疏水层析
第六节 疏水层析)

Abs
Conc. salt
四、Elution
Target elutes
Abs
Conc. salt
四、Elution
More strongly bound proteins
Abs
Conc. salt
1、层析柱的选择
柱床高度通常为5~15cm 对一个优化好的分离方案进行规模放大时,
↓ ↓ ↓
缓冲液C洗去非专一吸附的蛋白质
用缓冲液E洗脱钙调蛋白
↓
用缓冲液F洗脱大部分钙依赖的蛋白激酶
4、固定化酶的制备
辛基-交联琼脂糖凝胶柱可以牢固地吸附β半乳糖
苷酶,后者就可用作固定化酶,可连续使用几星 期。
如果酶的活性有所降低,可通过解析低活性的酶,
代之以高活性的酶。
5、用作“去垢剂交换层析”
基
芳基配基
高分子配基
三、疏水基质
琼脂糖
应用最广泛
多糖类
纤维素 聚丙烯酸 甲酯类 聚苯乙烯
人工合成聚 合物类 壳聚糖
良好的生物相容性和化学稳定性
最常用: 正辛基-交联琼脂糖凝胶
更强的疏水作用,一些疏水性较强的蛋白质
被吸附后不易解析
苯基-交联琼脂糖凝胶 应用于疏水性较强的蛋白质
四、基本操作
在研究膜蛋白的结构和功能时,经常要使膜 蛋白和不同的去垢剂结合,观察不同去垢剂对照蛋 白活性的影响。运用了疏水层析可以很方便地使同 一膜蛋白样品和不同的去垢剂结合。
将和某一种去垢剂结合的膜蛋白吸附在苯 基交联琼脂糖凝胶柱上
↓
所需的去垢剂通过疏水层析柱,取 代原先和膜蛋白结合的去垢剂
↓
将膜蛋白从疏水柱上解析下来, 完成去垢剂的交换
第八节 疏水层析法

盐析作用增强
洗脱作用增强
排在最左边的离子或盐,盐析作用最强, 洗脱能力最弱;排在最右边的离子或盐, 洗脱能力最强,盐析作用最弱。 选择合适的盐对保证蛋白质的分离以及分 离 后 蛋 白 质 的 活 性 都 很 重 要 。 (NH4)2SO4,NH4Ac,NaCl和磷酸盐是疏水层 析分离常用的几种盐。
例如某些蛋白质在水溶液中溶解度很大,分子 的极性较大;在高盐溶液中疏水性明显增大, 溶解度降低,出现盐析现象;在低盐溶液中疏 水性减小,溶解度增大。 因此疏水层析可以通过改变盐溶液的离子强度、 控制蛋白质分子的极性或非极性,使样品中极 性相近的蛋白质组分形成具有一定差异的疏水 分子,然后利用它们之间的疏水特性进行层析 分离。
在分离过程中,溶液中的疏水分子经过疏水层析
介质时,介质上的疏水配基即与它们发生亲和吸
附作用,疏水分子被吸附在介质的配基上面,这
种吸附力的强弱与疏水分子的疏水性大小相关,
疏水性大(极性小)的组分吸附力强,疏水性小 (极性大)的组分吸附力弱,通过改变洗脱液的 盐-水比例,改变其极性,使吸附在固定相上的 不同极性组分根据其疏水性的差异先后被解吸下
多缓冲离子交换剂可利用普通的凝胶过滤介质偶 联特殊的离子交换基制备,如Amersham Biosciences公司生产的Polybuffer exchanger PBE系列(PBE118和94)即为以Sepharose 6B 为载体的阴离子交换剂,前者与Pharmalyte匹配 使用,后者与Polybuffer 96和Polybuffer 74匹 配使用。Amersham Biosciences生产的另一种 多缓冲离子交换剂为Mono P,其离子交换基为 具有不同pKa值的弱碱性氨基。Mono P可与上述 三种多缓冲剂匹配使用,粒径仅l0um,用作高效 色谱聚焦柱的固定相。
04第五章__疏水层析

