初二希望杯数学竞赛培训题

合集下载

第24届希望杯全国数学竞赛八年级决赛试题(含答案)

第24届希望杯全国数学竞赛八年级决赛试题(含答案)

初二奥数题一、选择题(本大题共10小题,每小题4分,菜40分。

)1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形 2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( )(A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( ) (A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号 5、实数 a 、b 、m 、n 满足a <b , -1<n <m , 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M >N (B)M =N (C)M <N (D)无法确定的。

6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm 7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <329、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( ) (A )48人 (B )45人 (C )44人 (D )42人图2二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。

2023希望杯八年级数学思维训练题(含答案)

2023希望杯八年级数学思维训练题(含答案)

2023希望数学——8年级培训80题1.计算111 ________.2.的值是________.3..4.( )A.B.12C.21E.25. 化简,得( ).A. B.C.D.6. 若x 2 – 13x + 1 = 0,则44x x ________.4322(2)2(2)n n n 8121n 12n 87477. 设,则代数式的值为( ).A. –6B.24C.D.8. 用[x ]表示不超过x 的最大整数,用x – [x ]表示x 的小数部分.已知a 是t 的小数部分,b 是 – t 的小数部分,则________.9. 已知x + y + z = 13,xy + yz + zx =102, xyz = 333,那么222222(1)(1)(1)(1)(1)(1)x y z y z x z x y ________.10. 已知实数a ,b ,c 满足613675a b c ,99260a b c ,则3232b ca b=_______.11. 若2(23)|23|0x y x y z ,则y z x =________.12. 如果221,4x y x y ,则33x y _________.1a 2212a a 1012t112b a13. 实数x ,y 满足,,x y ,则的值为________.14. 已知1113a b c d,1115b a c d ,1117c a b d ,1119d a b c ,则3579a b c d=________.15. 若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,那么a +b +c +d的最大值是________.16. 已知12m x x ,222n y y 则m – n 的最小值为_______.17. 记12()12nf n n n n n(其中n 为大于1的整数),则f (n )的最小值是_________.18. 在实数范围内定义一种运算☆,其规则为a ☆b =12a b,则x ☆(x +1)=0的解为x =________.24x24y x yy x19. 设1232016,,,,a a a a 是不为零的实数,那么20152016121220152016||||||||a a a a a a a a 的值有_______种情况. 20. 方程34xx x x有________个实数根.21. 满足 2211x x x 的整数x 有________个.22. 对于实数a ,[a ]表示不大于a 的最大整数.则关于x 的方程51830337x x的整数解是x=________.23. 方程33225x y x y xy 的正整数解(x ,y )的个数是________.24. 求方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解x 、y .25. 不定方程的整数解(x ,y )共有________组.26.2 ,得x =________.27. 不等式1248163264x x x x x xx的解集是_________.28.满足不等式32 的最大质数x =_________.29. 在实数范围内定义运算 :(1)x y y x ,若不等式()()1a x x a 对任意实数x 都成立,则正整数a =_________.30. 已知关于x 的一元二次方程ax 2+bx +c =0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为 – 1和4,那么23b ca=_________.2222x y xy x y31.△ABC的三边长a、b、c均为实数且满足b+c=8,bc=a2 –12a+52,则△ABC的周长等于_________.32.关于x的四次方程x4 – 18x3 + kx2 + 200x – 1984 = 0的四个根中有两个根乘积为–32,则k的值是________.33.直角坐标系中有两个点A(– 1,– 1),B(2,3),若M为x轴上一点,且使MB – M A最大,则M的横坐标是________.34.如图,在平面直角坐标系中,一次函数443y x的图象分别交x轴、y轴于点A、B,把直线AB绕点O逆时针旋转90°,交y轴于点A',交直线AB 于点C,则△A'BC的面积为_________.35. 一次函数11y k x b 的图像经过(1,6)和(– 3,– 2)两点,它与x 轴、与轴的交点分别为B 、A ,一次函数22y k x b 的图像经过点(2,–2),在y 轴上的截距为 – 3,它与x 轴、与y 轴的交点分别为D 、C .若直线AB 、CD 交于E ,则△BCE 和△ADE 的面积比是_________.36. 已知,并且,那么直线一定通过第( )象限. A.一、二B.二、三C.三、四D.一、四37. 从– 2,– 1,1,2,3中取出两个作为一次函数y = kx + b 中的k 和b ,得到的一次函数不经过第二象限的概率是_________.38. 对于每个x ,函数y 是12332,2,122y x y x y x 这三个函数中的最小值.则函数y 的最大值是________.39. 点(2,)P a 在反比例函数ky x的图象上,它关于原点的对称点在一次函数23y x 的图象上,则k 的值为_______.0 abc p bac a c b c b a p px y40. 由方程111x y 确定的曲线所围成图形的面积是________.41. 如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB =1,OB ,矩形ABOC 绕点O 按顺时针方向旋转60°后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c 过点A 、E 、D . 在x 轴的上方有点P 、点Q ,使以点O 、B 、P 、Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,求出点P 坐标.42. 对任意的实数x ,函数f (x )有性质f (x )+f (x – 1)= x 2.