浙江省瑞安市2019-2020学年度第一学期八年级数学期末试题(PDF 无答案)

合集下载

浙教版2019-2020学年八年级数学上学期期末测试题(含答案)

浙教版2019-2020学年八年级数学上学期期末测试题(含答案)

2019-2020学年八年级数学上学期期末测试卷一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,92.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:18.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤79.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是.14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).15.命题“等腰三角形的两个底角相等”的逆命题是.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于°.18.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,9【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选A.2.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】﹣1<x≤2表示不等式x>﹣1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>﹣1,所以表示﹣1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选B.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r【考点】常量与变量.【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【考点】一次函数图象与系数的关系;一次函数的性质.【分析】根据一次函数解析式中k=3>0、b=6>0,结合一次函数图象与系数的关系即可得出结论.【解答】解:∵在一次函数y=3x+6中:k=3>0,b=6>0,∴一次函数y=3x+6的图象经过第一、二、三象限.故选A.6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.【考点】待定系数法求正比例函数解析式.【分析】利用待定系数法把(1,﹣2)代入正比例函数y=kx中计算出k即可得到解析式.【解答】解:∵正比例函数y=kx经过点(1,﹣2),∴﹣2=1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选B.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:1【考点】勾股定理.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.8.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤7【考点】解一元一次不等式组.【分析】先解两个不等式得到x>7和x>n,然后根据同大取大可确定n的范围.【解答】解:,解①得x>7,解②得x>n,而不等式组的解集是x>7,所以n≤7.故选D.9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x【考点】作图—基本作图;坐标与图形性质.【分析】根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米【考点】一次函数的应用.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:.故这次越野跑的全程为:1600+300×2=2200米.故选C.二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:2x+3>1.【考点】由实际问题抽象出一元一次不等式.【分析】x的2倍为2x,大于1即>1,据此列不等式.【解答】解:由题意得,2x+3>1.故答案为:2x+3>1.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=﹣6.【考点】待定系数法求正比例函数解析式.【分析】设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入求出k的值,得出解析式,然后代入x=3,求得y即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入得:4=﹣2k,解得:k=﹣2,所以,y=﹣2x,当x=3时,y=﹣2×3=﹣6,故答案为﹣6.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【考点】全等三角形的判定.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.15.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=10.【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵点A(m,2)向上平移3个单位,向左平移2个单位后得到点B (3,n),∴m﹣2=3,2+3=n,∴m=5,n=5,∴m+n=10,故答案为:10.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于60°.【考点】直角三角形斜边上的中线.【分析】由直角三角形的性质知,中线CE=AE=BE,所以∠EAC=∠ECA,∠B=∠BCE,由三角形内角和即可求得.【解答】解:由直角三角形性质知,∵E为AB之中点,∴CE=AE=BE,(直角三角形斜边上的中线等于斜边的一半)∴∠B=∠BCE=20°,∠EAC=∠ECA=70°,∴∠ACF=70°,又∵AD=DB,∴∠B=∠BAD=20°,∴∠FAC=50°,∴在△ACF中,∠AFC=180°﹣70°﹣50°=60°,∴∠DFE=∠AFC=60°.故答案为,6018.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=4037﹣8072a.【考点】一次函数图象上点的坐标特征;等腰三角形的性质.【分析】根据一次函数图象上点的坐标特征,求得点B1、B2、B3的纵坐标,然后由三角形的面积公式求得S1,S2…S n;由此得出规律,即可求得S2017﹣S2016的值.【解答】解:∵B1(1,y1)、B2(2,y2)、B3(3,y3),…,在直线y=2x+3上,∴y1=2×1+3=5,y2=2×2+3=7,y3=2×3+3=9,y4=2×4+3=11,…,y n=2n+3;又∵OA1=a(0<a<1),∴S1=×2×(1﹣a)×5=5(1﹣a);S2=×2×[2﹣a﹣2×(1﹣a)]×7=7a;S3=×2×{3﹣a﹣2×(1﹣a)﹣2×[2﹣a﹣2×(1﹣a)]}×9=9(1﹣a);S4=×2×[1﹣(1﹣a)]×11=11a;…∴S n=(2n+3)(1﹣a)(n是奇数);S n=(2n+3)a(n是偶数),∴S2017﹣S2016=(2×2017+3)(1﹣a)﹣(2×2016+3)a=4037﹣8072a.故答案是:4037﹣8072a.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.【考点】一元一次不等式的整数解;在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示解集,最后求出自然数解即可.【解答】解:去分母得:2x<4﹣x+3,2x+x<4+3,3x<7,x<,在数轴上表示为:,不等式的自然数解为0,1,2.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)【考点】利用轴对称设计图案;坐标与图形性质.【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.【解答】解:(1)如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)把A点坐标分别代入两函数解析式,可求得a、b的值,可求得两函数的解析式;(2)由两函数解析式,可求得B、C两点的坐标,可求得△ABC的面积.【解答】解:(1)把A(﹣2,0)分别代入y=2x+a和y=﹣x+b得,a=4,b=﹣2,∴这两个函数分别为y=2x+4和y=﹣x﹣2;(2)在y=2x+4和y=﹣x﹣2中,令x=0,可分别求得y=4和y=﹣2,∴B(0,4),C(0,﹣2),又∵A(﹣2,0),∴OA=2,BC=6,=OA•BC=×2×6=6.∴S△ABC22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.【考点】一次函数的应用.【分析】(1)根据题意可以求得w关于n的函数关系式,由所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,可以确定n 的取值范围;(2)根据(1)中的函数关系式可以求得w的最小值及此时购买的A和B种两种笔记本的数量.【解答】解:(1)由题意可得,w=12n+8(30﹣n)=4n+240,∵,解得,15<n≤20,即w(元)关于n(本)的函数关系式是w=4n+240(15<n≤20);(2)∵w=4n+240(15<n≤20),n为正整数,∴n=16时,w取得最小值,此时w=4×16+240=304,∴30﹣n=30﹣16=14,即购买A种笔记本16本、B种笔记本14本时,花费最少,此时的花费是304元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.【考点】三角形综合题.【分析】(1)欲证明CD=AE,只要证明△ABE≌△DBC即可.(2)如图②中,取BE中点F,连接DF,证出△DBF是等边三角形,进一步得出∴∠FDE=∠FED=30°,即可证明△BDE是直角三角形.(3)如图③中,连接DC,先利用勾股定理的逆定理证明△DEC是直角三角形,得∠DEC=90°即可解决问题.【解答】(1)证明:∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴CD=AE.(2)证明:如图②中,取BE中点F,连接DF.∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,∴BF=EF=1=BD,∠DBF=60°,∴△DBF是等边三角形,∴DF=BF=EF,∠DFB=60°,∵∠BFD=∠FED+∠FDE,∴∠FDE=∠FED=30°∴∠EDB=180°﹣DEB∠DBE﹣∠DEB=90°.(3)解:如图③中,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.∵DE2+BE2=AE2,BE=CE,∴DE2+CE2=CD2,∴∠DEC=90°,∵∠BEC=60°,∴∠DEB=∠DEC﹣∠BEC=30°.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)首先求得直线y=kx﹣3与y轴的交点,则OC的长度即可求解,进而求得B的坐标,把B的坐标代入解析式即可求得k的值;(2)根据三角形的面积公式即可求解;再利用函数关系式即可得出结论;(3)分三种情况,利用等腰三角形的性质即可得出结论.【解答】解:(1)在y=kx﹣3中,令x=0,则y=﹣3,∴C的坐标是(0,﹣3),OC=3,∵OC=2OB,∴OB=OC=,则B的坐标是:(,0),把B的坐标代入y=kx﹣3,得:k﹣3=0,∴k=2;(2)OB=,则S=×(2x﹣3)=x﹣;∵△AOB的面积为;∴x﹣=,∴x=3,则A的坐标是(3,3);(3)设P(m,0),(m>0)由(1)(2)知,A(3,3),B(,0),∴AB2=(3﹣)2+9=,AP2=(m﹣3)2+9=m2﹣6m+18,BP2=(m﹣)2,∵△ABP为等腰三角形,①当AB=AP时,∴AB2=AP2,∴=m2﹣6m+18,∴m=﹣(舍)或m=,∴P (,0)②当AB=BP 时,∴AB 2=BP 2,∴=(m ﹣)2,∴m=(舍)或m=,∴P (,0) ③当AP=BP 时,AP 2=BP 2,∴m 2﹣6m +18=(m ﹣)2,∴m=,∴P (,0)满足条件的P 的坐标为P (,0)或(,0)或(,0).2017年2月28日。

