mg/cm 14312414343Luminal contents,mg/cm 101a 12b 65a 51Values are means;n ϭ7piglets/group.a,b For data with letter superscripts within a row,those not sharing a letter are different (P Ͻ0.05,least-significance different comparisons).Table 3.Small intestinal histomorphological parametersin IG-A,IG-D,and IV-A pigletsVillus Height,m Crypt Depth,m Height-to-Depth Ratio Villus Surface Area,mm 2DuodenumIG-A 307205 1.560.130aIG-D 304177 1.80.099bIV-A 320204 1.60.099bPooled SD 46300.30.04MidjejunumIG-A 560a 168 3.42a 0.146IG-D 379b 173 2.24b 0.11IV-A 403a,b 196 2.13b 0.157Pooled SD 113240.60.023IleumIG-A 418a,b 185 3.89a,b 0.168IG-D 334b 153 2.99b 0.132IV-A 516a 193 5.55a 0.147Pooled SD 9448 1.40.032Values are means;n ϭ7piglets/group.Villus surface area was calculated as follows:[(ϫmh ϫh )ϩ(ϫmh /2)2],where mh is the width at the midvillus height.a,b For data with letter superscripts within a row,those not sharing a letter are different (P Ͻ0.05,least-significant difference compari-sons).Table 4.Total mucin analyses in IG-A,IG-D,and IV-A pigletsMucin per Whole Section,g Mucin per Length,g/cm DuodenumIG-A 58.6a 1.45aIG-D 11.0b 0.44bIV-A 49.6a 1.17aPooled SD 14.30.37MidjejunumIG-A 376.1 2.08IG-D 204.4 1.44IV-A 258.3 1.59Pooled SD 1420.85IleumIG-A 64.0 1.11IG-D 44.10.8IV-A 88.3 1.64Pooled SD 42.70.75Proximal colonIG-A 98.4a 1.83a IG-D 33.1b 0.72b IV-A 83.7a 1.65a Pooled SD 37.20.57Values are means;n ϭ7piglets/group.For values of mucin per whole section,the amount of native mucin is presented;pronase-digested mucin yielded similar results.a,b For data with letter superscripts within a row,those not sharing a letter are different (P Ͻ0.05,least-significant difference comparisons).G1296DIETARY THREONINE AND GUT MUCIN SYNTHESISby guest on July 26, 2012/Downloaded from。
断奶对仔猪肠道屏障的影响及营养调控

作者简介:徐运杰(1980-),男,湖南邵阳人,硕士研究生,主攻动物营养与饲料科学,在大型饲料企业从事饲料配方和质量管理工作 10余年。
联系电话:180********,E-mail :2008direnjie@断奶是仔猪生命过程中应激反应剧烈的时期。
在自然情况下,仔猪断奶周龄通常在10~12周之间,而且是一个逐渐缓进的过程,此时仔猪的胃肠道接近于成熟;但在商业养猪场,为了追求利断奶对仔猪肠道屏障的影响及营养调控徐运杰 2,胡凤娇 3,全丽萍 1,苏双良 1 ,陈学华 1 ,邓 敦 2(1.山东和美集团有限公司,山东 惠民 251700;2.唐人神集团股份有限公司,湖南 株洲 412000;3.濮阳市动物卫生监督所,河南 濮阳 457000)摘 要:在集约化养殖中,3~4周龄早期断奶是仔猪生命周期中一个非常紧张的时期,此时仔猪胃肠道还未发育成熟。
肠道屏障由上皮、免疫和肠神经系统组成,这些系统控制上皮屏障的完整性以及肠道功能,包括肠腔营养物质、水和电解质的运输。
早期断奶导致肠道通透性增加,出现胃肠功能紊乱的情况,可能对猪只一生产生长期的影响。
因此,仔猪断奶饲粮需要正确水平的营养素、营养源和高质量的添加剂,鼓励仔猪快速进食,减轻或消除断奶应激综合症,降低死亡率和发病率。
养猪就是养“肠道”,合理使用功能性氨基酸、植物化学物质和有机酸等添加剂,能够修复由于断奶应激综合症导致的肠道屏障功能障碍。
关键词:肠道屏障;功能性氨基酸;植物化学物质;有机酸Effect of weaning on gut barrier and nutrition regulation in pigletsYunjie Xu 1,2; Fengjiao Hu 3; Liping Quan 1; Shuangliang Su 1; Xuehua Chen 1; Dun Deng 2(1.Shandong Highmade Group Co., Ltd., Binzhou, Shandong 251700, China; 2. T angrenshen Group Shares Co., Ltd., Zhuzhou, Hunan 412000, China; 3. Puyang Animal Health Supervision Institute, Puyang, Henan 457000, China)Abstract: In intensive farming, weaning at the early age of 3-4 weeks is a very tense period in the life cycle of piglets, when the gastrointestinal tract of piglets is not mature yet. The gut barrier is composed of