如果f (19)= 94,那么f (94)除以1000的余数是________.43.密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片.李老师设计了四种正多边形瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是().A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)44.一个凸n边形,它的每个内角的度数都是整数,且任意两个内角的度数都不相同,则n的最大值是_______.45.已知等腰三角形的三边长分别是2x–2,3x–6,4x–10,则x的值是________.46.正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为________.47.如图所示,在平面直角坐标系xOy中,∠MON的两边分别是射线y=x(x≥0)与x轴正半轴.点A(6,5),B(10,2)是∠MON内的两个定点,点P、Q分别是∠MON 两边上的动点,则四边形ABPQ周长的最小值是________.48.在平面直角坐标系内,已知4个定点A(– 3,0),B(1,– 1),C(0,3),的最小值为________.D(– 1,3)及一个动点P,则PA PB PC PD49.已知点P的坐标为(0,1),O为原点,Q为第一象限内一点,若∠QPO = 150°,且P到Q的距离为2,则Q的坐标为(____,____).50.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP、△CRQ的面积分别是S1=1,S2=3,S3=1,那么正方形OPQR的边长是________.51.在△ABC中,若AC ,BC ,AB 则△ABC的面积为_______.52.如图,D是△ABC三条中线的交点,若AD=3,BD=4,CD=5,△ABC的面积是________.53.如图,等腰△ABC中,∠ACB = 90°,M,N为斜边AB上两点,且∠MCN =45°,已知AM = 3BN = 5,则MN =________.54.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为________.(结果保留π)55. 如图,Rt △ABC 中,90ACB ,30CAB ,BC =1,D ,E 分别为AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°,得到△A'BC',旋转过程中,线段DE 扫过的面积为_________.(结果保留π)56. 在Rt △ABC 中,∠C = 90°,CD ⊥AB 于D ,∠A 的平分线交CD 于E ,交BC于F ,过E 作EG ∥AB 交BC 于G ,若CE = 5,则BG =________.57. 如图,P 是△ABC 内的一点,连结AP 、BP 、CP 并延长,分别与BC 、AC 、AB 交于D 、E 、F ,已知AP = 6,BP = 9,PD = 6,PE = 3,CF = 20.那么△ABC 的面积是________.58. 如图,等边△AFG 被线段BC ,DE 分割成周长相等的三部分:等边△ACB 、梯形BCED 、梯形DEGF ,其面积分别为S 1,S 2,S 3,若263S ,则13S S =________.59. 如下图,在正方形的两个顶点之间依次连接了五条相互垂直的线段,长度分别为2,2,2,1,3,则阴影部分的面积为________.60. 已知正方形ABCD 的边长为1,P 1,P 2,P 3,P 4是正方形内部的4个点,使得△ABP 1,△BCP 2,△CDP 3和△DAP 4都是正三角形,则四边形P 1P 2P 3P 4的面积等于________.61. 在等腰梯形ABCD 中,上底AB = 500,下底CD = 650,两腰AD = BC = 333,∠A 和∠D 的平分线交于P 点,∠B 和∠C 的平分线交于Q .则PQ 的长为________.62.如图,点O是正六边形ABCDEF的中心,OM⊥DE于点M,N为OM的中点.若S△F AN=10,则正六边形ABCDEF的面积为________.63.三边长均为整数且周长不超过30的直角三角形有_________个.(平移或旋转后可以重合的三角形视为同一个)64.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同的整数最小是________.65.从1,2,…,2010这2010个正整数中,最多可以取出________个数,使得所取出的数中任意三个数之和都能被33整除.66.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数是________.67.一个三位数被11整除后的商等于这个三位数各位数字的平方和,那么这个三位数可能是_________.(求出所有结果)68.若三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是一定是某个整数n的倍数.那么n的最大值是________.69.一个不透明的袋子中装有红、黄、蓝三种颜色的玻璃球若干个,这些玻璃球除颜色外其余都相同.其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为25,那么,随机摸出一个为红色玻璃球的概率为________.70.一项“过关游戏”规定:在第n关,要抛一颗骰子n次,如果这n次抛掷骰子上底面所出现的点数之和大于2n,就算过关.则连过前3关的概率是_________.71.为了防止信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种密码加密系统,其加密、解密原理为:发送方由明文x → 密文y(加密),接收方由密文y → 明文x(解密).现在密匙为y=kx3,若明文“4”通过加密后得到的密文是“2”,则密文“1256”,解密后得到的明文是________.72.将1~20这20个正整数分成A、B两组,使得A组所有数的和等于N,而B组所有数的乘积也等于N,则N的所有可能取值有________.73.如图,矩形ABCD中,AB=3,BC=5,边长为1的小正方形MNPQ从如图的位置开始沿A→B→C→D→A的方向,在矩形内翻滚,翻滚1次后点P来到P1的位置,那么翻滚________次后,小正方形第一次回到初始位置,这个过程中点P经过的路径长为________.(结果保留π)74.如图所示,两个全等菱形的边长均为1厘米,一只蚂蚁由点A开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2016厘米后停下,则这只蚂蚁停在_________点.75.观察如下一列数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……则第2023个数对是( ).A. (6,58)B. (6,59)C. (7,58)D. (58,7)E. (59,6)76. B 船在A 船的北偏西45°处,两船相距km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是________km .77. 已知实数a > 0,且2和 –1至少有一个不满足关于x 的不等式250ax x a,则a 的最小值是________.78. 设a 1,a 2,a 3,…,a 13是13个两两不同的正整数,a 1+a 2+a 3+…+a 13=488.设a 是其中任意3个数相加之和的最小值,则a 最大可以是________.79. a ,b ,c ,d ,e ,f ,g ,h ,i 是1~9中的不同数字,则a b c d e fg h i的最小值是________.80. 