2019-2020学年浙江省温州市瑞安市八年级(上)期末数学试卷 (1)

2019-2020学年浙江省温州市瑞安市八年级(上)期末数学试卷 (1)

2019-2020学年浙江省温州市瑞安市八年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分.共30分.每小题只有一个选项是正确的,不选.多选、错选均不得分)1. 下列各组数可能是一个三角形的边长的是()A.5,6,7B.5,7,12C.5,5,12D.1,2,62. 在平面直角坐标系中,点(3, −4)所在的象限是()A.第二象限B.第一象限C.第三象限D.第四象限3. 下列图案中是轴对称图形的是()A. B. C. D.4. 一次函数y=2x+2的图象与x轴的交点坐标是()A.(0, −2)B.(0, 2)C.(−1, 0)D.(1, 0)5. 对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是()A.a=−1,b=−2B.a=2,b=1C.a=−2,b=−1D.a=−1,b=16. 直线y=−2x+b上有三个点(−2.4, y1).(−1.5, y2).(1.3, y3).则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2<y1<y3D.y2>y1>y37. 如图,∠ABC=∠DCB.要说明△ABC≅△DCB,需添加的条件不能是()A.∠A=∠DB.AB=DCC.BM=CMD.AC=DB8. 如图,在Rt△ABC中,∠C=90∘,AD是∠BAC的平分线,若AC=6,BC=8,则S△ABD:S△ACD为()A.5:4 B.5:3 C.4:3 D.3:59. 若不等式组{x<−ax<b的解为x<−a,则下列各式中正确的是()A.a+b≥0B.a+b≤0C.a−b<0D.a−b>010. 意大利文艺复兴时期的著名画家达•芬奇利用两张一样的纸片拼出不一样的“空洞“,从而巧妙的证明了勾股定理.小明用两张全等的的纸片①和②拼成如图1所示的图形,中间的六边形ABCDEF由两个正方形和两个全等的直角三角形组成.已知六边形ABCDEF的面积为28,S正方形ABGF:S正方形CDEG=4:1.小明将纸片②翻转后拼成如图2所示的图形,其中∠B′A′F′=90∘,则四边形B′C′E′F′的面积为()A.20B.16C.22D.24二、填空题(本题有6小题,每小题3分,共18分)若a的3倍与2的差是负数,则可列出不等式________.把点A(3, −1)先向右平移2个单位,再向上平移3个单位,所得点的坐标为________.在Rt△ABC中,∠ABC=90∘,D为斜边AC的中点,BD=5.则AC=________.点A(m, 1)关于y轴的对称点恰好落在一次函数y=3x+4的图象上,则m=________.如图,在Rt△ABC中,∠C=90∘,D,E分别为边AB,AC上一点,AD=AE.将△ABC沿DF折叠,使点B与E重合,折痕交边BC于点F.若△CEF为等腰三角形,则∠A的度数为________度.图1是小慧在“天猫•双11”活动中购买的一张多档位可调节靠椅,档位调节示意图如图2所示,已知两支脚AB =AC=10分米,BC=12分米,O为AC上固定连接点,靠背OD=10分米.档位为Ⅰ档时,OD // AB.档位为Ⅱ档时,OD′⊥AC.当靠椅由Ⅰ档调节为Ⅱ档时,靠背頂端D向后靠的水平距离(即EF)为________分米.三、解答题(本题有7小题,共52分解答需写出必要的文字.演算步骤或证明过程)(1)解不等式5x−2<3x+4,并把解表示在数轴上.(2)解不等式组{−3x≤−63(x−2)<4.如图,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A,B的坐标分别为(2, 4),(−1, 2).(1)请在图中画出平面直角坐标系.(2)请画出△ABC关于x轴对称的△A′B′C′.(3)线段BC′的长为________.如图.直线l1:y=−2x+4交x轴于点A,直线l2交y轴于点B(0, −1),l1与l2的交点P的横坐标为1.连结AB.(1)求直线l2的函数表达式,(2)求△PAB的面积.如图,在等腰Rt△ABC中,∠BAC=90∘,延长BA至点D,连结DC,过点B作BE⊥DC于点E,F为BC上一点,FC=FE.连结AF,AE.(1)求证:FA=FE.(2)若∠D=60∘,BC=10,求△AEF的周长.某甜品店用A,B两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如表所示.该店制作甲款甜品x份,乙款甜品y份,共用去A原料2000克.(1)求y关于x的函数表达式.(2)已知每份甲甜品的利润为5元,每份乙甜品的利润为2元,假设两款甜品均能全部卖出.若获得总利润不少于360元,则至少要用去B原料多少克?如图.直线y=2x+4分别与x轴,y轴交于点A.B,过点B的直线y=−x+b交x轴于点C,D为OC的中点.P 为射线BC上一动点,连结PA,PD,过D作DE⊥AP于点E.(1)直接写出点A,D的坐标:A(________,________),D(________,________).(2)当P为BC中点时,求DE的长.(3)当△ABP是以AP为腰的等腰三角形时,求点P坐标.(4)当点P在线段BC(不与B.C重合)上运动时,作P关于DE的对称点P′,若P′落在x轴上,则PC的长为________.参考答案与试题解析2019-2020学年浙江省温州市瑞安市八年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分.共30分.每小题只有一个选项是正确的,不选.多选、错选均不得分)1.【答案】此题暂无答案【考点】三角常三簧关系【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】轴正算图形【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】命体与白理【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】一次水体的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】全等三表形木判定【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】角平较线的停质【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】不等射加解集【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】勾股明理轮证明【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题有6小题,每小题3分,共18分)【答案】此题暂无答案【考点】由实三问刺抽客腔一元一次不等式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】坐标与图体变某-平移【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直使三碳形望边扩的中线【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】关于较洗、y装对氢的点的坐标一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰三验库的性质翻折变换(折叠问题)【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾股表理抛应用【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题有7小题,共52分解答需写出必要的文字.演算步骤或证明过程)【答案】此题暂无答案【考点】解一元表次镜等式组解一元因次不丙式在数较溴表示总等线的解集【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全根三烛形做给质与判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展作图-射对称变面【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】两直正区直问题两直正键行问题两直线相来非垂筒问题待定正数键求一程植数解析式相交线【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直使三碳形望边扩的中线等腰于角三旋形含因梯否角样直角三角形【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元都次特等水的实常应用一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次函常的头合题【解析】此题暂无解析【解答】此题暂无解答。