疏水层析亦称疏水作用层析(hydrophobic interaction chromatography,HIC) 从分离纯化生命物质的机制来看,它也属于吸 吸 附层析一类。 附层析 疏水层析和反相层析(reversed phase chromatography)分离 生命物质的依据是一致的,即: 视有效成分和固定相之间相互作用的疏水力 疏水力差 疏水力 异性大小,将有效成分分离出来。
1.亲水性吸附剂 基质主要是: 交联琼脂糖(Sepharose CL-4B) 配体是: 苯基或辛基化合物 基质与配体通过耦合方法构成稳定的 苯基(或辛基)-Sepharose Cl-4B吸附剂
2.非亲水性吸附剂 基质有: 硅胶、树脂(苯乙烯、二乙烯聚合物)等 配体为:苯基、辛基、烷基(C4、C8、C18)等。 二者通过共价结合构成非亲水性吸附剂。
(如上所述,加1mol/L(NH2)2SO4 或2mol/LNaCl,以使样品中的 有效成分变性,并能与固定相很好地相互吸附。)
把此样品溶液徐徐加入固定相(使有效成分与固定相之 间作用0.5-1h)后,先用平衡缓冲液洗涤,再用降低盐 浓度的平衡缓冲溶液洗脱, 与此同时,要用部分收集器分段收集洗脱下来的溶液, 并对收集的每部分溶液进行检测。 固定相进行再生处理后可重复使用。
二、吸附剂
固定相 由基质 配体 基质和配体 基质 配体(疏水性基团)两部分构成。 配体对疏水性 疏水性物质具有一定的吸附力 吸附力。 疏水性 吸附力 基质则有亲水性和非亲水性之分。 亲水性基质与(吸附疏水性物质的)配体构成 的固定相,称亲水性吸附剂。 疏水性基质与(吸附疏水性物质的)配体构成 的固定相,称疏水性吸附剂。
第二节 操作与应用
一、层析柱的制备 1.层析柱规格 所使用层析柱之规格与普通层析的相似 2.固定相 在进行常压疏水层析时,大多数是选用苯基(或辛基)Sepharose Cl-4B吸附剂作固定相。 苯基-Sepharose Cl-4B适合于分离纯化与芳香族化合物 具有亲和力的物质。 辛基-SepharoseCl-4B则适用于分离纯化亲脂性较强的 物质新鲜鸡胗(除去结缔组织)切成1cm3小块, 置组织捣碎机中,加2倍于固形物体积的缓冲液(50mmol/L TrisHCl,pH8.0,2mmol/L EDTA,1mmol/Lα-巯基乙醇)高速匀浆三 次(30s/次), 离心(8000 r/min,4℃,0.5h)收集鸡胗钙调蛋白抽提液(沉淀重 复抽提一次),合并抽提液, 加硫酸铵盐析(pH8.0,60%饱和度),除去大量杂蛋白, 上清液采用等电点沉淀(用H2S04调pH=4.0),离心收集含有效成分 的沉淀物, 加蒸馏水悬浮,用三羟甲基氨基甲烷(Tris)调pH=7.5~8.0,令其 缓慢溶解, 经透析,离心得到溶液
第8章 疏水层析

第八章 疏水层析
Teaching and Rese
arch Section ·
Department of
Biochemical
Engineering
14
8.1.2 影响疏水作用层析过程的参数
8.1.2.2 流动相 流动相Ph
• 行为复杂;
• 多数情况下pH升高会减弱疏水作用,反之则增加;
• 洗脱时可不断提高Ph。
第八章 疏水层析
Teaching and Rese
arch Section ·
Department of
Biochemical
Engineering
3
8.1.1.1 什么是疏水性、疏水作用?