一玩具工厂用于生产一批小熊、小猫的全部劳动力为273个工时,原料为243个单位.生产一个小熊要使用9个工时、12个单位原料,利润为144元;生产一个小猫要使用6个工时、3个单位原料,利润为81元.在劳动力和原料的限制下,要使生产小熊和小猫的总利润最高,应该生产小熊________个、小猫________个.2023希望数学——8年级培训80题答案1.计算111 ________.答案:– 22.的值是________.答案:23..答案:2022 4.( )A.B.12C.21E.2 答案:D5. 化简,得( ).A. B.C.D.答案:C6. 若x 2 – 13x + 1 = 0,则44x x ________.答案:278874322(2)2(2)n n n 8121n 12 n 87477. 设,则代数式的值为( ).A. –6B.24C.D.答案:A8. 用[x ]表示不超过x 的最大整数,用x – [x ]表示x 的小数部分.已知a 是t 的小数部分,b 是 – t 的小数部分,则________. 答案:9. 已知x + y+ z = 13,xy + yz + zx =102,xyz = 333,那么222222(1)(1)(1)(1)(1)(1)x y z y z x z x y ________. 答案:3365210. 已知实数a ,b ,c 满足613675a b c ,99260a b c ,则3232b ca b=_______.答案:111. 若2(23)|23|0x y x y z ,则y z x =________.答案:2512. 如果221,4x y x y ,则33x y _________.答案:11213. 实数x ,y 满足,,x y ,则的值为________. 答案:11a 2212a a 1012t112b a1224x 24y x yy x14. 已知1113a b c d,1115b a c d ,1117c a b d ,1119d a b c ,则3579a b c d=________. 答案:315. 若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,那么a +b +c +d的最大值是________. 答案:– 516. 已知12m x x ,222n y y 则m – n 的最小值为_______.答案:4 17. 记12()12nf n n n n n(其中n 为大于1的整数),则f (n )的最小值是_________.答案:5618. 在实数范围内定义一种运算☆,其规则为a ☆b =12a b,则x ☆(x +1)=0的解为x =________. 答案:119. 设1232016,,,,a a a a 是不为零的实数,那么20152016121220152016||||||||a a a a a a a a 的值有_______种情况. 答案:2017 20. 方程34xx x x有________个实数根. 答案:121. 满足 2211x x x 的整数x 有________个.答案:322. 对于实数a ,[a ]表示不大于a 的最大整数.则关于x 的方程51830337x x的整数解是x=________. 答案:– 1523. 方程33225x y x y xy 的正整数解(x ,y )的个数是________.答案:124. 求方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解x 、y .答案:8228x x y y 或25. 不定方程的整数解(x ,y )共有________组.答案:626.2 ,得x =________.答案:±36 27. 不等式1248163264x x x x x x x的解集是_________. 答案:x <6428.满足不等式32 的最大质数x =_________.答案:3972222x y xy x y29. 在实数范围内定义运算 :(1)x y y x ,若不等式()()1a x x a 对任意实数x 都成立,则正整数a =_________. 答案:130. 已知关于x 的一元二次方程ax 2+bx +c =0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为 – 1和4,那么23b ca=_________. 答案:– 631. △ABC 的三边长a 、b 、c 均为实数且满足b +c =8,bc =a 2 –12a +52,则△ABC的周长等于_________. 答案:1432. 关于x 的四次方程x 4 – 18x 3 + kx 2 + 200x – 1984 = 0的四个根中有两个根乘积为 –32,则k 的值是________. 答案:8633. 直角坐标系中有两个点A (– 1,– 1),B (2,3),若M 为x 轴上一点,且使MB – M A 最大,则M 的横坐标是________. 答案:– 2.534. 如图,在平面直角坐标系中,一次函数443y x 的图象分别交x 轴、y 轴于点A 、B ,把直线AB 绕点O 逆时针旋转90°,交y 轴于点A ',交直线AB 于点C ,则△A'BC 的面积为_________.答案:62535. 一次函数11y k x b 的图像经过(1,6)和(– 3,– 2)两点,它与x 轴、与轴的交点分别为B 、A ,一次函数22y k x b 的图像经过点(2,–2),在y 轴上的截距为 – 3,它与x 轴、与y 轴的交点分别为D 、C .若直线AB 、CD 交于E ,则△BCE 和△ADE 的面积比是_________. 答案:1∶436. 已知,并且,那么直线一定通过第( )象限. A.一、二 B.二、三 C.三、四 D.一、四答案:B37. 从– 2,– 1,1,2,3中取出两个作为一次函数y = kx + b 中的k 和b ,得到的一次函数不经过第二象限的概率是_________. 答案:31038. 对于每个x ,函数y 是12332,2,122y x y x y x 这三个函数中的最小值.则函数y 的最大值是________. 答案:60 abc p bac a c b c b a p px y39. 点(2,)P a 在反比例函数ky x的图象上,它关于原点的对称点在一次函数23y x 的图象上,则k 的值为_______.答案:240. 由方程111x y 确定的曲线所围成图形的面积是________.答案:241. 如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB =1,OB ABOC 绕点O 按顺时针方向旋转60°后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c 过点A 、E 、D . 在x 轴的上方有点P 、点Q ,使以点O 、B 、P 、Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,求出点P 坐标.答案: 120,22P P,42. 对任意的实数x ,函数f (x )有性质f (x )+f (x – 1)= x 2.如果f (19)= 94,那么f (94)除以1000的余数是________. 答案:56143.密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片.李老师设计了四种正多边形瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是().A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)答案:D44.一个凸n边形,它的每个内角的度数都是整数,且任意两个内角的度数都不相同,则n的最大值是_______.答案:2645.已知等腰三角形的三边长分别是2x–2,3x–6,4x–10,则x的值是________.