(完整word版)2019-2020年八年级数学上学期期末考试试题新人教版

(完整word版)2019-2020年八年级数学上学期期末考试试题新人教版
(不考虑除进价之外的其它费用)
(1)如果商店将购进的电视机与洗衣机销售完毕后获得利润为y元,购进电视机x台,求y与x的函数关系式(利润=售价-进价)
(2)请你帮助商店算一算有多少种进货方案?
(3)哪种进货方案待商店将购进的电视机与洗衣机销售完毕后获得利润最多?并求出最多利润.
24(9分)如图①所示,直线L: 与 轴负半轴, 轴正半轴分别交于A、B两点。
写坐标 ------------------------------------6分
21、(8分)
解: 2分
4分
6分
=1448分
22、(8分)
证明:∵∠BAE=∠BCE=∠ACD=90°
∴∠1=∠ACD-∠ACE=90°-∠31分
∠2=∠BCE-∠ACE=90°-∠32分
∴∠1=∠24分
∵∠D+∠CAD=90°,∠4+∠CAD=90°
(1)说明 成立的理由 ;
(2)若 , ,那么 的周长是多少?
23、(8分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别
电视机
洗衣机
进价(元/台)
1800
1500
售价(元/台)
2000
1600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.
求证:△ABC≌△DEC
得 分
评卷人
23.本题满分10分
如图,在△ABC中,已知AB=AC,点D、E分别在AC、AB上,且BD=BC,AD=DE=EB,求∠A的度数.
得 分
评卷人
24.本题满分10分
李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.

浙教版2019-2020学年第一学期八年级期末模拟试题数学卷(解析版)

浙教版2019-2020学年第一学期八年级期末模拟试题数学卷(解析版)

浙教版2019-2020学年第一学期八年级期末模拟试题数学卷考试时间100分钟满分120分班级__________姓名__________学号__________成绩__________一、选择题(共10题;共30分)1. ( 3分) 下列图形中,是轴对称图形的是()A. B. C. D.2. ( 3分) 下列各组数不可能是一个三角形的边长的是()A. 7,8,9B. 5,6,7C. 3,4,5D. 1,2,33. ( 3分) 在平面直角坐标系中,点A(7,﹣2)关于x轴对称的点A′的坐标是()A. (7,2)B. (7,﹣2)C. (﹣7,2)D. (﹣7,﹣2)4. ( 3分) 已知一次函数y=kx+b的图象经过(1,a)和(a,﹣1),其中a>1,则k,b的取值范围是()A. k>0,b>0B. k<0,b>0C. k>0,b<0D. k<0,b<05. ( 3分) 一个等腰三角形的两边长分别为4,8,则它的周长为()A. 12B. 16C. 20D. 16或206. ( 3分) 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 130°C. 140°D. 150°7. ( 3分) 如果a>b,c<0,那么下列不等式成立的是()A. a+c>b+c;B. c-a>c-b;C. ac>bc;D. .8. ( 3分) 如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A. 50°B. 60°C. 76°D. 55°9. ( 3分) 某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A. 若甲对,则乙对B. .若乙对,则甲对C. 若乙错,则甲错D. 若甲错,则乙对10. ( 3分) 已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中表示时间,表示林茂离家的距离。