非极性化合物例如苯、环己烷在水中的溶解度非常小 ,与水混合时会形成互不相溶的两相,即非极性分子 有离开水相进入非极性相的趋势,即所谓的疏水性 (Hydrophobicity),这些非极性的分子在水相环境中具有 避开水而相互聚集的倾向,称为疏水作用。
arch Section ·
Department of
Biochemical
Engineering
8
盐类的存在对蛋白质的疏水作用起道非常重要的作用。 • 高盐时,盐离子夺取疏水分子周围的水分子,疏 水区域受到水分子的挤压力减弱,疏水区域的面 积增大,促进蛋白质疏水区域与介质间的疏水作 用(更有效地与介质上的疏水基团结合);
第八章 疏水层析
Teaching and Rese
arch Section ·
Department of
Biochemical
Engineering
21
8.2.2 常见疏水作用介质的种类
烷nhui University of Technology and Science
生物大分子分离纯化技术 之疏水作用层析(19页)

生物大分子分离纯化技术
五、实验方法 1.胶的溶涨 用缓冲液或去离子水将凝胶清洗, 去除其中的有机溶剂。 2.装柱 疏水层析使用短而粗的层析柱,一般高 度为5-15cm,而柱的直径则由样品量决定。 3.平衡 用3-5倍柱床体积的起始缓冲液冲洗、平 衡柱床。
生物大分子分离纯化技术
二、基本原理 疏水作用(疏水力)是浸在一种极性液体(如
水)中的非极性物质为避开水而被迫相聚的自然 趋势。蛋白质分子中有许多非极性的氨基酸, 如色氨酸、亮氨酸、苯丙氨酸、丙氨酸等。暴 露于球形蛋白质表面的非极性氨基酸侧链可以 密集在一起形成疏水区域。
生物大分子分离纯化技术
疏水作用层析是以介质疏水基团和蛋白质表面 疏水区域的亲和作用为基础,利用在载体的表面偶 联疏水性基团为固定相,根据这些疏水性基团与蛋 白质分子疏水区之间相互作用的差别,对蛋白质类 生物大分子进行分离纯化。
生物大分子分离纯化技术
4.加样 上样总量一般在200-500mg。因疏水作用层
析的操作在高盐条件下进行,因此,在加样前 不需特殊处理,只要加入适当的盐并调整好pH 值。但若样品中有盐酸胍和尿素类物质时则应 去除,以防影响吸附。
生物大分子分离纯化技术
5.洗脱 疏水层析的洗脱过程是一个不断降低盐浓度
生物大分子分离纯化技术
三、介质 在疏水层析中,介质(又称吸附剂)一般由
载体(基质)和配体(疏水性基团)两部分构成。 其中基质有亲水性和非亲水性之分,而配体为 大小不等的疏水侧链(烷基或芳香基),它们对 疏水性物质有一定的吸附力。
生物大分子分离纯化技术
四、影响疏水性吸附的因素 1.配体的类型
疏水性吸附剂的吸附作用与配体的密度成正比,配体密 度过小则疏水作用不足,但密度过大则洗脱困难。增加碳氢 链长度,其疏水性增强,(例如苯基琼脂糖比辛基琼脂糖疏 水性低),只有少数疏水性强的蛋白质可被吸附,但由于疏 水作用太强,需用极端方法洗脱,可能导致蛋白质变性。
疏水层析原理

疏水层析原理
疏水层析是一种常用的色谱分析技术,其原理基于样品分离时固定相与移动相之间的亲疏水性差异。
疏水层析中,固定相通常是一种非极性材料,如疏水性树脂或疏水性硅胶。
移动相则是一种有机溶剂,如甲醇或乙腈,其疏水性介于固定相和要分离的样品之间。
在疏水层析柱中,样品溶液由于亲疏水性差异而与固定相发生不同程度的相互作用。
亲疏水性强的物质会与固定相发生较强的相互作用,停留时间相对较长,而亲疏水性弱的物质则会较快地通过固定相,停留时间较短。
疏水层析的分离原理可解释为两种相互竞争的作用力。
一方面,固定相表面具有较大的亲疏水性,使得亲疏水性强的物质更容易与其发生相互作用,并在固定相上停留。
另一方面,移动相中的有机溶剂对固定相表面也有一定的亲疏水性,这种亲疏水性决定了溶剂与固定相之间的相互作用力。
当亲疏水性强的物质进入移动相后,相互作用力较弱,从而更容易通过固定相。
在实际应用中,疏水层析常用于分离极性较强的化合物,如多肽、核苷酸、脂肪酸等。
通过调整移动相和固定相的亲疏水性,可以实现对不同化合物的选择性分离。
总而言之,疏水层析利用样品与固定相之间亲疏水性差异实现分离。
疏水性强的物质在固定相上停留时间较长,而疏水性弱的物质则更容易通过固定相。
通过调整移动相和固定相的亲疏水性,可以实现对不同化合物的选择性分离。
疏水层析

特点:利用样品与介质疏水性大小进行分离,样 特点:利用样品与介质疏水性大小进行分离, 品不必脱盐。 品不必脱盐。 原理:1.疏水作用,Pr与疏水固定相结合。 原理:1.疏水作用,Pr与疏水固定相结合。 疏水作用 与疏水固定相结合 Pr表面的疏水补丁 表面的疏水补丁。 (1)Pr表面的疏水补丁。 Pr局部变性 暴露疏残基。 局部变性, (2)Pr局部变性,暴露疏残基。 (3)高盐浓度下 1mol/L(NH4)2SO4,2mol/LNaCl, Pr表面疏水表面与固定相结合。 Pr表面疏水表面与固定相结合。 表面疏水表面与固定相结合
原理:2.吸附剂: 原理:2.吸附剂: 吸附剂 配体:苯基C6 辛基C8 烷基C18 C6, C8, 配体:苯基C6,辛基C8,烷基C18 介质:硅胶、树脂如phenyl、 介质:硅胶、树脂如phenyl phenyl、 sepharose FF 、 sepharose CL-4B CL-
洗脱:盐浓度高,疏水弱的Pr先流出; Pr先流出 洗脱:盐浓度高,疏水弱的Pr先流出; 盐浓度低,疏水强的Pr后流出。 Pr后流出 盐浓度低,疏水强的Pr后流出。
特点:基质结合配体密度大、疏水性强, Pr类 特点:基质结合配体密度大、疏水性强,对Pr类 吸附性强,不容易洗脱下来,需加有机相(降低极 吸附性强,不容易洗脱下来,需加有机相( 性),使Pr易变性。 ),使Pr易变性。 易变性
吸ห้องสมุดไป่ตู้剂
疏水层析 吸附层析 亲水性或疏水性基质 颗粒状极性与非极性吸附剂 疏水性基团(配体) 固定相 +疏水性基团(配体) 极性物: 洗脱剂由 极性物:盐梯度 流动相 高盐→低盐
极性大→小 极性大→小
非极性:有机溶剂 非极性:
极性小→大 极性小→大
疏水作用层析

疏水作用层析1. 疏水层析的原理:疏水作用层析(Hydrophobic Interaction Chromatography,HIC)是根据分子表面疏水性差别来分离蛋白质和多肽等生物大分子的一种较为常用的方法。
由于蛋白质是一类有序三维结构的活性大分子,但其空间排列很容易受到外界环境的影响,极易从有序的结构变成无序结构。
当立体结构发生变化时,常常失去原有的活性,即蛋白质的失活。
使用适度疏水性的分离介质,在含盐的水溶液体系中,借助于分离介质与蛋白质分子之间的疏水作用达到吸附活性蛋白分子的目的,这种层析技术称为疏水作用层析。
蛋白质的一级结构中有很多非极性氨基酸,这些氨基酸在三级结构上由于疏水相互作用会被尽量包在分子内部,但是仍不可避免地有一些非极性侧链暴露在表面,这些非极性的表面是它和疏水层析介质作用的结合部位。
因为蛋白质分子的疏水性不同,它们和疏水层析介质的作用力强弱也不同,所以非极性表面的大小和含量决定了蛋白质分子的疏水性强弱。
疏水层析就是利用各种蛋白质分子和疏水功能基团之间作用力的差异对蛋白质进行分离、纯化的一种技术。
蛋白质可以看成是一种有亲水性外壳包裹着疏水性核心的四级结构的复杂体系。
蛋白质表面存在一些非极性的疏水基团,这些基团多为非极性的氨基酸残基。
由于各种基团疏水性的差别、疏水基团暴露数量的不同、疏水区与亲水区在数量、大小和分布的不同等因素,使各种蛋白质之间存在较大的差异,同时,对于同一种蛋白质在不同的溶液中,使疏水基团暴露的程度也呈现出一定的差异。
由于这种差异,致使各种蛋白质分子与同一种分离介质疏水基团的相互作用不同,吸附能力不同,可以达到分离的目的。
如果在水溶液中加入中性盐,使溶液处于高盐浓度时,可以破坏蛋白质分子表面水分子的有序排列,使大分子与分离介质的功能基团之间产生疏水作用。