答案:1646.正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为________.答案:47.如图所示,在平面直角坐标系xOy中,∠MON的两边分别是射线y=x(x≥0)与x轴正半轴.点A(6,5),B(10,2)是∠MON内的两个定点,点P、Q分别是∠MON 两边上的动点,则四边形ABPQ周长的最小值是________.答案:548.在平面直角坐标系内,已知4个定点A(– 3,0),B(1,– 1),C(0,3),D(– 1,的最小值为________.3)及一个动点P,则PA PB PC PD答案:49.已知点P的坐标为(0,1),O为原点,Q为第一象限内一点,若∠QPO = 150°,且P到Q的距离为2,则Q的坐标为(____,____).答案:11, 50.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP、△CRQ的面积分别是S1=1,S2=3,S3=1,那么正方形OPQR的边长是________.答案:251.在△ABC中,若AC ,BC ,AB ,则△ABC的面积为_______.答案:5.552.如图,D是△ABC三条中线的交点,若AD=3,BD=4,CD=5,△ABC的面积是________.答案:1853.如图,等腰△ABC中,∠ACB = 90°,M,N为斜边AB上两点,且∠MCN =45°,已知AM = 3BN = 5,则MN =________.54.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为________.(结果保留π)答案:π55. 如图,Rt △ABC 中,90ACB ,30CAB ,BC =1,D ,E 分别为AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°,得到△A'BC',旋转过程中,线段DE 扫过的面积为_________.(结果保留π)答案:456. 在Rt △ABC 中,∠C = 90°,CD ⊥AB 于D ,∠A 的平分线交CD 于E ,交BC于F ,过E 作EG ∥AB 交BC 于G ,若CE = 5,则BG =________. 答案:557. 如图,P 是△ABC 内的一点,连结AP 、BP 、CP 并延长,分别与BC 、AC 、AB 交于D 、E 、F ,已知AP = 6,BP = 9,PD = 6,PE = 3,CF = 20.那么△ABC 的面积是________.答案:10858. 如图,等边△AFG 被线段BC ,DE 分割成周长相等的三部分:等边△ACB 、梯形BCED 、梯形DEGF ,其面积分别为S 1,S 2,S 3,若263S ,则13S S =________.答案:5659. 如下图,在正方形的两个顶点之间依次连接了五条相互垂直的线段,长度分别为2,2,2,1,3,则阴影部分的面积为________.答案:960.已知正方形ABCD的边长为1,P1,P2,P3,P4是正方形内部的4个点,使得△ABP1,△BCP2,△CDP3和△DAP4都是正三角形,则四边形P1P2P3P4的面积等于________.答案:261.在等腰梯形ABCD中,上底AB = 500,下底CD = 650,两腰AD = BC = 333,∠A和∠D的平分线交于P点,∠B和∠C的平分线交于Q.则PQ的长为________.答案:24262.如图,点O是正六边形ABCDEF的中心,OM⊥DE于点M,N为OM的中点.若S△F AN=10,则正六边形ABCDEF的面积为________.答案:4863.三边长均为整数且周长不超过30的直角三角形有_________个.(平移或旋转后可以重合的三角形视为同一个)答案:364.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同的整数最小是________.答案:1765.从1,2,…,2010这2010个正整数中,最多可以取出________个数,使得所取出的数中任意三个数之和都能被33整除.答案:6166.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数是________.答案:867.一个三位数被11整除后的商等于这个三位数各位数字的平方和,那么这个三位数可能是_________.(求出所有结果)答案:550,80368.若三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是一定是某个整数n的倍数.那么n的最大值是________.答案:969.一个不透明的袋子中装有红、黄、蓝三种颜色的玻璃球若干个,这些玻璃球除颜色外其余都相同.其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为25,那么,随机摸出一个为红色玻璃球的概率为________.答案:6 2570.一项“过关游戏”规定:在第n关,要抛一颗骰子n次,如果这n次抛掷骰子上底面所出现的点数之和大于2n,就算过关.则连过前3关的概率是_________.答案:100 24371.为了防止信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种密码加密系统,其加密、解密原理为:发送方由明文x → 密文y(加密),接收方由密文y → 明文x(解密).现在密匙为y=kx3,若明文“4”通过加密后得到的密文是“2”,则密文“1256”,解密后得到的明文是________.答案:1 272.将1~20这20个正整数分成A、B两组,使得A组所有数的和等于N,而B组所有数的乘积也等于N,则N的所有可能取值有________.答案:180,182,19273.如图,矩形ABCD中,AB=3,BC=5,边长为1的小正方形MNPQ从如图的位置开始沿A→B→C→D→A的方向,在矩形内翻滚,翻滚1次后点P来到P1的位置,那么翻滚________次后,小正方形第一次回到初始位置,这个过程中点P经过的路径长为________.(结果保留π)答案:12, 374.如图所示,两个全等菱形的边长均为1厘米,一只蚂蚁由点A开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2016厘米后停下,则这只蚂蚁停在_________点.答案:A75. 观察如下一列数对:(1,1),(1,2), (2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…… 则第2023个数对是( ).A. (6,58)B. (6,59)C. (7,58)D. (58,7)E. (59,6) 答案:C76. B 船在A 船的北偏西45°处,两船相距km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是________km .答案:77. 已知实数a > 0,且2和 –1至少有一个不满足关于x 的不等式250ax x a,则a 的最小值是________.答案:178. 设a 1,a 2,a 3,…,a 13是13个两两不同的正整数,a 1+a 2+a 3+…+a 13=488.设a 是其中任意3个数相加之和的最小值,则a 最大可以是________. 答案:9679.a,b,c,d,e,f,g,h,i是1~9中的不同数字,则a b c d e fg h i的最小值是________.答案:1 28880.一玩具工厂用于生产一批小熊、小猫的全部劳动力为273个工时,原料为243个单位.生产一个小熊要使用9个工时、12个单位原料,利润为144元;生产一个小猫要使用6个工时、3个单位原料,利润为81元.在劳动力和原料的限制下,要使生产小熊和小猫的总利润最高,应该生产小熊________个、小猫________个.答案:13,26。