the epithelium, immune system and gut nervous system, which control the integrity of the epithelium barrier and intestinal function, including the transport of nutrients, water and electrolytes in the gut cavity . Early weaning leads to the breakdown of these intestinal functions, increased permeability and gastrointestinal dysfunction, which may have a long-term impact on the life of pigs. Therefore, weaning diets of piglets need the right nutrients, nutrition sources and high quality additives to encourage piglets to eat quickly , relieve or eliminate weaning stress syndrome, and reduce mortality and incidence rate. T o raise pigs is to keep guts in good health. Rational use of functional amino acids, phytochemicals, organic acids and other additives can repair the intestinal barrier dysfunction caused by weaning stress syndrome.Keywords: Gut barrier; Functional amino acids; Phytochemicals; Organic acids益最大化,断奶周龄却在3~4周之间,而且快速突然发生,仔猪胃肠道并没有完全成熟。
早期断奶对仔猪小肠中谷氨酸谷氨酰胺转运载体表达的影响

动物营养学报2020,32(7):3324⁃3332ChineseJournalofAnimalNutrition㊀doi:10.3969/j.issn.1006⁃267x.2020.07.042早期断奶对仔猪小肠中谷氨酸/谷氨酰胺转运载体表达的影响王秋菊1㊀崔一喆1∗㊀王梦竹1㊀贾军峰1㊀胡海燕2㊀武志敏2㊀耿忠诚1(1.黑龙江八一农垦大学动物科技学院,大庆163319;2.黑龙江省杜尔伯特蒙古自治县畜牧局,大庆166299)摘㊀要:本试验旨在研究早期断奶对仔猪小肠中谷氨酸/谷氨酰胺转运载体表达的影响㊂试验从40头母猪的仔猪中各选出体重相近㊁10日龄的杜长大三元杂交仔猪1头,共40头仔猪,随机不配对分为2组,每组20头仔猪,对照组为哺乳仔猪,随母猪喂养;试验组为断奶仔猪,隔离断奶饲养㊂试验期10d㊂饲养结束,每组随机选取12头仔猪,屠宰后取空肠和回肠组织,测定谷氨酸/谷氨酰胺转运载体蛋白和mRNA表达情况,并检测小肠组织形态和小肠氧化应激水平㊂结果表明:与哺乳仔猪相比,早期断奶显著提高了仔猪空肠和回肠谷氨酸/胱氨酸交换载体(xCT)和中性氨基酸转运载体2(ASCT2)蛋白和mRNA表达量(P<0.05);皮尔森相关分析结果显示,断奶仔猪与哺乳仔猪的xCT和ASCT2蛋白表达量在空肠和回肠组织匀浆㊁细胞内质㊁细胞顶膜与空肠和回肠中对应mRNA表达量之间均呈正向线性关系,且差异显著(P<0.05)㊂与哺乳仔猪相比,断奶仔猪空肠和回肠绒毛高度降低,隐窝深度增加,差异均显著(P<0.05)㊂与哺乳仔猪相比,断奶仔猪空肠和回肠组织的总抗氧化能力均显著降低(P<0.05),且空肠氧化型谷胱甘肽(GSSG)含量显著提高(P<0.05),回肠谷胱甘肽(GSH)含量显著降低(P<0.05)㊂结果提示,早期断奶使仔猪小肠处于氧化应激状态,显著提高断奶仔猪小肠组织中xCT和ASCT2蛋白及mRNA表达量,以促进谷氨酸/谷氨酰胺的摄取,降低仔猪小肠的氧化应激水平㊂关键词:仔猪;小肠;谷氨酸转运载体;谷氨酰胺转运载体;抗氧化能力中图分类号:S828㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1006⁃267X(2020)07⁃3324⁃09收稿日期:2020-03-07基金项目:黑龙江省自然科学基金项目(C2015040);黑龙江省科技计划省院科技合作项目(YS19B01);黑龙江省农垦总局科技攻关课题(HNKXIV⁃08⁃03⁃01)作者简介:王秋菊(1979 ),女,黑龙江海林人,副教授,博士,研究方向为动物肠道健康及营养调控㊂E⁃mail:wqj_9@163.com∗通信作者:崔一喆,副教授,硕士生导师,E⁃mail:cuiyizhe1979@126.com㊀㊀为了提高养猪业的经济效益,提高养殖效率,现代化养猪生产普遍采用早期断奶技术,且仔猪断奶日龄日趋提前[1]㊂然而早期断奶时仔猪肠道没有完全发育成熟,采食量出现下降,生长受阻[2]㊂如何为断奶仔猪正常生长提供全面的营养,增强断奶仔猪机体免疫力,提高仔猪生长速度,是目前养猪业所面临的重要任务㊂为解决这些难题,首先要了解仔猪在早期断奶期间机体营养物质的变化和营养物质的转运吸收机制㊂氨基酸作为重要的营养物质之一,既可氧化供能[3],又可作为蛋白质[4]㊁核苷类以及聚胺类合成的前体物,且通过其转运载体的调控参与动物肠道营养物质代谢[5]㊂其中谷氨酸(Glu)和谷氨酰胺是与肠黏膜生长和代谢相关的重要氨基酸[6],对仔猪的生长发育尤为重要㊂谷氨酸转运中,通过非钠离子依赖的谷氨酸/谷氨酰胺转运载体(Xc-)系统进行谷氨酸-胱氨酸交换,通过中性氨基酸转运载体系统(ASC)将其前体物谷氨酰胺转运,产生谷氨酸[7]㊂但早期断奶条件下,仔猪小肠谷氨酸/谷氨酰胺转运载体的表达发生怎样的变化,尚未见7期王秋菊等:早期断奶对仔猪小肠中谷氨酸/谷氨酰胺转运载体表达的影响报道㊂因此,本研究以饲粮中不添加谷氨酸和谷氨酰胺的隔离早期断奶饲养的仔猪为研究对象,着重研究早期断奶对仔猪小肠谷氨酸/谷氨酰胺转运载体系统中的谷氨酸/胱氨酸交换载体(xCT)和中性氨基酸转运载体2(ASCT2)的影响,探讨早期断奶对仔猪小肠谷氨酸转运的影响,对了解仔猪小肠中谷氨酸转运及调控的深层机理具有重要意义,为断奶仔猪饲粮中添加谷氨酸或谷氨酰胺寻求理论依据㊂1㊀材料与方法1.1㊀试验设计㊀㊀仔猪小肠样品来自本实验室前期的动物饲养试验,试验分别从40头不同母猪的仔猪中各选出体重相近㊁10日龄的杜长大三元杂交仔猪1头,共40头仔猪,随机不配对分为2组,每组20头仔猪,对照组为哺乳仔猪,随母猪喂养;试验组为断奶仔猪,饲喂玉米-豆粕型商品饲粮,进行单栏隔离饲养,试验期10d㊂仔猪的饲粮组成及营养水平,以及详细的饲养管理参考前期的研究[8]㊂1.2㊀样品采集㊀㊀仔猪饲养