同时,由于高盐的存在,使蛋白质分子的疏水基团暴露增多,增加了大分子的疏水性,增强了蛋白质分子与分离介质功能基团之间的疏水作用,相互结合力增强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Contents1 Introduction 32. Material needed 43. Preparing the medium 44. Assembling the column 55. Packing the column 56. Equilibration 77. Sample Preparation 78. Operating Flow rates 89. Binding 810. Regeneration 1011. Cleaning-in-place (CIP) 1012. Sanitization 1113. Storage 11 AppendixA 12Appendix B 13 p. 21. IntroductionPhenyl Sepharose™ 6 Fast Flow (low sub), Phenyl Sepharose6 Fast Flow (high sub), Butyl Sepharose 4 Fast Flow and Octyl Sepharose 4 Fast Flow are media for hydrophobic interaction chromatography (HIC). Substances are separated on the basisof their varying strength of their hydrophobic interaction with hydrophobic groups attached to the uncharged matrix. Sepharose Fast Flow HIC media belong to the BioProcess™ media family. With their high quality and high batch-to-batch reproducibility they are ideal for all stages of an operation – from process development through scale-up and into production. Characteristics of the different media can be found in Appendix B, Table 1.The instructions that follow are based upon packing Sepharose Fast Flow HIC media in the recommended XK 16/20 Column. To modify these instructions for columns of different dimensions, refer to Appendix A. For pratical movie instruction in good packing techniques, Column Packing Packing The Movie is recommendedDetailed information on the technique of HIC can be found inthe handbook ”Hydrophobic Interaction & Reversed Phase Chromatography: Principles and Methods”, from GE Healthcare.p. 32. Material neededSepharose Fast Flow HIC mediaXK 16/20 columnHiLoad Pump P-50Gradient makerInjection valve (LV-3 or LV-4)Graduated cylinder or beakerVacuum flask and pump5 ml syringeGlass rodPacking buffer.Note:The packing buffer should be the same as the binding buffer. See the section on ”Binding” for bufferrecommendations. High viscosity buffers should not beused during packing. If such buffers are required for theseparation, equilibrate the column in the high viscositybuffer at a reduced flow rate when packing is completed.3. Preparing the medium1. Equilibrate all material to room temperature.2. Sepharose Fast Flow HIC media are supplied pre-swollenin 20% ethanol. Decant the ethanol solution and replace it with packing buffer to a total volume of 32.5 ml (75% settled medium: 25% buffer).3. Degas the slurry under vacuum.p. 44. Assembling the columnDetails of the column parts can be found in the instructions supplied with the column. Before packing ensure that all parts, particularly the nets, net fasteners and glass tube, are clean and intact.1. Connect the column bottom end piece to a pump or syringe.Submerge the end piece in buffer and fill it using the pump or syringe. Ensure that there are no air bubbles trapped under the net. Close the tubing with a stopper and mount the end piece on the column.2. Flush the column with buffer, leaving a few ml at the bottom.Mount the column vertically on a laboratory stand.5. Packing the columnThese instructions are based for packing Sepharose Fast Flow HIC media in the recommended XK 16/20 Column. To modify these instructions for columns of different dimensions, refer to Appendix A.1. Pour the medium slurry into the column in one continuousmotion. Pouring down a glass rod held against the wall of the column helps prevent the introduction of air bubbles. Fill the remainder of