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案一、选择题(每题2分,共20分)1. 已知x+y=5,x-y=1,求2x+3y的值。

A. 12B. 11C. 10D. 92. 一个数的平方等于该数本身,这个数可能是:A. 1B. -1C. 1或-1D. 03. 如果一个三角形的两边长分别是5和12,第三边长x满足三角形的三边关系,那么x的取值范围是:A. 7 < x < 17B. 2 < x < 14C. 5 < x < 13D. 12 < x < 154. 一个圆的半径为3,求圆的面积。

A. 28.26B. 9C. 18D. 365. 若a^2 + b^2 = 13,且a + b = 5,求ab的值。

A. 6B. 2C. 12D. 无法确定6. 一个等差数列的前三项分别为2,5,8,求第10项的值。

A. 27B. 29C. 21D. 227. 一个长方体的长、宽、高分别是2,3,4,求其体积。

A. 24B. 12C. 36D. 488. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 09. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。

A. 5B. 6C. 7D. 810. 若a、b、c是三角形的三边,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。

12. 一个数的立方等于-27,这个数是________。

13. 一个数的平方根是4,这个数是________。

14. 一个数的倒数是2,这个数是________。

15. 一个圆的直径是10,这个圆的周长是________。

16. 若a、b互为倒数,则ab=________。

17. 一个数的平方是25,这个数是________。

18. 一个数的绝对值是3,这个数可能是________。

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。

解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。

代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。

答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。

求△ABC的面积。

解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。

底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。

答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。

解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。

将所有项移到一边得:3x² - 12x + 11 = 0。

对方程进行因式分解得:(x - 1)(3x - 11) = 0。

由此可得x = 1 或 x = 11/3。

答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。

已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。

解:由题意可推出ABCD为平行四边形,而AE = CD。

根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。

答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。

解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。

数学初二希望杯试题及答案

数学初二希望杯试题及答案

数学初二希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333…D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,这个三角形是什么类型的三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形3. 一个数的平方根是4,这个数是多少?A. 16B. 8C. -16D. 44. 以下哪个表达式的结果不是正数?A. -1 + 2B. √4C. -√4D. (-2)^25. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 97. 如果一个角的余角是30°,那么这个角是多少度?A. 60°B. 45°C. 30°D. 15°8. 一个正方体的棱长是3,那么它的体积是多少?A. 27B. 9C. 3D. 19. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 010. 以下哪个是二次根式?A. √3B. √(-1)C. √(2x)D. √(2x+1)二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。