结束,每组随机选取12头仔猪,异氟烷麻醉后屠宰,取空肠和回肠,用无菌冰生理盐水冲洗干净内容物,并在各肠段中间位置分别取1和5cm肠段样品,1cm肠段样品装于含4%甲醛的标本瓶中,室温保存,用于检测小肠组织形态;5cm肠段样品装于15mL离心管中,液氮冻存㊂并在液氮存在下用研钵进行组织研磨,小肠组织研磨粉装入冻存管中,于-80ħ保存,用于测定谷氨酸/谷氨酰胺转运载体蛋白和mRNA表达量,并检测小肠氧化应激水平㊂1.3㊀指标检测1.3.1㊀谷氨酸/谷氨酰胺转运载体蛋白和mRNA表达量检测㊀㊀根据前期研究[8]方法制备仔猪空肠和回肠的组织匀浆㊁细胞内质和细胞顶膜样品,分别采用Western⁃blot和实时荧光定量-PCR(RT⁃PCR)方法检测xCT和ASCT2蛋白和mRNA表达量㊂㊀㊀蛋白检测:首先使用牛血清蛋白(级分Ⅳ,Bio⁃Rad公司)作为蛋白标准,采用比色法,通过96孔板读板分光光度计(Fisher公司)测定组织匀浆㊁细胞内质和顶膜样品中蛋白质的含量;按蛋白质含量稀释样品,进行基硫酸钠聚丙烯酰胺凝胶电泳(SDS⁃PAGE,Bio⁃Rad公司)和转膜抗体孵育(半干转膜仪,Bio⁃Rad公司),分别检测xCT㊁ASCT2和持家基因β-肌动蛋白(β⁃actin)蛋白表达量㊂最后用Scion成像软件(Scion公司,弗雷德里克)对图像进行印迹光密度扫描测定㊂㊀㊀各蛋白抗体及稀释浓度如下:xCT一抗为鼠抗人xCT多克隆抗体(Chemicon,Temecula公司),用6%脱脂牛奶溶解到1ˑ三羟甲基氨基甲烷等渗缓冲盐溶液(TBS)中进行1ʒ250稀释㊂ASCT2一抗为羊抗人ASCT2多克隆抗体(圣克鲁斯生物国际有限公司),1ʒ2000稀释;β⁃actin一抗为鼠抗人单克隆抗体(Bio⁃Rad公司),1ʒ10000稀释;二抗均用兔抗人免疫球蛋白G(IgG)抗体(Bio⁃Rad公司),1ʒ10000稀释㊂㊀㊀基因检测:引物序列和产物大小见表1,由In⁃vitrogen公司合成㊂表1㊀引物序列和产物大小Table1㊀Primersequencesandproductsize基因Genes引物序列Primersequence(5ᶄ 3ᶄ)产物大小Productsize/bpGenBank登录号GenBankaccessionNo.谷氨酸/胱氨酸交换载体xCTF:CTCCATCATCATCGGCACCGTCR:TGCAGCAGCTCCTCCGCACTGA747NM_011990中性氨基酸转运载体2ASCT2F:GAGCTGGATGAGGTTCCAAAR:GCCAGCAAGATTGTGGAGAT478NM_005628β-肌动蛋白β⁃actinF:GGATGCAGAAGGAGATCACGR:ATCTGCTGGAAGGTGGACAG150AY5500695233㊀动㊀物㊀营㊀养㊀学㊀报32卷㊀㊀采用25μL反应体系,体系组成参见iQSYBRGreenSupermixRT⁃PCR试剂盒(Qiagen公司)说明书,进行RT⁃PCR检测(实时定量RT⁃PCR仪,Bio⁃Rad公司)㊂操作程序为:反转录程序(50ħ30min);蛋白质变性程序(95ħ15min);扩增和量化程序,重复45个循环(95ħ变性15s,54ħ退火15s,72ħ延伸15s);熔解曲线程序(60 99ħ,以0.1ħ/s的速度加热,且进行荧光测量)㊂㊀㊀目的基因与持家基因相对表达量比值的计算公式如下:R=2-Ct(目的基因-持家基因)㊂㊀㊀式中:R为目的基因的相对表达比值;Ct表示阈值的循环数㊂1.3.2㊀空肠和回肠黏膜形态学测定㊀㊀将仔猪空肠和回肠样品经福尔马林液浸泡固定,经石蜡包埋,染色制成切片㊂制好的切片用LeicaDMR型光学显微镜5.0ˑ放大率测量每头仔猪空肠和回肠的绒毛高度㊁隐窝深度和平滑肌厚度㊂计算绒毛高度/隐窝深度和黏膜厚度(绒毛高度+隐窝深度)㊂1.3.3㊀空肠和回肠组织氧化还原水平测定㊀㊀空肠和回肠中总谷胱甘肽(GSHt)和氧化型谷胱甘肽(GSSG)含量根据试剂盒(Bio⁃Rad公司)说明,采用比色法,通过96孔板读板分光光度计(Fisher公司)进行测定㊂小肠还原型谷胱甘肽(GSH)含量通过以下公式计算获得:GSH=GSHt-2ˑGSSG㊂㊀㊀小肠总抗氧化能力根据试剂盒(TA02,Oxford公司)说明,采用比色法,通过96孔板读板分光光度计进行测定㊂1.4㊀统计分析㊀㊀采用SAS13.0软件中one⁃wayANOVA进行t检验分析㊂试验数据以平均值ʃ标准误或混合平均标准误表示㊂P<0.05视为差异显著㊂2㊀结㊀果2.1㊀早期断奶对仔猪小肠黏膜发育的影响㊀㊀由表2和表3可知,与哺乳仔猪相比,断奶仔猪的空肠和回肠绒毛高度分别显著降低了55%和47%(P<0.05);同时隐窝深度分别显著增加了146%和99%(P<0.05);另外,断奶仔猪空肠和回肠的黏膜厚度,相对于哺乳仔猪,亦分别显著减少了13%和14%(P<0.05);而无论是空肠还是回肠,断奶仔猪平滑肌厚度与哺乳仔猪相比均无显著变化(P>0.05)㊂表2㊀仔猪空肠黏膜形态学变化Table2㊀Mucosalmorphologychangeinjejunumofpiglets(n=12)项目Items哺乳组Sucklinggroup断奶组WeaninggroupSEMP值P⁃value绒毛高度Villusheight/μm501.93226.82∗3.190.027隐窝深度Cryptdepth/μm132.46326.00∗3.730.018绒毛高度/隐窝深度V/C3.790.70∗0.04<0.001黏膜厚度Mucosathickness/μm634.39552.82∗6.200.042平滑肌厚度Smoothmusclethickness/μm191.21184.722.280.098㊀㊀∗表示与哺乳组相比差异显著(P<0.05)㊂下表同㊂㊀㊀∗meansignificantlydifferencecomparedwithsucklinggroup(P<0.05).Thesameasbelow.表3㊀仔猪回肠黏膜形态学变化Table3㊀Mucosalmorphologychangeinileumofpiglets(n=12)项目Items哺乳组Sucklinggroup断奶组WeaninggroupSEMP值P⁃value绒毛高度Villusheight/μm457.18243.42∗7.870.011隐窝深度Cryptdepth/μm133.49265.41∗6.250.026绒毛高度/隐窝深度V/C3.440.92∗0.090.013黏膜厚度Mucosathickness/μm590.67508.83∗10.640.038平滑肌厚度Smoothmusclethickness/μm188.95196.212.970.05962337期王秋菊等:早期断奶对仔猪小肠中谷氨酸/谷氨酰胺转运载体表达的影响2.2㊀早期断奶对仔猪小肠xCT蛋白及mRNA表达量的影响2.2.1㊀早期断奶对仔猪小肠xCT蛋白表达量的影响㊀㊀采用Westernblot分析方法,成功地从仔猪小肠组织匀浆㊁细胞内质和细胞顶膜中检测到xCT蛋白,并分析其含量㊂