the column with buffer.p. 5p. 62. Wet the column adaptor by submerging the plunger end in buffer, and drawing buffer through with a syringe or pump. Ensure that all bubbles have been removed. Disconnect the pump or syringe. Insert the adaptor into the top of the column at an angle, taking care not to trap air under the net. Tighten the adaptor O-ring to give a sliding seal on the column wall.3. Fit a syringe barrel to the sample application valve andconnect the valve between the adaptor and the pump. With the valve in the sample application position, slide the adaptor down into the column. This will displace all air in the tubing as far as the sample application valve. Switch the valve a few times to remove any trapped bubbles. Continue inserting the adaptor until it reaches the medium slurry. Tighten the O-ring and lock the adaptor in position.4. Open the bottom outlet of the column and start the pump. S e pharos e 6 Fast Flow m e dia – Pack the medium at a flow rate of 17 ml/min until the bed height is constant (normally 4 to 5 minutes).Sepharose 4 Fast Flow media – Pack the medium at a flow rate of 12–14 ml/min until the bed height is constant (normally 4 to 5 minutes).5. Stop the pump, close the column outlet, loosen the adaptor O-ring to give a sliding seal and re-position the adaptor on the surface of the medium bed. Press the adaptor into the surface of the medium an additional 1–2 mm. Lock the adaptor in position, open thecolumn outlet and start the pump at the column packing flow rate.If the bed continues to pack, repeat step 5. When the medium bed is stable, the column is packed equilibrated and ready for use.6. EquilibrationTo equilibrate, pump approximately 100 ml of start buffer through the column at a flow rate of 3.5 ml/min for Sepharose 6 Fast Flow and 2.5 ml/min for Sepharose 4 Fast Flow. The column is fully equilibrated when the pH and/or conductivity of the effluent is the same as the start buffer.7. Sample PreparationThe amount of sample that can be applied to the column differs considerably, depending on the degree of substitution of the medium, the nature of the sample and on start buffer conditions. See Table 1 in Appendix B for some capacity guidelines.High ligand density does not necessarily correspond to high capacity for adsorption of protein, but a high ligand density can encourage multi-point attachment of proteins which otherwise might have difficulty adsorbing to lower ligand densities. A moderate ligand density allows selective binding of the protein of interest by adjustment of the binding buffer concentration.The sample should be dissolved in start buffer. Alternatively the sample may be transferred to start buffer by dialysis or by buffer exchange using a HiTrap Desalting or a PD-10 Desalting columns. The viscosity of the sample should not exceed that of the buffer. For normal aqueous buffer systems, this corresponds to a protein concentration of approximately 50 mg/ml.Before application the sample should be centrifuged or filtered through a 0.45 μm filter to remove any particulate matter.p. 78. Operating Flow ratesThe flow rate used for sample binding and subsequent elution will depend on the degree of resolution required, but is normally within the range 2.5–5 ml/min for Sepharose 4 Fast Flow media and 5–10 ml/min for Sepharose 6 Fast Flow media. The lower the flow rate, the better the resolution.9. BindingThe binding of