12. 如果一个数的相反数是-5,那么这个数是______。

13. 一个数的绝对值是10,这个数可能是______或______。

14. 如果一个角的补角是120°,那么这个角是______。

15. 一个数的平方是25,这个数是______或______。

16. 一个直角三角形的两条直角边分别是3和4,斜边的长度是______。

17. 一个数的平方根是±3,这个数是______。

18. 一个数的倒数是1/4,这个数是______。

19. 一个圆的直径是10,那么它的半径是______。

初二希望杯数学竞赛培训题

初二希望杯数学竞赛培训题

初二希望杯数学竞赛培训题班级__________学号__________姓名______________得分______________一、选择题(以下每题的四个结论中,仅有一个是正确的) 1.一个多项式经分解后为(2-a 3)(a 3+2),那么该多项式是 ( )(A )a 6-4(B )a 9-4(C )4-a 9(D )4-a 62.下列多项式:①a 2+4ab +4b 2;②9m 2+4n 2-12mn ;③4p 2+q 2-4p +2q ;④25a 4+16b 4+40a 2b 2;⑤9s 2-12s +6.其中是完全平方式的是( ) (A )①,④,⑤ (B )①,②,⑤ (C )①,②,④ (D )①,③,④ 3.当分式1111-+x 无意义时,x 的取值情况是( )(A )x =1 (B )x =±1 (C )x =±1或x =0 (D )x =±1且x =04.下列根式中与32a -相同的是 ( )(A )a a 2-(B )a a 2--(C )32a -(D )aa 22-- 5.a 是实数,且满足05362=--aa ,则a 的值是( )(A )6(B )±6 (C )≠5的数 (D )-66.如果a -是整数,则( )(A )a 是正整数 (B )a 是非负整数 (C )a 是完全平方数 (D )-a是完全平方数 7.11+-n n 与1++n n 的关系是 ( )(A )相等 (B )互为相反数 (C )互为倒数 (D )互为负倒数8.方程x 2+3y 2=16的整数解的组数是( )(A )5(B )6(C )7(D )7组以上9.若a <b <0,则()()22b b a --÷= ( )(A )bab --(B )bab - (C )-b (b -a ) (D )bb a -10.某同学从家到学校的路程为s ,速度为v 1,从学校回家的速度为v 2,那么他来回的平均速度是 ( )(A )221v v + (B )212v v s + (C )2121v v v v + (D )21212v v v v +11.各边长均为整数且各边长均不相等的三角形周长小于13,则这样的三角形共有( )(A )1个(B )2个(C )3个(D )4个12.三角形的三个外角平分线所在的直线围成的三角形是( )(A )锐角三角形(B )钝角三角形 (C )直角三角形 (D )直角或钝角三角形13.在△ABC 和△A ´B ´C ´中,∠A +∠B =∠C ,∠B ´+∠C ´=∠A ´,且b -a =b ´-c ´,b+a =b ´+c ´则这两个三角形 ( )(A )不一定全等(B )不全等(C )根据“SAS ”全等 (D )根据“ASA ”全等14.下列说法中,正确的是( )(A )每个命题都有逆命题 (B )每个定理都有逆定理 (C )真命题的逆命题是真命题 (D )假命题的逆命题是假命题 15.等腰△ABC 的顶角A =100°,两腰AB 、AC 的垂直平分线相交于点P ,则 ( )(A )P 点在△ABC 内 (B )P 点在BC 边上(C )P 点在△ABC 外 (D )P 点位置与BC 边的长度有关16.下列命题中,真命题是( )(A )两个全等三角形是关于某条直线成轴对称的两个图形 (B )两个全等的等腰三角形是关于某条直线成轴对称的两个图形 (C )两个全等的等边三角形是关于某条直线成轴对称的两个图形 (D )关于某条直线成轴对称的两个三角形一定是全等三角形 17.如图,在等腰直角△ABC 中,∠BAC =90°,又AD ∥BC ,在AD 上取一点E ,使∠EBC =30°,则BE 和BC 的大小关系是 ( ) (A )BE >BC(B )BE <BC(C )BE =BC (D )不确定的 18.四边形中,有两条边相等,另两条边也相等,则这个四边形( )(A )一定是菱形(B )一定是轴对称图形(C )一定是平行四边形(D )可能是平行四边形,也可能是轴对称图形19.如图,D 为等腰△ABC 的腰AB 上的一点,E 为另一腰AC延长线上的一点,且BD =CE ,则 ( )(A )DE =BC (B )DE >BC(C )DE <BC(D )DE 与BC 大小关系决定于角A 的大小20.设△ABC 的三边为c b a ,,,且满足c b a cb a 5.1225.3222+=++ ,则△ABC 是 ( )(A )直角三角形 (B )等腰三角形 (C )等边三角形 (D )形状不确定的三角形21.分解因式:=+--412422a b a ____________________.22.如果(x -a )(x +2)-1能够分解成两个二项式(x +3)和(x +b )的乘积,那么a =______,b =_______.AC BDEAC BD E23.分解因式:xy (m 2-n 2)-mm (x 2-y 2)=_________________. 24.分解因式:=+-233x x ___________________. 25.a ,b 均为实数,且满足()0425322=--++aa b a ,那么b =_________.26.x ,y 均为实数,且4111222++-+-=x x x y ,则x +y 的值是__________.27.x 是实数,则25101222+--++x x x x 的最大值是____________.28.已知m ,n 互为倒数,且m +n +1998=0,那么(m 2+1999m +1)(n 2+1999n +1)的值为____.29.已知两数的和为12,此两数的立方和为108,那么这两个数的平方和是___________. 30.若61=+yx ,25122=+y x ,那么=∶y x ____________ 31.若3939=+,=+zy yx ,则xz 9+的值等于______________.32.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=32,abc =8,那么cb a 111++的值等于___________.33.若a 2+3b 2-4a -12b +16=0,则a +b 的值是________. 34.已知N++++=4141412,则N 的值是___________.35.若实数x ,y ,z 适合方程组⎩⎨⎧0720634=-+=--z y x z y x ,那么1999y -1997x +1993z =_______.36.方程组⎩⎨⎧34231232=--=-+z y x z y x 中的x ,y 满足条件x +y =6,那么z 的值等于___________.37.a 为实数,那么aa a a 119991999-+-+-的值等于_________. 38.已知12-=x ,那么xx x--342的值为__________ 39.化简623232-++,结果是_______________.40.方程x x x -=+-41682的正整数解是_____________. 41.化简:(6-2)(3+2)32-=_____________.42.已知:A =53+,B =53-,若存在正整数N ,使N <A 3+B 3<N +1,则N =____. 43.116201-的整数部分是__________.44.求值:100999910014334132231221++++++++ =___________.45.若y ≠z ,且满足()()23322=-+=-+zy x z y x z y ,则x +y +z 的值等于__________. 46.已知(x +2y -1)是二元二次式3x 2+axy +by 2+x +9y -4的一个因式,则a =_______,b =______.47.大小不超过(3+2)6的最大整数为_____________.48.若x <0,y >0,a -b >0,M =ax +by ,N =bx +ay ,则M 与N 的大小关系是M ______N .(填“>”或“<”)49.5的整数部分是a ,小数部分为b ,则ba 1-的大小是____________.50.已知a ,b ,c 都是正实数,()()c b a c b a y c b a x +++++=,++=22222,则x 与y 的大小关系是x ______y .(填“>”或“<”)51.如图,a ,b ,c ,d 为数轴上对应点的数,则|a +b -c |+|d -a |-|c -d |+|a -d |=_______. 52.如图,AB 、CD 、MN 三条直线相交,交点分别为E 、F 、G ,则∠EFB 的同位角是________. 53.两个对顶角的和是它的一个邻补角的4倍,则这个邻补角的度数是_________. 54.△ABC 的周长是15,若a +c =2b ,c -a =4则a 2+b 2+c 2=____________. 55.如图,则∠A +∠B +∠C +∠D +∠E +∠F =_____________.56.△ABC 中,AD 是BC 边上的中线,若AB =9,AC =5,则AD 的取值范围是__________.(第52题图) (第55题图) (第57题图) (第58题图)57.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于D ,DE ⊥AB 于E ,若AC =4厘米,则△BDE 的周长是___________.58.如图,△ABC 和△ADE 均为等边三角形,C 、D 、E 在一条直线上,∠ABE =20°,则∠CAD 的大小是____________.59.如图,△ABC 中,D 在AC 上,AD =AB ,∠ABC =∠C +30°,则∠CBD =_______. 60.如果一个三角形的两条中线又是它的两条高线,那么这个三角形的形状是___________.c 0 a bd C EFA B D G M N C EF A B D O A D E C B A D CB E第十一届希望杯数学竞赛初二第一试一.选择题1.与的关系是()。