结果在小肠组织匀浆㊁细胞内质和细胞顶膜中检测到的xCT蛋白分子质量均为40ku㊂仔猪小肠xCT蛋白表达量差异结果如图1和图2所示㊂与哺乳仔猪相比,断奶仔猪空肠组织匀浆㊁细胞内质和细胞顶膜中xCT蛋白表达量分别显著提高了11%㊁20%和20%(P<0.05,图1);断奶仔猪回肠组织匀浆㊁细胞内质和细胞顶膜中xCT蛋白表达量分别显著提高了11%㊁17%和22%(P<0.05,图2)㊂㊀㊀SU:哺乳仔猪样本sucklingpigletsample;WN:断奶仔猪样本weaningpigletsample;Suckling:哺乳组sucklinggroup;Weaning:断奶组weaninggroup;Homogenate:组织匀浆;Intracellular:细胞内质;MembraneBound:细胞顶膜㊂∗表示与哺乳组相比,差异显著(P<0.05)∗meandifferentfromsucklinggroup(P<0.05)㊂下图同thesameasbelow㊂图1㊀仔猪空肠中xCT蛋白表达量Fig.1㊀xCTproteinexpressioninjejunumofpiglets2.2.2㊀早期断奶对仔猪小肠xCTmRNA表达量的影响㊀㊀由表4可知,断奶仔猪空肠中xCTmRNA表达量较哺乳仔猪显著提高了99%(P<0.05);断奶仔猪回肠中xCTmRNA表达量较哺乳仔猪显著提高了82%(P<0.05)㊂㊀㊀断奶仔猪与哺乳仔猪小肠xCT蛋白表达量与mRNA表达量之间的皮尔森相关分析结果如表5所示㊂断奶仔猪与哺乳仔猪空肠和回肠组织匀浆㊁细胞内质㊁细胞顶膜的xCT蛋白表达量与其对应肠段中xCTmRNA表达量之间均呈正向线性关系(P<0.05);空肠和回肠组织匀浆㊁细胞内质和细胞顶膜中xCT蛋白表达量之间也呈正向线性关系,且差异显著(P<0.05)㊂图2㊀仔猪回肠中xCT蛋白表达量Fig.2㊀xCTproteinexpressioninileumofpiglets2.3㊀早期断奶对仔猪小肠ASCT2蛋白及mRNA表达量的影响2.3.1㊀早期断奶对仔猪小肠ASCT2蛋白表达量的影响㊀㊀如图3所示,在空肠组织匀浆㊁细胞内质和细胞顶膜中分别检测到分子质量为57ku的ASCT2蛋白,与哺乳仔猪相比较,ASCT2蛋白在断奶仔猪空肠组织匀浆㊁细胞内质和细胞顶膜中的表达量分别显著提高了25%㊁26%和35%(P<0.05)㊂如图4所示,在回肠组织匀浆㊁细胞内质和细胞顶膜中也检测到分子质量为57ku的ASCT2蛋白,与哺乳仔猪相比较,在断奶仔猪回肠组织匀浆和细胞顶膜中ASCT2蛋白表达量分别显著提高了50%和33%(P<0.05),但在回肠细胞内质中ASCT2蛋白表达量没有显著变化(P>0.05)㊂2.3.2㊀早期断奶对仔猪小肠ASCT2mRNA表达量的影响㊀㊀由表6可知,断奶仔猪空肠组织中ASCT2mRNA表达量较哺乳仔猪显著增加了454%(P<0.05);回肠空肠组织中ASCT2mRNA表达量较哺乳仔猪显著提高了136%(P<0.05)㊂7233㊀动㊀物㊀营㊀养㊀学㊀报32卷表4㊀仔猪小肠xCTmRNA表达量Table4㊀xCTmRNAexpressioninsmallintestineofpiglets(n=12)项目Items哺乳组Sucklinggroup断奶组WeaninggroupSEMP值P⁃value空肠Jejunum0.00170.0034∗0.00050.021回肠Ileum0.00380.0068∗0.00060.016表5㊀仔猪空肠和回肠xCT蛋白与mRNA表达量的相关性Table5㊀CorrelationofxCTproteinandmRNAexpressioninjejunumandileumofpiglets(n=24)项目Items空肠中xCTmRNA表达量xCTmRNAexpressioninjejunum相关系数rP值P⁃value回肠中xCTmRNA表达量xCTmRNAexpressioninileum相关系数rP值P⁃value组织匀浆中xCT蛋白表达量xCTproteinexpressioninhomogenate0.62∗0.0050.27∗0.004细胞内质中xCT蛋白表达量xCTproteinexpressioninintracellular0.41∗0.0070.60∗0.036细胞顶膜中xCT蛋白表达量xCTproteinexpressioninmembranebound0.40∗0.0250.18∗0.031㊀㊀∗表示显著相关㊂表7同㊂㊀㊀∗meansignificantcorrelation.ThesameasTable7.图3㊀仔猪空肠ASCT2蛋白表达量Fig.3㊀ASCT2proteinexpressioninjejunumofpiglets㊀㊀断奶仔猪与哺乳仔猪小肠ASCT2蛋白表达量与mRNA表达量之间的皮尔森相关分析结果如表7所示㊂断奶仔猪与哺乳仔猪空肠和回肠组织匀浆㊁细胞内质㊁细胞顶膜的ASCT2蛋白表达量与其对应肠段中ASCT2mRNA表达量之间均呈正向线性关系(P<0.05);空肠和回肠组织匀浆㊁细胞内质和细胞顶膜中ASCT2蛋白表达量之间也呈正向线性关系,且差异显著(P<0.05)㊂图4㊀仔猪回肠ASCT2蛋白表达量Fig.4㊀ASCT2proteinexpressioninileumofpiglets82337期王秋菊等:早期断奶对仔猪小肠中谷氨酸/谷氨酰胺转运载体表达的影响表6㊀仔猪小肠ASCT2mRNA表达量Table6㊀ASCT2mRNAexpressioninsmallintestineofpiglets(n=12)项目Items哺乳组Sucklinggroup断奶组WeaninggroupSEMP值P⁃value空肠Jejunum0.00130.0072∗0.0015<0.001回肠Ileum0.00110.0026∗0.00020.036表7㊀仔猪空肠和回肠ASCT2蛋白与mRNA表达量的相关性Table7㊀CorrelationofASCT2proteinandmRNAexpressioninjejunumandileumofpiglets(n=24)项目Items空肠中ASCT2mRNA表达量ASCT2mRNAexpressioninjejunum相关系数rP值P⁃value回肠中ASCT2mRNA表达量ASCT2mRNAexpressioninileum相关系数rP值P⁃value组织匀浆中ASCT2蛋白表达量ASCT2proteinexpressioninhomogenate0.41∗0.0210.54∗0.026细胞内质中ASCT2蛋白表达量ASCT2proteinexpressioninintracellular0.62∗0.0180.54∗0.029细胞顶膜中ASCT2蛋白表达量ASCT2proteinexpressioninmembranebound0.46∗0.0120.53∗0.0352.4㊀早期断奶对仔猪小肠抗氧化应激水平的影响㊀㊀哺乳和断奶仔猪空肠中GSHt㊁GSH㊁GSSG含量和总抗氧化能力结果见表8㊂与哺乳仔猪相比,断奶仔猪空肠GSHt含量差异