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.49.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是.14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=度.15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是cm.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点最近;(2)第四次相遇时甲与最近顶点的距离是厘米.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.参考答案一、选择题(每小题3分.共30分)1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣解:∵函数y=,∴2x+3≥0,∴x≥﹣,故选:B.3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.解:为△ABC中BC边上的高的是A选项.故选:A.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个解:A、2x<6的解集是x<3,故此选项正确;B、﹣x<﹣4的解集是x>4,故此选项错误;C、x<3的整数解有无数个,故此选项正确;D、x<3的正整数解有1,2两个,故此选项正确;故选:B.5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D.6.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个解:当2边长分别为7,6时,1<第3边<7,可取2,3,4,5,6共5个数;当2边长为7,5时,2<第3边<7,可取3,4,5,6共4个数;当2边长为7,4时,3<第3边<7,可取4,5,6共3个数;当2边长为7,3时,4<第3边<7,可取5,6共2个数;当2边长为7,2时,5<第3边<7,可取6共1个数;去掉重合的7,6,5;7,6,4;7,6,3;7,6,2,4组,这样的三角形共有5+4+3+2+1﹣4=11(组).故选:D.8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.4解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故选:D.9.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是﹣1<m<2.解:∵点P(m﹣2,m+1)在第二象限,∴,解得,﹣1<m<2,故答案为:﹣1<m<2.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是2x﹣5≥0.解:根据题意,得2x﹣5≥0.故答案是:2x﹣5≥0.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是(1,2).解:联立,解这个方程组得,所以,交点坐标为(1,2).故答案为:(1,2).14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=25度.解:由光的反射可知∠PMC=∠AMN,又PM∥AB,∴∠PMC=∠A,∴∠A=∠AMN,又∠BNM为△AMN的外角,且∠BNM=∠AND,∴∠BNM=∠A+∠AMN=2∠A,即∠AND=2∠A,在△ADN中,∠ADN=105°,则180°﹣∠ADN=∠A+∠AND=3∠A,即3∠A=75°,所以∠A=25°.故答案为:25°15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是2<a≤3cm.解:∵关于x的一元一次不等式x﹣1<a有3个正整数解,∴关于x的一元一次不等式x﹣1<a的3个正整数解,只能是3、2、1,∴a的取值范围是:3<a+1≤4,即2<a≤3.故答案为:2<a≤3.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点C最近;(2)第四次相遇时甲与最近顶点的距离是C厘米.解:(1)设出发x秒后甲乙第一次相遇,根据题意得:x+3x=12×3,解得x=9,所以第一次相遇时甲离顶点C最近;(2)第二次相遇的时间为:9+36÷(2+4)=16(秒),第三次相遇的时间为:16+36÷(3+5)=20.5(秒),第四次相遇的时间为:20.5+36÷(4+5)=24.5(秒),甲所走路程为:9+2×(16﹣9)+3×(20.5﹣16)+4×(24.5﹣20.5)=52.5(cm),52.5﹣12×4=4.5(cm),所以第四次相遇时甲离顶点C最近.故答案为:(1)C;(2)C.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)解:(1)3(x﹣1)+4≥2x,去括号,得3x﹣3+4≥2x,移项及合并同类项,得x≥﹣1,故原不等式的解集是x≥﹣1;(2),由不等式①,得x<8,由不等式②,得x>,故原不等式组的解集是<x<8.18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.解:设一次函数解析式为y=kx+b,将x=3,y=﹣2;x=2,y=﹣3代入得:,解得:k=1,b=﹣5,则一次函数解析式为y=x﹣5.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.解:(1)∵A(6,0),B(0,8),∴OA=6,OB=8,∴AB ===10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴OM=3,BM=OB﹣OM=5,∴S△ABM =×BM×AO =×5×6=15.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?解:(1)依题意,得600x+400(20﹣x)≥480×20,解得x≥8.∴至少需要购买甲种原料8千克,答:至少需要购买甲种原料8千克.(2)根据题意得:y=9x+5(20﹣x),即y=4x+100,∵k=4>0,∴y随x的增大而增大,∵x≥8,∴当x=8时,y最小,y=4×8+100=132,∴购买甲种原料8千克时,总费用最少,是132元,答:购买甲种原料8千克时,总费用最少,是132元.22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,∴∠ADC=60°,∵∠ADC=∠B+∠BAD,∴∠B=∠BAD=30°,∴DB=DA,∵CD=2AD,∴BC=3BD.(2)解:过点A作AH⊥BC于H.∵AB=AC=20,AH⊥BC,∴BH=CH=16,∵cos∠C==,∴=,∴CD=25,∴BD=BC﹣CD=32﹣25=7.∴CD=BH﹣DH=16﹣9=7.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600),所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲;(3)∵点A(8,120),点O(0,0),∴AB解析式为y=15x,当0<t≤8时,20t﹣15t=20,∴t=4,当8<t<10时,20t﹣(40t﹣200)=20,∴t=9,当10≤t<30时,40t﹣200﹣20t=20,∴t=11,综上所述:当t=4或9或11时,甲乙之间的路程为20米.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.解:(1)如图1中,∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3cm.(2)如图2中,作NT∥OB,过点Q作QR⊥NT于R,过点B作BH⊥NT于H.在Rt△MON中,∵∠OMN=30°,OM=6cm,∴ON=OM•tan30°=2(cm),∵∠NOB=∠ONH=∠BHN=90°,∴四边形OBHN是矩形,∴BH=ON=2(cm),∵NT∥OB,∴∠MNT=∠OMN=30°,∵QR⊥NT,∴QR=NQ,∴2BQ+NQ=2(BQ+NQ)=2(BQ+QR),∵BQ+QR≥BH,∴BQ+QR≥2,∴2BQ+NQ≥4,∴2BQ+NQ的最小值为4.(3)存在,有4种情况:如图3中,①当点P在线段AB上时,点P在AB上运动的时间为s,∵△PEF为等腰三角形,∠PEF=90°,∴PE=EF,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴=t或=t,解得t=或>(故舍去),②当点P在AF上时,若PE=PF时,点P为EF的垂直平分线与AC的交点,此时P为直角三角形PEF斜边AF的中点,∴PF=AP=2t﹣3,∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,∴0<t<3,在直角三角形中,cos30°=,∴=,解得:t=2,若FE=FP,AF===t,则t﹣(2t﹣3)=t,解得:t=12﹣6;③当PE=EF,P在AF上时无解,④当P点在CF上时,AP=2t﹣3,AF=t,则PF=AP﹣AF=t﹣3=EF,所以t﹣3=t,解得t=12+6>3,不合题意,舍去.综上,存在t值为或12﹣6或2时,△PEF为等腰三角形.。