初二数学希望杯试题及答案

初二数学希望杯试题及答案

初二数学希望杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 05. 以下哪个表达式的结果不是整数?A. 3 + 2 = 5B. 7 - 5 = 2C. 4 × 2 = 8D. 6 ÷ 2 = 3二、填空题(每题2分,共10分)6. 一个数的平方根是4,那么这个数是_________。

7. 如果一个数的立方等于-27,那么这个数是_________。

8. 一个数的倒数是2,那么这个数是_________。

9. 一个数的相反数是-3,那么这个数是_________。

10. 如果一个数的平方等于9,那么这个数是_________。

三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别是3cm、4cm、5cm,求这个长方体的体积。

12. 已知一个圆的半径是7cm,求这个圆的面积。

13. 已知一个等腰三角形的底边长是6cm,两腰长是5cm,求这个等腰三角形的面积。

初二数学希望杯试题答案一、选择题答案1. B2. C3. A4. C5. D二、填空题答案6. 167. -38. 1/29. 310. ±3三、解答题答案11. 长方体的体积 = 长× 宽× 高= 3cm × 4cm × 5cm =60cm³。

12. 圆的面积= π × 半径² = 3.14 × 7cm × 7cm = 153.86cm²。

13. 等腰三角形的面积 = (底× 高) / 2。

第十一届希望杯初二数学竞赛题

第十一届希望杯初二数学竞赛题

第十一届“希望杯”数学邀请赛初二年级第1试试题一、选择题1、200019991-与20001999+的关系是( )A 、互为倒数B 、互为相反数C 、互为负倒数D 、相等2、已知0≠x ,则2x xx -的值为( )A 、0B 、-2C 、0或-2D 、0或23、适合81272=-++a a 的整数a 的值的个数有( )A 、5B 、4C 、3D 、24、如图,四边形ABCD 中,AB ∥CD ,∠D =2∠B ,若AD =a ,AB =b ,则CD 的长等于( )A 、a b -B 、2b b -C 、()a b -21 D 、()a b -2 5、用四条线段:7,9,13,14====d c b a 作为四条边构成一个梯形,则在所构成的梯形中,中位线的长的最大值是( )A 、B 、C 、11D 、6、已知b a ==70,7,则9.4等于( )A 、10b a +B 、10a b -C 、a bD 、10ab 7、互不相等的三个正数c b a ,,,恰为一个三角形的三条边长,则以下列三数为长度的线段一定能作成三角形的是( )A 、cb a 1,1,1 B 、222,,c b a C 、c b a ,, D 、a c c b b a ---,, 8、在一个凸边形中,每三个顶点形成三个角(如由A 、B 、×三个项点形成∠ABC 、∠BAC 、∠ACB )一共可以作出168个角,那么这些角中最小的一个一定( )A 、小于或等于200B 、小于或等于;C 、小于或等于250D 、小于或等于。