不显著(P>0.05);空肠GSH含量较哺乳仔猪显著降低了34%(P<0.05);空肠GSSG含量比哺乳仔猪显著提高了83%(P<0.05)㊂与哺乳仔猪相比,断奶仔猪空肠GSH/GSSG显著降低了66%(P<0.05)㊂断奶仔猪与哺乳仔猪相比,空肠中总抗氧化能力没有显著变化(P>0.05)㊂表8㊀仔猪空肠中GSHt、GSH和GSSG含量Table8㊀ContentsofGSHt,GSHandGSSGinjejunumofpiglets(n=12)项目Items哺乳组Sucklinggroup断奶组WeaninggroupSEMP值P⁃value总谷胱甘肽GSHt/(nmol/mgprot)2.782.800.120.917还原型谷胱甘肽GSH/(nmol/mgprot)2.021.34∗0.120.037氧化型谷胱甘肽GSSG/(nmol/mgprot)0.380.73∗0.060.045还原型谷胱甘肽/氧化型谷胱甘肽GSH/GSSG53.1618.36∗5.470.029总抗氧化能力TAC/(mmol/mgprot)32.5426.842.410.125㊀㊀哺乳和断奶仔猪回肠中GSHt㊁GSH㊁GSSG含量和总抗氧化能力结果见表9㊂与哺乳仔猪相比较,回肠中GSHt和GSH含量分别显著降低了31%和35%(P<0.05);但回肠GSSG含量没有统计学差异(P>0.05);回肠中总抗氧化能力显著下降了27%(P<0.05)㊂3㊀讨㊀论㊀㊀哺乳动物肠黏膜最重要的作用是在对饲粮营养物质进行必要消化和吸收的同时,对肠内微生物和毒素具有屏障作用[9]㊂尽管调节仔猪肠道黏膜屏障功能的分子机制还没有完全研究透彻,但是很明显,在饥饿和疾病的状态下,肠道屏障容易9233㊀动㊀物㊀营㊀养㊀学㊀报32卷受到损坏,导致发病率和死亡率的明显提高[10]㊂Smith等[11]的研究显示,15 21日龄断奶的仔猪,与23 28日龄断奶的仔猪相比,可以导致仔猪持续的肠道屏障功能性紊乱㊂在本研究中,10日龄早期断奶仔猪小肠绒毛更短,隐窝深度更深,说明早期断奶严重影响了仔猪肠内营养的吸收和利用㊂表9㊀仔猪回肠中GSHt、GSH和GSSG含量Table9㊀ContentsofGSHt,GSHandGSSGinileumofpiglets(n=12)项目Items哺乳组Sucklinggroup断奶组WeaninggroupSEMP值P⁃value总谷胱甘肽GSHt/(nmol/mgprot)16.5411.29∗0.880.031还原型谷胱甘肽GSH/(nmol/mgprot)13.328.63∗1.170.460氧化型谷胱甘肽GSSG/(nmol/mgprot)1.611.330.230.077还原型谷胱甘肽/氧化型谷胱甘肽GSH/GSSG8.276.491.040.126总抗氧化能力TAC/(mmol/mgprot)53.8239.54∗3.380.014㊀㊀Xc-系统是非钠依赖的谷氨酸/胱氨酸交换系统,它将谷氨酸和胱氨酸按1ʒ1比率通过细胞膜进行交换,将胱氨酸摄取进细胞内,将细胞内多余的谷氨酸置换到细胞外[12]㊂Xc-系统有重链亚基4F2hc和轻链亚基xCT,其中xCT是Xc-系统中的主要载体,它主要是转运细胞内的谷氨酸和细胞外的胱氨酸[13]㊂Xc-系统转运在大脑㊁神经元及突触中研究较多[14-16],而在肠道等非神经器官中研究较少㊂Burdo等[17]首次从猴子的十二指肠和肾脏中检测到xCT蛋白,且xCT载体位于细胞顶膜上以介导谷氨酸/胱氨酸的转运㊂Bridges等[18]研究发现,xCT载体在大脑中通过转运谷氨酸/胱氨酸,维持细胞内谷氨酸/胱氨酸的水平,降低氧化应激以维持细胞的健康㊂McBean[19]研究表明,Xc-介导的谷氨酸转运由氧化应激引起,氧化应激可刺激xCT的转运,提供更多的底物氨基酸来合成谷胱甘肽,抵抗机体内的氧化水平㊂本研究发现了仔猪小肠中xCT亚基,且断奶时仔猪小肠xCT蛋白表达量显著提高,说明xCT为了降低仔猪小肠的氧化应激水平而提高了表达量,以此增加对小肠中谷氨酸/胱氨酸的转运,与以上其他组织中研究结果一致㊂㊀㊀ASCT2是钠离子依赖的转运载体,在谷氨酸和谷氨酰胺的循环中起重要作用㊂Epler等[20]研究发现,降低上皮细胞外环境的pH可以促进细胞对谷氨酰胺的吸收,将谷氨酰胺吸收入血液,同时伴有ASCT2mRNA的表达量升高㊂本试验结果显示,早期断奶提高了ASCT2在小肠组织各部分的蛋白和mRNA表达量㊂断奶仔猪小肠组织中,影响谷氨酰胺转运的因素有很多种㊂ASCT2除转运谷氨酰胺以外,还可以转运天冬酰胺㊁L-半胱氨酸等[21];其中半胱氨酸对谷氨酰胺的转运有竞争抑制作用㊂本试验断奶仔猪饲粮配方中,半胱氨酸水平恰好符合断奶仔猪(5 10kg,0.41%)的营养需求,未添加额外的半胱氨酸,半胱氨酸与谷氨酰胺是否竞争ASCT2,尚不明确,仍需进一步研究㊂㊀㊀在猪等哺乳动物的乳汁中,含有较高含量的GSH㊁甘氨酸和谷氨酰胺[22]㊂大多数哺乳动物中,谷氨酸是肠-肾轴合成内源性GSH的主要底物,这个合成途径弥补了由于断奶造成的GSH严重缺乏的影响㊂目前认为GSH是体内主要的抗氧化剂[23],阻止活性氧自由基对机体的损伤㊂氧化应激水平提高时,GSH就会向氧化型谷胱甘肽(GSSG)转变,导致GSSG堆积和许多病理疾病的出现[24]㊂一般以GSH+2GSSG的含量表示细胞内GSH总量[25],以GSH/GSSG表示细胞氧化还原状态[26]㊂本试验结果显示,早期断奶使仔猪空肠组织中GSH含量下降,GSSG含量显著提高;但回肠组织中GSSG含量没有显著升高㊂这说明早期断奶仔猪空肠处于严重的氧化应激状态,而回肠的氧化应激水平降低,可能与肠道位置及机体自身抗氧化应激调节有关,如GSH在防止细胞免受各种过氧化损伤方面具有重要作用,如果谷胱甘肽合成的转运载体含量增多,则合成的谷氨酸/谷氨酰胺增多,则机抗氧化能力提高,氧化水平就会降低㊂㊀㊀同时合成GSH㊁蛋白-S-S-半胱氨酸(PSSC)中,其底物氨基酸的吸收对于GSH与PSSC合成,03337期王秋菊等:早期断奶对仔猪小肠中谷氨酸/谷氨酰胺转运载体表达的影响维持氧化还原状态是十分重要的㊂本试验中断奶仔猪小肠中胱氨酸/谷氨酸交换器xCT和ASCT2蛋白表达量均显著升高,通过在肠细胞中摄取合成GSH所需的氨基酸,在肠细胞中积累胱氨酸/半胱氨酸,作为抗氧化剂或半胱氨酸用作PSSC形成的来源,起到缓冲氧化应激的作用㊂4㊀结㊀论㊀㊀总的来说,早期断奶使仔猪小肠处于氧化应激状态,试验证实了断奶应激可增强仔猪小肠组织中xCT和ASCT2蛋白及其mRNA表达量,以促进谷氨酸/谷氨酰胺的摄取尤其是半胱氨酸的吸收,降低仔猪小肠的氧化应激水平㊂参考文献:[1]㊀KOKB,KIMGD,KANGDG,etal.Theinfluencesofweaningageandweightoncarcasstraitsandmeatqualityofpigs[J].AnimalScienceJournal,2015,86(4):428-434.