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

2019-2020学年八年级数学上学期期末考试试卷一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,42.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<03.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是.14.在直角三角形中,一个锐角为57°,则另一个锐角为.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是.16.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD=.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为m2.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.参考答案与试题解析一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2=3,不能组成三角形,故B选项错误;C、1+2>2,能组成三角形,故C选项正确;D、1+2<4,能组成三角形,故D选项错误;故选:C.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<0【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、m≤0时,不等式不成立,故A错误;B、a<0时,不成立,故B错误;C、两边都乘以﹣1,不等号的方向改变,故C错误;D、两边都减a,不等号的方向不变,故D正确;故选:D.3.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)【考点】点的坐标.【分析】笑脸盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.【解答】解:笑脸盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(﹣2,3).故选B.4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【考点】全等三角形的性质.【分析】要求∠F的大小,利用△ABC≌△DEF,得到对应角相等,然后在△DEF 中依据三角形内角和定理,求出∠F的大小.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选B.6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为80°,∴顶角=180°﹣80°×2=20°.故选A.7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的性质进行判断即可.【解答】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限.故选A.8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式x+2<6的正整数解为1,2,3,共3个.故选C.9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】由题意,0到20分钟,小明离家越来越远,在20分钟时,离家最远,为900米;在超市购物用了10分钟,即20到30分钟期间,离家距离没变,为900米;15分钟返回家中,即在30到45分钟期间,离家越来越近,在45分钟时,离家距离为0.过程清楚,问题解决.【解答】解:由题意,图形应有三个阶段,①从家到超市,时间为0﹣﹣20分钟;②在超市购物,20﹣﹣30分钟;③从超市到家,30﹣﹣45分钟.A、图显示20到45分钟时,距家都是900米,实际上45分钟时已经到家了,距离应为0;故错误.B、图显示20到45分钟时,离家越来越近,实际上,20到30分钟时一直在超市;故错误.C、图显示不出20到30分钟时,离家一直是900米来,故错误.D、图显示的符合三个阶段,是正确的.综上所述,故选D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①有一个角为60°的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.【考点】待定系数法求一次函数解析式;正方形的性质.【分析】直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出点A的坐标,根据待定系数法即可得到该直线l的解析式.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P 作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选B.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式进行计算即可求解.【解答】解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.14.在直角三角形中,一个锐角为57°,则另一个锐角为33°.【考点】直角三角形的性质.【分析】利用直角三角形的两锐角互余可求得答案.【解答】解:∵直角三角形的两锐角互余,∴另一锐角=90°﹣57°=33°,故答案为:33°.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是k <2.5.【考点】一次函数的性质.【分析】根据已知条件“一次函数y=(2k﹣5)x+2中y随x的增大而减小”知,2k ﹣5<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(2k﹣5)x+2中y随x的增大而减小,∴2k﹣5<0,解得,k<2.5;故答案是:k<2.516.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD= 6.5.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【分析】由△ABC的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC为斜边,再由D为斜边上的中点,得到BD为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD的长.【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=25+144=169,AC2=132=169,即AB2+BC2=AC2,∴△ABC为以AC为斜边的直角三角形,又∵D为AC的中点,即BD为斜边上的中线,∴BD=AC=6.5.故答案为:6.5.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=3.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC的面积列方程求解即可.【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积是45cm2,∴×16•DE+×14•DF=45,解得DE=3cm.故答案为:3.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为8或10m2.【考点】勾股定理的应用;等腰三角形的性质.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AC=CD,②AD=AB,2种情况进行讨论.【解答】解:∵两直角边长为3m,4m,∴由勾股定理得到:AB==5m.①如图1:当AC=CD=8m时;∵AC⊥CB,此时等腰三角形绿地的面积:×4×4=8(m2);②如图2,延长AC到D使AD等于5m,此时AB=AD=5m,此时等腰三角形绿地的面积:×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或10m2;故答案为:8或10三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两不不等式得到x≥﹣1和x<3,再利用数轴表示解集,然后写出不等式组的解集.【解答】解:解不等式(1)得x≥﹣1,解不等式(2)得x<3在数轴上表示为所以不等式组的解集为﹣1≤x<3.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.【考点】全等三角形的判定与性质.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【解答】解:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【考点】作图—应用与设计作图.【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】(1)设这个一次函数的解析式为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出一次函数解析式;(2)将x=﹣代入一次函数解析式中求出y值即可;(3)由y<1可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)设这个一次函数的解析式为y=kx+b(k≠0),把(﹣4,9)、(6,﹣1)代入y=kx+b中,,解得:,∴这个一次函数的解析式为y=﹣x+5.(2)当x=﹣时,y=﹣(﹣)+5=.(3)∵y=﹣x+5<1,∴x>4.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)如图,证明∠AEC=∠ACE,即可解决问题.(2)如图,作辅助线;求出AG的长度,运用三角形的面积公式,即可解决问题.【解答】(1)证明:如图,∵AB∥CD,∴∠AEC=∠DCE,又∵CE平分∠ACD,∴∠ACE=∠DCE,∴∠AEC=∠ACE,∴△ACE为等腰三角形.(2)过A作AG⊥CE,垂足为G;∵AC=AE,∴CG=EG=CE=12(cm);∵AC=13(cm),由勾股定理得,AG=5(cm);=×24×5=60(cm2).∴S△ACE24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?【考点】一次函数的应用.【分析】(1)设生产甲礼品x万件,乙礼品万件,根据收入=售价×产量列出函数关系式即可;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,根据成本不超过1380万元求出x的取值范围,然后根据利润=(售价﹣成本)×销量,列出函数关系式,求y的最大值;【解答】解:(1)设生产甲礼品x万件,乙礼品万件,由题意得:y=(22﹣15)x+(18﹣12)=x+600;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,由题意得:15x+12≤1380,∴x≤60,利润y=(22﹣15)x+(18﹣12)=x+600,∵y随x增大而增大,∴当x=60万件时,y有最大值660万元.这时应生产甲礼品60万件,乙礼品40万件.25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0= x0+2,据此可以求得点C的坐标;【解答】解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.【考点】三角形综合题.【分析】(1)由AB∥x轴,可找出四边形ABCO为长方形,再根据△APB为等腰三角形可得知∠OAP=45°,从而得出△AOP为等腰直角三角形,由此得出结论;(2)由全等三角形的性质和等腰三角形的性质可得出结论,注意分类讨论;(3)由等腰直角三角形的性质和全等三角形的性质即可得出结论.【解答】解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4.(2)点M的坐标为(4,7)或(6,﹣4)或(10,﹣1)或(0,4);(3)∠OA'B=45°,不发生变化;理由如下:∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,,∴△PAO≌△BPC(AAS),∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+t∴点B(4+t,t);∴点B在直线y=x﹣4上又∵点A关于x轴的对称点为A'(0,﹣4)也在直线y=x﹣4上,∴∠OA'B=45°.2017年2月6日。

2020-2021学年浙江省温州市瑞安市八年级上学期期末数学复习卷 (含答案解析)

2020-2021学年浙江省温州市瑞安市八年级上学期期末数学复习卷 (含答案解析)