proteins to hydrophobic media is influenced by:• the structure of the ligand (e.g., carbon chain or an aromatic ligand)• the ligand density• the ionic strength of the buffer• the salting-out effect (see The Hofmeister series below)• the temperatureThose salts which cause salting-out (e.g., ammonium sulphate) also promote binding to hydrophobic ligands. The column is equilibrated and the sample is applied in a solution of high ionic strength. A typical starting buffer is 1.7 M (NH4)2SO4, which is just below the concentration employed for salting out proteins. Hydrophobic interactions are weaker at lower temperatures. This must be taken into account if chromatography is done in a cold room.p. 8ElutionBound proteins are eluted by reducing the strength of the hydrophobic interaction. This can be done by:• reducing the concentration of salting-out ions in the buffer with a decreasing salt gradient (linear or step)• increasing the concentration of chaotropic ions in the buffer with an increasing gradient (linear or step)• eluting with a polarity-reducing organic solvent (e.g., ethylene glycol) added to the buffer• eluting with detergent added to the bufferThe Hofmeister series→Increasing salting-out effectAnions: PO43- SO42- CH3COO- Cl- Br- NO3- ClO4- I- SCN-Cations: NH4+ Rb+ K+ Na+ Cs+ Li+ Mg2+ Ba2+Increasingchaotropiceffect→Increasing the salting-out effect strengthens hydrophobic interactions; increasing the chaotropic effect weakens hydrophobic interactions.A suggested starting gradient is a linear gradient from 0 to 100%B with:Buffer A: 50 mM phosphate buffer, pH 7.0 + 1.7 M (NH4)2SO4*Buffer B: 50 mM phosphate buffer, pH 7.0* When working with proteins which have a tendency to aggregate, startwith a lower (NH4)2SO4 concentration to avoid protein precipitation.p. 910. RegenerationAfter every run, elute reversibly bound material with low ionic strength buffer at a flow rate of 3.5 ml/min for Sepharose 6 Fast Flow and 2.5 ml/min for Sepharose 4 Fast Flow. Monitorthe UV absorbance during regeneration to determine when bound substances have been completely washed out of theO and re-column. Wash the column with 40–60 ml of distilled H2 equilibrate with 100 ml of starting buffer.In some applications, substances such as denatured proteins or lipids do not elute in the regeneration procedure. These can be removed by cleaning-in-place procedures.11. Cleaning-in-place (CIP)Remove precipitated proteins by washing the column with 80 ml 1 M NaOH solution at a flow rate of 1.2–1.4 ml/min, followedO. and re-equilibrate immediately with 40–60 ml of distilled H2with 100 ml of starting buffer.Remove strongly hydrophobically bound proteins, lipoproteins and lipids by washing the column with 80 ml of 70% ethanolor 30% isopropanol. Apply increasing concentration gradients to avoid air bubble formation, when using high concentrations of organic solvents. Wash the column with distilled water andre-equilibrate.p. 10Alternatively, wash the column with two 40 ml of 0.1–0.5% detergent in a basic or acidic solution. For example, wash with0.1–0.5% non-ionic detergent in 0.1 M acetic acid at a flow rate of1.2–1.4 ml/min in the reversed flow direction, for a total contact time of 1–2 hours. After treatment with detergent always remove residual detergent by washing with 100 ml of 70% ethanol. Wash the column with distilled water and re-equilibrate.12. SanitizationSanitization reduces microbial