[2]㊀VERDONM,MORRISONRS,RAULTJL.Thewel⁃fareandproductivityofsowsandpigletsingrouplac⁃tationfrom7,10,or14dpostpartum[J].JournalofAnimalScience,2020,98(3):skaa037.[3]㊀GÓRSKA⁃WARSEWICZH,LASKOWSKIW,KU⁃LYKOVETSO,etal.Foodproductsassourcesofpro⁃teinandaminoacids⁃thecaseofpoland[J].Nutrients,2018,10(12):1977[4]㊀KAMEIY,HATAZAWAY,UCHITOMIR,etal.Regulationofskeletalmusclefunctionbyaminoacids[J].Nutrients,2020,12(1):261.[5]㊀HUL,KRISTENSENNB,CHELQ,etal.Netab⁃sorptionandlivermetabolismofaminoacidsandheatproductionofportal⁃drainedvisceraandliverinmul⁃tiparoussowsduringtransitionandlactation[J].Jour⁃nalofAnimalScienceandBiotechnology,2020,11:5.[6]㊀JOHNSONJS,LAYDC,Jr.Evaluatingthebehavior,growthperformance,immuneparameters,andintesti⁃nalmorphologyofweanedpigletsaftersimulatedtransportandheatstresswhenantibioticsareelimina⁃tedfromthedietorreplacedwithL⁃glutamine[J].JournalofAnimalScience,2017,95(1):91-102.[7]㊀CORMERAISY,MASSARDPA,VUCETICM,etal.TheglutaminetransporterASCT2(SLC1A5)pro⁃motestumorgrowthindependentlyoftheaminoacidtransporterLAT1(SLC7A5)[J].TheJournalofBio⁃logicalChemistry,2018,293(8):2877-2887.[8]㊀WANGQJ,CUIYZ,ZHANGXYI,etal.Effectofearlyweaningontheexpressionofexcitatoryaminoacidtransporter1inthejejunumandileumofpiglets[J].Molecularmedicinereports,2017,16:6518-6525.[9]㊀YAPYA,MARIÑOE.Aninsightintotheintestinalwebofmucosalimmunity,microbiota,anddietinin⁃flammation[J].FrontiersinImmunology,2018,9:2617.[10]㊀DAVISJ.Hunger,ghrelinandthegut[J].Brainre⁃search,2018,1693:154-158.[11]㊀SMITHF,CLARKJE,OVERMANBL,etal.Earlyweaningstressimpairsdevelopmentofmucosalbarrierfunctionintheporcineintestine[J].AmericanJournalofPhysiologyGastrointestinalandLiverPhysiology,2010,298(3):G352-G363.[12]㊀LANGFORDMP,REDMONDP,CHANISR,etal.Glutamate,excitatoryaminoacidtransporters,XC-an⁃tiporter,glutaminesynthetase,andγ⁃glutamyltranspep⁃tidaseinhumancornealepithelium[J].CurrentEyeResearch,2010,35(3):202-211.[13]㊀LOM,LINGV,WANGYZ,etal.TheXC-cystine/glutamateantiporter:amediatorofpancreaticcancergrowthwitharoleindrugresistance[J].BritishJour⁃nalofCancer,2008,99(3):464-472.[14]㊀DANBOLTNC,FURNESSDN,ZHOUY.Neuronalvsglialglutamateuptake:resolvingtheconundrum[J].NeurochemistryInternational,2016,98:29-45.[15]㊀BAKLK,SCHOUSBOEA,WAAGEPETERSENHS.Theglutamate/GABA⁃glutaminecycle:aspectsoftransport,neurotransmitterhomeostasisandammoniatransfer[J].JournalofNeurochemistry,2006,98(3):641-653.[16]㊀FONTANAACK.Protocolsformeasuringglutamateuptake:dose⁃responseandkineticassaysininvitroandexvivosystems[J].CurrentProtocolsinPharma⁃cology,2018,82(1):e45.[17]㊀BURDOJ,DARGUSCHR,SCHUBERTD.Distribu⁃tionofthecystine/glutamateantiportersystemX⁃Cinthebrain,kidney,andduodenum[J].JournalofHisto⁃chemistry&Cytochemistry,2006,54(5):549-557.[18]㊀BRIDGESCC,HUHK,MIYAUCHIS,etal.Induc⁃tionofcystine⁃glutamatetransporterXC-byhumanimmunodeficiencyvirustype1transactivatorproteintatinretinalpigmentepithelium[J].InvestigativeOphthalmology&VisualScience,2004,45(9):2906-2914.[19]㊀MCBEANGJ.Cerebralcystineuptake:ataleoftwotransporters[J].TrendsinPharmacologicalSciences,2002,23(7):299-302.