2020-2021学年浙江省温州市瑞安市八年级上学期期末数学复习卷一、选择题(本大题共10小题,共30.0分)1. 点P(2018,2019)在第( )象限.A. 一B. 二C. 三D. 四2. 在下列图标中是轴对称图形的是( ) A. B. C. D.3. 下列各组数可能是一个三角形的边长的是( ).A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,114. 直线y =3x +6与y 轴的交点坐标是( )A. (2,0)B. (0,−6)C. (−2,0)D. (0,6)5. 下列选项中可以用来说明命题“若x 2>1,则x >1”是假命题的反例是( )A. x =1B. x =−1C. x =2D. x =−26. 不等式2x +5>4的解集是( )A. x >−2B. x <−2C. x >−12D. x <−12 7. 如图,在△ABC 中,∠BAC =80°,∠B =35°,AD 平分∠BAC ,则∠ADC的度数为( ).A. 90°B. 95°C. 75°D. 55°8. 如图,下列三角形中,与△ABC 全等的是( )A. B. C. D.9. 若关于x ,y 的方程组{2x +y =4k +3x +2y =−k满足1<x +y <2,则k 的取值范围是( ) A. 0<k <1 B. −1<k <0 C. 1<k <2 D. 0<k <3510.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y(km)与时间x(min)之间的对应关系.根据图象,下列说法正确的是()A. 小明吃早餐用了25minB. 小明读报用了30minC. 食堂到图书馆的距离为0.8kmD. 小明从图书馆回家的速度为0.8km/min二、填空题(本大题共6小题,共18.0分)11.x的5倍与y的和大于5,用不等式表示为____.12.若直角三角形的两条直角边的长分别是12和16,则斜边上的中线长为.13.点P(m,−1)向左平移2个单位后在直线y=2x−3上,则m=_____.14.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB边的距离为______ .15.如图,在△ABC中,∠ACB=90°,AC=2√5,斜边AB在x轴上,点C在y轴的正半轴上,点A的坐标为(2,0),则直角边BC所在直线的表达式为____________.16.如图,在等腰Rt△ABC中,∠ACB=90°,AB=4,点E为AB的中点.以AE为边作等边△ADE(点D与点C分别在AB的异侧),连接CD.则△ACD的面积为______.三、计算题(本大题共1小题,共5.0分)17.解不等式组:{x+12<2x−2(x−1)<4四、解答题(本大题共6小题,共47.0分)18.如图,AD=AB,∠D=∠B,∠EAC=∠DAB,求证:AE=AC.19.已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC.20.如图,直线l1:y=−2x+b过点A(4,0),交y轴于点B,直线l2:y=1x+3与x轴交于点C,两直线l1,l2相交于点D,连接BC.2(1)求直线l1的解析式和点D的坐标;(2)求△BCD的面积.21.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上且BE=BD,连结AE、DE、DC.(1)求证:AE=CD;(2)若∠CAE=30°,求∠BDC的度数.22.为绿化校园,某校计划购进A,B两种树苗共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x之间的函数表达式为_________________;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案.并求出该方案所需费用.23.在平面直角坐标系中,直线y=x+6与x轴、y轴分别交于B、A两点,点C在x轴的正半轴,且OB=OC,点D为AC的中点.(1)求直线AC的解析式;(2)点P从点B出发,沿射线BD以每秒√10个单位的速度运动,运动时间为t秒,△APD的面积为S,求S与t的函数关系,并直接写出自变量的取值范围;(3)在(2)的条件下,连接AP、CP,当△ACP是以PC为腰的等腰三角形时,求点P的坐标.-------- 答案与解析 --------1.答案:A解析:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).解:∵点P(2018,2019),∴点P在第一象限.故选A.2.答案:D解析:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念求解.解:A.不是轴对称图形,故本选项错误;.B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.3.答案:C解析:本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.看哪个选项中两条较小的边的和大于最大的边即可.解:、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误.4.答案:D解析:本题主要考查一次函数图象上点的坐标特征,注意函数图象与坐标轴交点的求法即可,令x=0可求得y的值,则可求得直线与y轴的交点坐标.解:在y=3x+6中,令x=0,可得0+6=y,解得y=6,∴直线y=3x+6与y轴的交点坐标为(0,6),故选D.5.答案:D解析:本题考查了命题与定理,要证明一个命题是假命题的反例,只需要这个例子满足命题的题设,但不满足命题的结论即可,据此逐一判断各选项即可得解.解:A、x=1不满足x2>1,不是题设的条件,不是特例,故不是反例;B、x=−1不满足x2>1,不是题设的条件,不是特例,故不是反例;C、x=2满足x2>1,也满足x>1,故不是反例;D、x=−2满足x2>1,不满足x>1的要求,故是原命题的反例.故选D.6.答案:C解析:解:移项得,2x>4−5,合并同类项得,2x>−1,把x的系数化为1得,x>−1.2故选C.先移项,再合并同类项,把x的系数化为1即可.本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.解析:解:∵AD平分∠BAC,∠BAC=40°,∴∠BAD=12∴∠ADC=∠B+∠BAD=35°+40°=75°,故选C.由角平分线的定义可求得∠BAD,在△ABD中利用外角性质可求得∠ADC.本题主要考查三角形外角的性质,掌握三角形的外角等于不相邻两个内角的和是解题的关键.8.答案:C解析:本题考查了全等三角形的判定;熟练掌握全等三角形的判定.做题时要按判定全等的方法逐个验证.根据三边对应相等的三角形全等得到答案.解:因为三角形要全等对应边必须相等,所以只有C选项的三角形与△ABC的各边都相等,只有选项C正确.故选C.9.答案:A解析:本题考查了一元一次不等式组以及二元一次方程组的解法,正确利用k表示出x+y的值是关键.将两个方程相加,变形得到x+y=k+1,根据1<x+y<2列出关于k的不等式组,解之可得.解:将两个方程相加可得3x+3y=3k+3,则x+y=k+1,∵1<x+y<2,∴1<k+1<2,解得0<k<1,故选A.解析:[分析]本题是考查图象信息题.理解图象的横轴、纵轴表示的量,再看这两个量是如何变化来确定图象中变量的关系是解题关键.由图象可知小明从家到食堂路程是0.6km,花了8min,在食堂吃饭花了(25−8)min,从食堂到图书馆路程是(0.8−0.6)km,花了(28−25)min,在图书馆读报花了(58−28)min,从图书馆回到家的路程是0.8km,花了(68−58)min.利用路程÷时间=速度就可以求出小明从图书馆回家的速度.[详解]A.小明吃早餐用了25−8=17(min),故A错;B.小明读报用了58−28=30(min),故B正确;C.食堂到图书馆的距离为0.8−0.6=0.2(km),故C错;D.小明从图书馆回家的速度为0.8÷(68−58)=0.08(km/min),故D错.故答案为B.11.答案:5x+y>5解析:此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.先表示出x的5倍为5x,与y的和表示为:5x+y,再根据大于5可列出不等式.解:由题意得:5x+y>5,故答案为5x+y>5.12.答案:10解析:此题考查的是勾股定理和直角三角形的性质,先根据勾股定理求出斜边长,再根据直角三角形斜边上的中线等于斜边的一半可得结论.解:根据勾股定理求得斜边长为20,=10.再根据“直角三角形斜边上的中线等于斜边的一半”,得斜边上的中线长为20213.答案:3解析:本题考查了坐标与图形变化−平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了一次函数图象上点的坐标特征.向左平移2个单位则横坐标减去2纵坐标不变,再根据一次函数图象上点的坐标特征即可得出答案.