contamination of the medium bed to a minimum.Wash the column in the reversed flow direction for 30–60 minutes with 0.5–1 M NaOH, at a flow rate of 1.2–1.4 ml/min.Re-equilibrate the column with approximately 100 ml sterile start buffer.13. StorageFor column storage, wash with 5 column volumes of distilled water followed by 5 column volumes of 20% ethanol. Degas the ethanol/water mixture thoroughly and apply at a low flow rate to avoid overpressuring the column. Ensure that the column is sealed well to avoid drying out. Whenever possible use a storage and shipping device, if supplied by the manufacturer. Store columns and unused media at +4 °C to +30 °C in 20% ethanol. Do not freeze.p. 11Converting to columns of different dimensionsFlow ratesFlow rates quoted in this instruction are for an XK 16/20 column. To convert flow rates for columns of different dimensions:1. Divide the volumetric flow rates (ml/min) quoted by a factorof 2 (the cross-sectional area in cm2 of the XK 16/20) to give the linear flow rate in cm/min.2. Maintain the same linear flow rate and calculate the newvolumetric flow rate according to the cross-sectional area of the specific column to be usedflowrateVolumetricLinear flow rate =Column cross-sectional areaVolumesVolumes (buffers, gradients, etc.) quoted in this instruction arefor an XK 16/20 column that has a bed volume of 20 ml (bed height × cross-sectional area). To convert volumes for columnsof different dimensions, increase or decrease in proportion to the new column bed volume.volumebed New New volume = Old volume ×p. 12Table 1. Media characteristicsDegree of substitution Ligand densitymlmediumper Phenyl Sepharose 6 Fast Flow low sub 25 μmolPhenyl Sepharose 6 Fast Flow high sub 40 μmolButyl-S Sepharose 6 Fast Flow 10 μmolButyl S epharose 4 Fast Flow 40 μmolOctyl Sepharose 4 Fast Flow 5 μmolMean particle size 90 μmBead size range 45–165 μmBead structure Spherical highlycross-linkedagarose, 6 or 4%Max volumetric flow rate (XK 16/20)Sepharose 6 Fast Flow 15 ml/minSepharose 4 Fast Flow 8 ml/minMax linear flow rateSepharose 6 Fast Flow 450 cm/hourSepharose 4 Fast Flow 240 cm/hourp. 13p. 14Max operating pressure Sepharose 6 Fast Flow 0.15 MPa (1.5 bar) Sepharose 4 Fast Flow 0.10 MPa (1.0 bar)pH stability*Long term 3–13Short term2–14Chemical stability, 40 °C for 7 days in: 1 M NaOH,70% ethanol, 30% iso-propanol, 6 M guanidine hydrochloride, 8 M ureaAutoclavable 121 °C for 20 minin H2O* pH stability, long term refers to the pH interval where the medium is stable over a long period of time without adverse effects on its subsequent chromatographic performance. pH stability, short term refers to the pH interval for regeneration, cleaning-in-place and sanitization procedures. All ranges given are estimates based on our knowledge and experience.Ordering InformationDescription Pack size Code No. Phenyl Sepharose 6 Fast Flow low sub 25 ml 17-0965-10 Phenyl Sepharose 6 Fast Flow high sub 25 ml 17-0973-10 Butyl-S Sepharose 6 Fast Flow 25 ml 17-0978-10 Butyl Sepharose 4 Fast Flow 25 ml 17-0980-10 Octyl Sepharose 4 Fast Flow 25 ml 17-0946-10Related ProductsXK 16/20 column 18-8773-01 Valve LV-3 19-0016-01 Valve LV-4 19-0017-01 HiLoad Pump P-50 19-1992-01 HiTrap Desalting column 5 × 5 ml 17-1408-01 PD-10 Desalting columns 30 17-0851-01 Hydrophobic Interaction &Reversed Phase Chromatography:Principles and Methods 11-0012-69 Column packing – The Movie 18-1165-33p. 15。