[20]㊀EPLERMJ,SOUBAWW,MENGQH,etal.Meta⁃bolicacidosisstimulatesintestinalglutamineabsorp⁃tion[J].JournalofGastrointestinalSurgery:OfficialJournaloftheSocietyforSurgeryoftheAlimentaryTract,2003,7(8):1045-1052.[21]㊀OPPEDISANOF,POCHINIL,GALLUCCIOM,et1333㊀动㊀物㊀营㊀养㊀学㊀报32卷al.Theglutamine/aminoacidtransporter(ASCT2)reconstitutedinliposomes:transportmechanism,regu⁃lationbyATPandcharacterizationoftheglutamine/glutamateantiport[J].BiochimicaetBiophysicaActa(BBA):Biomembranes,2007,1768(2):291-298.[22]㊀WANGWW,DAIZL,WUZL,etal.Glycineisanutritionallyessentialaminoacidformaximalgrowthofmilk⁃fedyoungpigs[J].AminoAcids,2014,46(8):2037-2045.[23]㊀AOYAMAK,WATABEM,NAKAKIT.Regulationofneuronalglutathionesynthesis[J].JournalofPhar⁃macologicalSciences,2008,108(3):227-238.[24]㊀WUGY,FANGYZ,YANGS,etal.Glutathionemetabolismanditsimplicationsforhealth[J].TheJournalofNutrition,2004,134(3):489-492.[25]㊀LAPENNAD,CIOFANIG,GIAMBERARDINOMA.Glutathionemetabolicstatusintheagedrabbitaorta[J].ExperimentalGerontology,2017,91:34-38.[26]㊀OMIDIM,GHAFARIAN⁃BAHRAMANA,MO⁃HAMMADI⁃BARDBORIA.GSH/GSSGredoxcou⁃pleplayscentralroleinarylhydrocarbonreceptor⁃de⁃pendentmodulationofcytochromeP4501A1[J].JournalofBiochemicalandMolecularToxicology,2018,5:e22164.∗Correspondingauthor,associateprofessor,E⁃mail:cuiyizhe1979@126.com(责任编辑㊀陈㊀鑫)EffectsofEarlyWeaningonExpressionofGlutamate/GlutamineTransportersinSmallIntestineofPigletsWANGQiuju1㊀CUIYizhe1∗㊀WANGMengzhu1㊀JIAJunfeng1㊀HUHaiyan2㊀WUZhimin2㊀GENGZhongcheng1(1.CollegeofAnimalScienceandVeterinary,HeilongjiangBayiAgriculturalUniversity,Daqing163319,China;2.AnimalHusbandryBureauofDuerbertMongoliaAutonomousCounty,Daqing166299,China)Abstract:Thepurposeofthisstudywastostudytheeffectsofearlyweaningontheexpressionofglutamate/glutaminetransportersinsmallintestineofpiglets.Atotalof40pigletswithsimilarbodyweightand10daysofagewereselectedfrom40pigletsofdifferentsows.Theywererandomlydividedinto2groupswith20pigletsineachgroup.Controlgrouppigletsweresucklingpiglets,feedingwithsows.Theexperimentalgrouppigletswereweaningpiglets,isolatedandweaned.Thetriallastedfor10days.Attheendoffeeding,12pigletswererandomlyselectedfromeachgroup,jejunumandileumwerecollected,andthegeneandproteinexpressionofglutamate/glutaminetransporterweredetermined.Theresultsshowedasfollows:comparedwithsucklingpig⁃lets,earlyweaningsignificantlyincreasedtheexpressionofglutamate/cystineexchangetransporter(xCT)andneutralaminoacidtransporter2(ASCT2)proteinsandmRNAinthejejunumandileumofthepiglets(P<0.05).PearsoncorrelationanalysisresultsshowedthattheexpressionlevelsofxCTandASCT2proteinsinis⁃sueshomogenate,cellendoplasm,apicalmembraneofweaningpigletsandsucklingpigletsshowedapositivelinearrelationshipwiththeexpressionlevelsofcorrespondingmRNAinjejunumandileum(P<0.05).Theheightofvilliinthejejunumandileumofweaningpigletsdecreased,andthecryptdepthincreased,withsig⁃nificantdifferences(P<0.05).Thetotalantioxidantcapacityinjejunumandileumofweaningpigletssignifi⁃cantlyreduced(P<0.05),andthecontentofoxidizedglutathione(GSSG)injejunumsignificantlyincreased(P<0.05),andthecontentofglutathione(GSH)significantlydecreasedinileum(P<0.05).Earlyweaningplacesthesmallintestineofpigletsinastateofoxidativestress,significantlyincreasestheexpressionlevelsofxCTandASCT2proteinsandtheirmRNAinthesmallintestinaltissuesofweaningpiglets,soastopromotetheuptakeofglutamate/glutamineandreducethelevelofoxidativestressinthesmallintestineofpiglets.