解:点P(m,−1)向左平移2个单位后得(m−2,−1),∵点P(m,−1)向左平移2个单位后在直线y=2x−3上,∴−1=2(m−2)−3,解得:m=3.故答案为3.14.答案:28解析:解:过点D作DE⊥AB于E,∵BC=64,BD:CD=9:7,∴CD=64×7=28,9+7∵∠C=90°,AD平分∠BAC,∴DE=CD=28,故答案为:28.过点D作DE⊥AB于E,根据比例求出CD,再根据角平分线上的点到角的两边的距离相等可得DE= CD.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.x+415.答案:y=12解析:根据三角形相似,对应边的比相等,可以得到B 的坐标,再根据待定系数法就可以求出直线BC 的解析式.解:A 坐标为(2,0),则OA =2,在△ABC 中,∠ACB =90°,AC =2√5, ∴由勾股定理,得OC =√AC 2−OA 2=4,又∵CO ⊥AB ,∴△AOC∽△ACB ,∴AC AB =AOAC ,即AC 2=AO ·AB ,∴AB =10,则OB =8,因而B 的坐标是(−8,0),设BC 解析式为y =kx +b ,有{b =40=−8k +b ,解得{k =12b =4直线BC 的解析式是y =12x +4.故答案为y =12x +4.16.答案:1+√3解析:解:连接CE ,∵∠ACB =90°,E 为AB 的中点,∴CE =AE =BE ,∵△ADE 是等边三角形,∴DE =AE ,∴DE =AE =CE =BE ,∴D 、A 、C 、B 在以点E 为圆心的圆上,作⊙E ,∴∠ADC =∠ABC =45°,过A 作AF ⊥CD 于F ,∴△ADF 是等腰直角三角形,∵AD =AE =12AB =2, ∴AF =DF =√2=√2,∵∠CAF =∠DAB +∠BAC −∠DAF =60°+45°−45°=60°,∴∠ACF =30°,∴AC =2AF =2√2,由勾股定理得:CF =√AC 2−AF 2=√(2√2)2−(√2)2=√6,∴S △ADC =12CD ⋅AF =12(√2+√6)×√2=1+√3, 故答案为:1+√3.根据圆的定义,证明D 、A 、C 、B 四点共圆,可得∠ADF =45°,作高线AF ,构建等腰直角△ADF 和30度的直角△AFC ,可以求得AF 、DF 、CF 的长,利用三角形面积公式可得结论.本题考查了等腰直角三角形的性质和判定、勾股定理、等边三角形的性质及四点共圆的知识,本题证明D 、A 、C 、B 四点共圆是关键.17.答案:解:由不等式x+12<2得:x <3,由不等式x −2(x −1)<4得:x >−2,∴原不等式组得解集为:−2<x <3.解析:本题考查了一元一次不等式组的解法.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出各不等式的解集,再求其公共解集即可.18.答案:证明:∵∠EAC =∠DAB ,∴∠EAC +∠CAD =∠CAD +∠DAB ,即∠EAD =∠CAB ,在△EAD 和△CAB 中{∠D =∠B AD =AB ∠EAD =∠CAB∴△EAD≌△CAB(ASA),∴AE=AC.解析:由∠EAC=∠DAB可得到∠EAD=∠CAB,结合条件可证明△EAD≌△CAB,利用全等三角形的性质可得AE=AC.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.19.答案:证明:(1)在Rt△OEC和Rt△OFB中∵{OE=OFOB=OC,∴Rt△OEC≌Rt△OFB(HL),∴∠B=∠C(全等三角形的对应角相等),∴AB=AC(等角对等边);(2)在Rt△OEC和Rt△OFB中,∵{OE=OFOB=OC,∴Rt△OEC≌Rt△OFB(HL),∴∠OBF=∠OCE,又∵OB=OC,∴∠OBC=∠OCB,∴∠FBO+∠OBC=∠OCE+∠OCB,即∠ABC=∠ACB,∴AB=AC.解析:(1)先利用斜边直角边定理证明△OEC和△OFB全等,根据全等三角形对应角相等得到∠B=∠C,再根据等角对等边的性质即可得到AB=AC;(2)过O作OE⊥AB,OF⊥AC,与(1)的证明思路基本相同.此题主要考查了全等三角形的判定,全等三角形对应角相等的判定与性质,等角对等边的性质,熟练掌握性质作出辅助线是解题的关键.20.答案:解:(1)∵直线l1:y=−2x+b过点A(4,0),∴0=−8+b,∴b=8,∴直线l 1的解析式为y =−2x +8,解{y =−2x +8y =12x +3得{x =2y =4, ∴点D 的坐标(2,4);(2)由直线l 1:y =−2x +8可知B 的坐标为(0,8),由直线l 2:y =12x +3可知点C 的坐标为(−6,0), ∵点A(4,0),∴AC =10,∵△BCD 的面积=△ACB 的面积−△ACD 的面积,∴△BCD 的面积=12×10×8−12×10×4=20.解析:(1)用待定系数法确定出直线l 1解析式,进而联立方程得出点D 坐标;(2)由直线的解析式得出B 的坐标为(0,8),点C 的坐标为(−6,0),然后根据△BCD 的面积=△ACB 的面积−△ACD 的面积求得即可.本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.21.答案:(1)证明:在△ABE 和△CBD 中,{AB =CB ∠ABE =∠CBD =90°BE =BD,∴△ABE≌△CBD ,∴AE =CD ;(2)∵AB =CB ,∠ABC =90°,∴∠BAC =45°,∴∠BAE =∠BAC −∠EAC =15°,∵△ABE≌△CBD ,∴∠BCD =∠BAE =15°,∴∠BDC =90°−15°=75°.解析:(1)利用SAS 定理证明△ABE≌△CBD ,根据全等三角形的性质证明;(2)根据等腰直角三角形的性质得到∠BAC =45°,根据全等三角形的性质计算即可.本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.答案:解:(1)y=−20x+1890;(2)∵购买B种树苗的数量少于A种树苗的数量,∴x<21−x,解得:x<10.5,又∵x≥1,∴x的取值范围为:1≤x≤10,且x为整数,∵y=−20x+1890,k=−20<0,∴y随x的增大而减小,∴当x=10时,y有最小值,最小值为:−20×10+1890=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.解析:本题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.解:(1)y=90(21−x)+70x=−20x+1890,故答案为:y=−20x+1890;(2)见答案.23.答案:解:(1)令y=x+6中x=0,则y=6,∴A(0,6);令y=x+6中y=0,则x=−6,∴B(−6,0).∵点C在x轴的正半轴,且OB=OC,∴C(6,0).设直线AC的解析式为y=kx+b,将A(0,6)、C(6,0)代入y=kx+b中,得:{b =66k +b =0,解得:{k =−1b =6. ∴直线AC 的解析式为y =−x +6;(2)由(1)可知:∠BAD =90°,∵点D 为AC 的中点,∴点D 得坐标为(3,3),∴BD =3√10,AB =6√2,AD =3√2, 过点A 作AF ⊥BD 交BD 于F ,∵S △ABD =12×BD ×AF =12×AB ×AD ,∴AF =6√105, 当点P 从点B 出发,沿射线BD 以每秒√10个单位的速度运动,运动时间为t 秒时,BP =√10t ,当P 在线段BD 上运动时,即0≤t ≤3时,S △APD=12×PD ×AF =12×(3√10−√10t)×65√10 =18−6t当P 在线段BD 延长线上运动时,即t >3时,S △APD=12PD ×AF =12(√10t −3√10)×65√10 =6t −18;综上所述,S 与t 的函数关系式:S ={18−6t (0≤t ≤3)6t −18(t >3);(3)要使△APC 是等腰三角形,且以PC 为腰,如备用图1,有两种情况:①AP=PC,因为AD=DC,但PD不垂直AC,所以此种情况不存在;②AC=PC=6√2,可得:t2+(6−3t+6)2=(6√2)2,可得:t=6,t=65,所以点P的坐标为(−125,65),(12,6).解析:(1)根据直线AB的解析式求出点A、B的坐标,结合OB=OC即可求出点C的坐标,再根据点A、C的坐标利用待定系数法即可求出直线AC的解析式;(2)先得出BD直线的解析式,再过P作PE⊥OA,过D作DF⊥OA,利用三角形的面积公式解答即可;(3)分两种情况考虑,根据等腰三角形的性质解答即可.本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及等腰直角三角形的性质,解题的关键是:(1)利用待定系数法求出直线AC的解析式;(2)用含时间t的代数式表示出点E、F 的坐标;(3)根据等腰三角形的性质求出t值.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.。

