Resource sharing among HPSG and LTAG communities by a method of grammar conversion from FB-
团队与资源分享英文作文

团队与资源分享英文作文英文回答:Teamwork and resource sharing are essential elements of modern business practices. Effective teams leverage the collective knowledge, skills, and experiences of their members to achieve greater results than individuals working alone. Resource sharing allows teams to optimize the utilization of limited resources, such as time, equipment, and funding.Benefits of Teamwork。
Increased productivity: Teams can divide tasks, share responsibilities, and collaborate to complete projects more efficiently and effectively.Enhanced creativity: Diversity of perspectives and experiences within a team fosters innovation and the generation of novel ideas.Improved decision-making: Teams can discuss and debate different viewpoints, leading to more informed and well-rounded decisions.Increased employee engagement: Teams provide opportunities for employees to contribute their unique skills, develop professionally, and share knowledge.Reduced stress: Collaboration and sharedaccountability can alleviate individual stress and create a more supportive work environment.Benefits of Resource Sharing。
电联1.8G一站双频精品网创新探索

电联1.8G一站双频精品网创新探索刘乐厅(中国电信包头分公司云网运营部,内蒙古包头014010)摘要:随着中国电信与中国联通共建共享的深入推进,以及公司降本增效工作要求,针对运营成本高、异频切换次数多、容量受限、上网慢、客户感知差等问题、包头电信与包头联通通过缜密规划,创新性地提出一站式双载波连片共享方案,真正实现电联一张网的规划思路并于xxxx年7月14日-15日在包头市土右旗圆满完成试点开通。
整合后电信与联通1.8G第一频点下行频率统一调整为1830MHZ~1850MHZ,第二频点(即扩容频点)统一调整为1850MHZ~1870MHZ,剩余的1870MHZ~1880MHZ作为后期扩容第三频点备用。
关键词:共建共享;降本增效;一站双载频;1.8G共享;电联一张网中图分类号:TN929.5文献标识码:A文章编号:2096-9759(2023)03-0208-05Innovation and exploration of Telecom and Unicom1.8G one base station dualcarrier frequency boutique networkLIU Leting(Cloud network operation Department,China Telecom Baotou Branch,Baotou014010,China)Abstract:With the in-depth promotion of co construction and sharing between China Telecom and China Unicom and the requi-rements of cost reduction and efficiency increase of the company,Baotou Telecom and Baotou Unicom creatively put forward a one-stop dual carrier continuous sharing scheme through careful planning in view of the problems such as high operation cost, many different frequency switching times,LIMITED capacity,slow Internet access and poor customer perception,Truly realize the planning idea of one network of China Telecom and China Unicom,and successfully completed the pilot opening in tuyou county town,Baotou City from July14to15.After integration,the downlink frequency of the first frequency point of China Telecom and China Unicom1.8g is uniformly adjusted to1830MHz~1850mhz,the second frequency point(i.e.the expansion frequency point)is uniformly adjusted to1850mhz~1870mhz,and the remaining1870mhz~1880MHz is used as the standby of the third frequency point in the later expansion.Key words:Co construction and sharing;cost reduction and efficiency increase;one station and two carrier frequencies;1.8G sharing;one network for Telecom and Unicom1引言随着电信与联通共建共享的持续深入,为了给双方用户提供更好的服务、带来更进一步的感知提升,两大网络运营商通力合作,创新的提出一站式双载波连片共享,真正实现电联一张网的规划思路,为两家后续合作奠定了良好基础,也为日后电联双方在县域深度合作、降本增效方面具有重要的实践意义。
资源得以共享英语作文初一

资源得以共享英语作文初一Sharing Resources。
Resource sharing is a very important concept in today's world. It refers to the sharing of resources amongdifferent organizations or individuals. This can be done in many different ways, such as sharing knowledge, skills, or physical resources. The benefits of resource sharing are numerous, including increased efficiency, reduced costs, and improved quality of life.One of the most common forms of resource sharing is knowledge sharing. This can be done through various channels, such as social media, online forums, or conferences. By sharing knowledge, individuals and organizations can learn from each other and improve their own practices. For example, a teacher can share their teaching methods with other teachers, which can help improve the quality of education in their community.Another form of resource sharing is skills sharing. This is where individuals or organizations share theirskills with others who may not have the same expertise. For example, a doctor can volunteer their time to provide medical care to people in need, or a carpenter can teach others how to build their own furniture. By sharing their skills, individuals can help others improve their quality of life.Physical resource sharing is also an important form of resource sharing. This can include sharing of equipment, tools, or even vehicles. For example, a community may share a lawnmower or a snow blower, which can help reduce costs and improve efficiency. Another example is carpooling, which can help reduce traffic congestion and air pollution.In conclusion, resource sharing is an important concept that can benefit individuals and organizations in many different ways. By sharing knowledge, skills, and physical resources, we can improve efficiency, reduce costs, and improve the quality of life for everyone. Therefore, we should all strive to share our resources whenever possible.。
高校图书馆校地合作存在的问题及对策——以淮南市为例