9、设c b a ,,均为正数,若ac b c b a b a c +<+<+,则c b a ,,三个数的大小关系是( ) A 、b a c << B 、a c b << C 、c b a << D 、a b c << 二、填空题:10、分解因式:b ab b a 303++的结果是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:竞赛暑假集训一、选择题(以下每题的四个结论中,仅有一个是正确的) 1.一个多项式经分解后为(2-a 3)(a 3+2),那么该多项式是 ( )(A )a 6-4(B )a 9-4(C )4-a 9(D )4-a 62.下列多项式:①a 2+4ab +4b 2;②9m 2+4n 2-12mn ;③4p 2+q 2-4p +2q ;④25a 4+16b 4+40a 2b 2;⑤9s 2-12s +6.其中是完全平方式的是( ) (A )①,④,⑤ (B )①,②,⑤ (C )①,②,④ (D )①,③,④ 3.当分式1111-+x 无意义时,x 的取值情况是( )(A )x =1 (B )x =±1 (C )x =±1或x =0 (D )x =±1且x =04.下列根式中与32a -相同的是 ( )(A )a a 2-(B )a a 2--(C )32a -(D )aa 22-- 5.a 是实数,且满足05362=--aa ,则a 的值是( )(A )6(B )±6 (C )≠5的数 (D )-66.如果a -是整数,则( )(A )a 是正整数 (B )a 是非负整数 (C )a 是完全平方数 (D )-a是完全平方数 7.11+-n n 与1++n n 的关系是 ( )(A )相等 (B )互为相反数 (C )互为倒数 (D )互为负倒数8.方程x 2+3y 2=16的整数解的组数是( )(A )5(B )6(C )7(D )7组以上9.若a <b <0,则()()22b b a --÷= ( )(A )bab --(B )bab - (C )-b (b -a ) (D )bb a -10.某同学从家到学校的路程为s ,速度为v 1,从学校回家的速度为v 2,那么他来回的平均速度是 ( )(A )221v v + (B )212v v s + (C )2121v v v v + (D )21212v v v v +11.各边长均为整数且各边长均不相等的三角形周长小于13,则这样的三角形共有( )(A )1个(B )2个(C )3个(D )4个12.三角形的三个外角平分线所在的直线围成的三角形是( )(A )锐角三角 (B )钝角三角形 (C )直角三角形 (D )直角或钝角三角形13.在△ABC 和△A ´B ´C ´中,∠A +∠B =∠C ,∠B ´+∠C ´=∠A ´,且b -a =b ´-c ´,b+a =b ´+c ´则这两个三角形 ( ) (A )不一定全等 (B )不全等(C )根据“SAS ”全等 (D )根据“ASA ”全等14.下列说法中,正确的是( )(A )每个命题都有逆命题 (B )每个定理都有逆定理 (C )真命题的逆命题是真命题 (D )假命题的逆命题是假命题 15.等腰△ABC 的顶角A =100°,两腰AB 、AC 的垂直平分线相交于点P ,则 ( )(A )P 点在△ABC 内 (B )P 点在BC 边上(C )P 点在△ABC 外 (D )P 点位置与BC 边的长度有关16.下列命题中,真命题是( )(A )两个全等三角形是关于某条直线成轴对称的两个图形 (B )两个全等的等腰三角形是关于某条直线成轴对称的两个图形 (C )两个全等的等边三角形是关于某条直线成轴对称的两个图形 (D )关于某条直线成轴对称的两个三角形一定是全等三角形 17.如图,在等腰直角△ABC 中,∠BAC =90°,又AD ∥BC ,在AD 上取一点E ,使∠EBC =30°,则BE 和BC 的大小关系是 ( ) (A )BE >BC(B )BE <BC(C )BE =BC (D )不确定的 18.四边形中,有两条边相等,另两条边也相等,则这个四边形( )(A )一定是菱形(B )一定是轴对称图形(C )一定是平行四边形(D )可能是平行四边形,也可能是轴对称图形19.如图,D 为等腰△ABC 的腰AB 上的一点,E 为另一腰AC延长线上的一点,且BD =CE ,则 ( )(A )DE =BC (B )DE >BC(C )DE <BC (D )DE 与BC 大小关系决定于角A 的大小20.设△ABC的三边为cb a ,,,且满足c ba cb a 5.1225.3222+=++,则△ABC 是 ( )(A )直角三角形 (B )等腰三角形 (C )等边三角形 (D )形状不确定的三角形21.分解因式:=+--412422a b a ____________________.22.如果(x -a )(x +2)-1能够分解成两个二项式(x +3)和(x +b )的乘积,那么a =______,b =_______.23.分解因式:xy (m 2-n 2)-mm (x 2-y 2)=_________________. 24.分解因式:=+-233x x ___________________.AC BDEAC BD E25.a ,b 均为实数,且满足()0425322=--++aa b a ,那么b =_________.26.x ,y 均为实数,且4111222++-+-=x x x y ,则x +y 的值是__________.27.x 是实数,则25101222+--++x x x x 的最大值是____________.28.已知m ,n 互为倒数,且m +n +1998=0,那么(m 2+1999m +1)(n 2+1999n +1)的值为____.29.已知两数的和为12,此两数的立方和为108,那么这两个数的平方和是___________. 30.若61=+yx ,25122=+y x ,那么=∶y x ____________ 31.若3939=+,=+zy yx ,则xz 9+的值等于______________.32.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=32,abc =8,那么cb a 111++的值等于___________.33.若a 2+3b 2-4a -12b +16=0,则a +b 的值是________. 34.已知N++++=4141412,则N 的值是___________.35.若实数x ,y ,z 适合方程组⎩⎨⎧0720634=-+=--z y x z y x ,那么1999y -1997x +1993z =_______.36.方程组⎩⎨⎧34231232=--=-+z y x z y x 中的x ,y 满足条件x +y =6,那么z 的值等于___________.37.a 为实数,那么aa a a 119991999-+-+-的值等于_________. 38.已知12-=x ,那么xx x--342的值为__________ 39.化简623232-++,结果是_______________.40.方程x x x -=+-41682的正整数解是_____________. 41.化简:(6-2)(3+2)32-=_____________.42.已知:A =53+,B =53-,若存在正整数N ,使N <A 3+B 3<N +1,则N =____. 43.116201-的整数部分是__________.44.求值:100999910014334132231221++++++++ =___________.45.若y ≠z ,且满足()()23322=-+=-+zy x z y x z y ,则x +y +z 的值等于__________. 46.已知(x +2y -1)是二元二次式3x 2+axy +by 2+x +9y -4的一个因式,则a =_______,b =______.47.大小不超过(3+2)6的最大整数为_____________. 48.若x <0,y >0,a -b >0,M =ax +by ,N =bx +ay ,则M 与N 的大小关系是M ______N .(填“>”或“<”)49.5的整数部分是a ,小数部分为b ,则ba 1-的大小是____________.50.已知a ,b ,c 都是正实数,()()c b a c b a y c b a x +++++=,++=22222,则x 与y 的大小关系是x ______y .(填“>”或“<”)51.如图,a ,b ,c ,d 为数轴上对应点的数,则|a +b -c |+|d -a |-|c -d |+|a -d |=_______. 52.如图,AB 、CD 、MN 三条直线相交,交点分别为E 、F 、G ,则∠EFB 的同位角是________. 53.两个对顶角的和是它的一个邻补角的4倍,则这个邻补角的度数是_________. 54.△ABC 的周长是15,若a +c =2b ,c -a =4则a 2+b 2+c 2=____________. 55.如图,则∠A +∠B +∠C +∠D +∠E +∠F =_____________.56.△ABC 中,AD 是BC 边上的中线,若AB =9,AC =5,则AD 的取值范围是__________.(第52题图) (第55题图) (第57题图) (第58题图)57.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于D ,DE ⊥AB 于E ,若AC =4厘米,则△BDE 的周长是___________.58.如图,△ABC 和△ADE 均为等边三角形,C 、D 、E 在一条直线上,∠ABE =20°,则∠CAD 的大小是____________.59.如图,△ABC 中,D 在AC 上,AD =AB ,∠ABC =∠C +30°,则∠CBD =_______. 60.如果一个三角形的两条中线又是它的两条高线,那么这个三角形的形状是___________.c 0 a bd C EFA B D G M N C EF A B D O A D E C B A D CB E。

相关文档
最新文档