[Chi⁃neseJournalofAnimalNutrition,2020,32(7):3324⁃3332]Keywords:piglets;smallintestine;glutamatetransporter;glutaminetransporter;antioxidantcapacity2333。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角 度 分 析 某 些 氨 基 酸 可 有 效 缓 解 肠 牯 膜 的 损 伤 并 提 供 适 宜 的 营 养 需 要 . 配制 低 过 敏 饲 粮 配 方 提 供 参 考 。 为 仔 猪 断 奶 后 的 第 一 、 二 周 既 是 仔 猪 生 长 潜 能 发 挥 的 最
洼 时 期 卫 是 仔 猪 断 绝 了 从 母 体 获 得 抗 体 . 遭 受 巨 大 应 激 的
的 传 递 , 可使 自身 免 疫 系 统 尚 未 健 全 的 初 生 仔 猪 不 受 外 来
痪 病 的 侵 袭 ,并 使 仔 猪 对 母 猪 感 染 过 或 接 种 过 疫 苗 的 痪 病
产 生 抵 抗 力 .特 别 是 对 肠 道 疾 病 和 肠 道 微 生 物 的 侵袭 提 供
局 部 保 护 。 乳 初 乳 的 绝 大 部 分 是 IC 母 g kA. 们 直 接 由母 猪 它 血 液 转 化 而 来 。 初 乳 中 的 IG具 有 防 止 败 血 症 、 为 仔 猪 对 猪 g 作 外 界 刺 激 免疫 反 应 的发 动 剂 及 保 护 乳 腺 组 织 和 向仔 猪 提 供 被 动 免 疫 力 的 双 重 作 用 。 常 乳 中 Ih含 量 较 高 , 产 后 第 3 g 在 d, 猪 乳 中 9 % 的 IA和 7 % 的 IG均 由 乳 腺 聚 集 的 B细 胞 所 生 产 0 g 0 g 和 提 供 。这 些 B细 胞 属 于 牯 膜 系 统 IA作 为 最 重 要 的 肠 道 保 g
量 的 蛋 白 质 所 造 成 的 仔 猪 腹 泻 已 成 为 养 猪 生 产 的 一 大 问
提 供 了 系 统 性 免 疫 力 。 而 常 乳 中 的 免 疫 球 蛋 白 主 要 来 源 干
母 体 的 牯 膜 系 统 . 防止 肠 道 病 原 微 生物 的 侵袭 。肠 遭 中免 可
题 通 过 平 衡 氟 基 酸 来 配 制 低 蛋 白质 饲 粮 , 轻 肠 牯 膜 过 敏 减 性 反 应 所 造 成 的 损 伤 , 迅 速 建 立 其 自 身 免 疫 系 统 具 有 一 定 的 可 行 性 , 主 动 免 疫 的 加 强 有 利 干 提 高 断 奶 仔 猪 对 病 原 微 生 物 的 抵 抗 力 , 护 肠 牯 膜 的 完 整 , 进 仔 猪 对 营 养 物 质 的 保 促
维普资讯
早 期
断 奶
仔 猪
肠 粘 膜 免 疫 与 氨 基 酸
凳春 燕 陈代 文 张克英 ( 四川农 业太 学 动 物 营 养研 究所 , 雅 安 四川 65 1 ) 2 0 4
中囤分类号: 8 84 5 ¥2 +
文献标识码 : A
文章编号 :0 8 0 1 (0 20 - 0 6 0 1 0 - 4 42 0 )1 0 2 - 3
早 期 断 奶 仔 猪 肠 牯 膜 免 疫 力鞍 低 ,遭 受 饲 粮 抗 原 的 刺 激 而 易 引 起 肠 粘 膜 过 敏 通 过 阐 述 过 敏 反 应 机 制 . 营 ห้องสมุดไป่ตู้ 学 从
常 乳 . 乳 与 常 乳 的 免 疫 球 蛋 白 含 量 并 不 相 同 母 猪 初 乳 中 初 含 有 大 量 的免 疫 球 蛋 白 . 为 一 类 生 物 活 性 物 质 . 过 初 乳 作 通
道 免遭 病原 侵 袭 初 乳 中 的 免 疫 球 蛋 白可 以 直接 被新 生 仔 猪 摄 入 消化 道 , 通 过 吞 饮 作 用 而 直 接 进 入 血 城 中 。这 些 免 疫 球 蛋 白 为仔 猪
提 出 “日粮 抗 原 过 敏 性 反 应 是 断 奶 后 腹 泻 的 先 决 条 件 的 理 论 随 着 仔 猪 断 奶 时 间 的 逐 渐 提 前 , 奶 仔 猪 饲 料 固 使 用 大 断
护 性 抗 体 ,不 仅 因 为 lA耐 酸 碱 和 酶 的 水 解 作 用 有 较 强 的 抵 g
抗 力 , 在 消 化 道 中 保 持 其 抗 体 活 性 , 且 它 也 可 附 着 在 消 能 而
化 道 牯 膜 的 表 面 , 止 病 原 物 质 吸 附 到 肠 壁 上 , 护 仔 猪肠 防 保
吸 收 率 文就 这 方 面 的研 究 作一 综 述 。
疫 球 蛋 白 的 生 物 半 衰 期 鞍 短 , 为 了保 证 仔 猪 连 续 获 得 免疫 球 蛋 白 , 必 须 向 仔 猪 提 供 适 宜 的蛋 白 质 及 氢 基 酸作 为 合 成
免 疫 球 蛋 白的 原 料 。 12 . 母 乳 中 的 免 疫 活 性 细 胞 母 乳 中 含 有 大 量 的 免 疫 活 性 细 胞 , 为 巨 噬 细 胞 和 粒 细 多 胞 , 少 量 的 B细 胞 和 T 胞 。 这 些 巨 噬 细 胞 还 可 能 成 为 lA 有 细 g
时 间 :通 常 为 了 促 进 仔 猪 生 长 而 提 高 营 养 物 质 的 浓 度 希 望
使 其 最 太 限 度地 发 挥 生 长 潜 能 。 目前 的 仔 猪 饲 粮 以植 物 性 来 搦【 蛋 白 为 主 . 造 成 仔 猪 肠 道 过 敏 , 谚 表 现 为 腹 泻 , 的 易 犒
而 使 养 猪 业 蒙 受 巨 大 的 经 济 损 失 。 程 学 慧 等 (O 1 指 出 3 2O ) 周 龄 以 后 仔 猪 获 得 被 动 免 疫 处 于 最 低 水 平 , 而 自身 主动 免 疫
系 统 要 到 4 5 龄 才 开 始 发 挥 作 用 , 因 而 3 4周 龄 的 早 期 断 ~ 周 ~ 奶 仔 猪 在 免 疫 力 较 差 情 况 下 , 肠 道 疾 病 特 别 敏 感 。 仔 猪 肠 对 道 所 遭 受 的 病 原 微 生 物 攻 击 主 要 存 在 干 牯 膜 表 面 , 而 此 趾 IG含 量 低 , 奉 上 不 能 发 挥 抗 体 的 作 用 。 18 年 Ne y 人 g 基 94 wb 等