2019-2020 第一学期 八年级数学期末学业水平测试题

2019-2020 第一学期 八年级数学期末学业水平测试题

试卷类型:A2019—2020学年度第一学期期末学业水平检测八年级数学试题温馨提示:1. 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页。

满分150分。

考试用时120分钟。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名填写在答题卡规定的位置上。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列运算正确的是A .4222x x x =+B .532a a a =⋅C .64216)2(x x =-D .223)3)(3(y x y x y x -=-+2.下列各组数中,是勾股数的为A .1,1,2B .1.5,2,2.5C .7,24,25D .6,12,13 3.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录。

北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展。

下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是4.如果将分式yx y+2(x ,y 均为正数)中字母的x ,y 的值分别扩大为原来的3倍,那么分式yx y+2的值 A .扩大为原来的3倍 B .不变C .缩小为原来的D .扩大为原来的9倍5.如图,已知等腰三角形ABC ,AC AB =.若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE=BEC .∠EBC=∠BACD .∠EBC=∠ABE6.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是A.2222)(b ab a b a ++=-B .ab a b a a -=-2)(C .222)(b a b a -=-D .))((22b a b a b a -+=- 7.已知22-=a ,0)2(-=πb ,3)1(-=c ,则a ,b ,c 的大小关系为 A .a >b >c B .b >a >c C .c >a >b D .b >c >a8.如图,在数轴上点A 所表示的数为a ,则a 的值为A.﹣1﹣B.1﹣C.﹣D.﹣1+9.下列二次根式中,不能与3合并的是A .2 3 B.12 C.18 D.2710.因式分解))((122q x p x mx x ++=-+,其中m 、p 、q 都为整数,则这样的m 的最大值是A .1B .4C .11D .1211.如图是一个棱长为1的正方体的部分侧面展开图,点A ,B ,C 是展开后小正方形的顶点,连接AB ,BC ,则∠ABC 的大小是( ) A .60°B .50°C .45°D .30°12.如图,在△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE =CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种长度约为0.000000456毫米的病毒,把0.000000456用科学记数法表示为 . 14.分解因式:3x 2﹣12xy +12y 2= .15. 如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于21AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D ,E ,连接AE .当AB =3,BC =4时,则△ABE 的周长为 . 16.若1692++mx x 是一个完全平方式,那么m = .17.若二次根式152++a a 与b a 34+相等,则=a ,=b .18. 关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是___________. 19.如图,︒=∠60AOB ,AOB OC ∠平分,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为 .20.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+-222222241c b a b a .现已知△ABC 的三边长分别为1,2,5,则△ABC 的面积为________.三、解答题:本大题共7个小题,满分74分.解答时请写出必要的演推过程. 21.(本小题满分8分)如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE . (1)求证:BD =CE ;(2)若AD =BD =DE ,求∠BAC 的度数.22.(本小题满分8分)如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4). (1)请画出△ABC 关于x 轴成轴对称的图形△111C B A ,并写出1A 、1B 、1C 的坐标;(2)在y 轴上找一点P ,使PB PA 的值最小,请画出点P 的位置.23.(本小题满分10分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①112+-x x ;②222ba ba --;③22y x y x -+;④222)(b a b a +-.其中是“和谐分式”的是 (填写序号即可);(2)若a 为正整数,且412++-ax x x 为“和谐分式”,请写出a 的值 ;(3)在分式运算中,我们也会用到判断和谐分式时所需要的知识,请你用所学知识,化简44322bb a b ab a ÷--24.(本小题满分10分)中国北京已获得2022年第24届冬季奥林匹克运动会举办权,北京也将创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档