高校图书馆校地合作存在的问题及对策以淮南市为例王㊀玲(淮南师范学院图书馆,232038)摘㊀要:校地合作是当前高校图书馆发展趋势之一㊂文章对高校图书馆校地合作的含义和动因进行了解析,并以淮南市为例,分析了高校图书馆校地合作存在的问题,提出了创建校地合作管理机制㊁完善校地合作人才培养机制㊁建设区域性图书馆联盟㊁打造集成化资源共享平台和建立项目运行机制等5大对策㊂关键词:高校图书馆;校地合作;资源共享;图书馆联盟引用本文格式:王玲.高校图书馆校地合作存在的问题及对策 以淮南市为例[J].大学图书情报学刊,2022(5):126-130.Discussion on the Cooperation between University Library andLocal Government :A Case Study of HuainanWANG Ling(Huainan Normal University,Huainan㊀232038,China)Abstract :The cooperation between university library and local government is one of the developmental trends ofuniversity libraries nowadays.This paper elaborates the meaning and motivation of the cooperation,and analyzes the problemsof cooperation between university library and local government taking Huainan as an example.Five countermeasures are putforward,such as the setup of administrative organization of the cooperation between university library and local government,the establishment of talents training mechanism of the cooperation,the setup of regional library alliance,the establishment ofresource sharing platform and project operation mechanism.Key words :university library;cooperation between university library and local government;resource sharing;library alliance㊀㊀根据‘普通高等学校图书馆规程“(教高 2015 14号),服务社会是高校图书馆的主要任务之一㊂高校图书馆校地合作,是为了更好地为社会服务,促进高校图书馆与地方的深入合作㊂淮南作为一个典型资源型城市,进入21世纪后,发展缓慢,亟须智力支援㊂以淮南师范学院图书馆和安徽理工大学图书馆为主的地方高校图书馆,可以通过校地合作,为地方经济社会发展提供服务,帮助淮南这列传统型列车,装上新的动力系统,在高质量大发展的轨道上快速奔驰㊂1㊀高校图书馆校地合作动因高校图书馆校地合作有狭义与广义之分㊂狭义的校地合作指高校图书馆与地方公共图书馆的合作,双方在资源共享和学术研究方面进行合作,为地方经济建设服务㊂广义的校地合作指高校图书馆在地方政府支持下,与政府及其相关社会组织,如行业管理机构㊁企事业单位㊁研究院所㊁其他机构等开展人才培养㊁科学研究㊁社会服务㊁文化传承创新等方面的合作[1],是一种综合性㊁全方位的深度合作㊂本文所言校地合作指广义的校地合作㊂地方高校图书馆通过校地合作,将学校资源与地方资源对接,开展应用型人才培养㊁应用型科学研究,服务地方经济社会发展,传承地方优秀传统文化㊂区域间高校图书馆校地合作都是有原因的,就淮南地区来说,其动因是为了响应安徽崛起战略,满足地方经济㊁社会发展的需要以及地方高校长效发展的需要㊂基金项目:2020年安徽省高校图工委研究基金项目一般项目 安徽崛起背景下高校图书馆促进地校合作创新机制研究 (TGW20B32)6212022年9月第40卷第5期㊀㊀㊀㊀㊀㊀㊀㊀大学图书情报学刊Journal of Academic Library and Information Science㊀㊀㊀㊀㊀㊀㊀㊀Sep ,2022Vol.40No.51.1㊀响应安徽崛起战略的需要习近平总书记2016年4月视察安徽,提出安徽要 在中部崛起中闯出新路 [2];2019年5月,习近平总书记在江西考察,主持召开推动中部地区崛起工作座谈会并发表重要讲话,提出 实施创新驱动发展战略,推动高质量发展,奋力开创中部地区崛起新局面 [3]; 2020年8月,习近平总书记在安徽考察时强调,要贯彻落实好党中央决策部署,贯彻新发展理念,坚持稳中求进工作总基调,坚持改革开放,坚持高质量发展 在加快建设美好安徽上取得新的更大进展[4]㊂ 安徽崛起 是习近平总书记的殷切期望,更是安徽人民的期盼㊂安徽崛起,离不开各行各业的支持和努力,离不开高校及高校图书馆的智力支持㊂高校图书馆拥有丰富的信息资源㊁专业的学科馆员及先进的信息技术,具有为地方经济社会发展提供高水平服务的条件和能力㊂高校图书馆要深入贯彻习近平总书记重要讲话精神,通过知识创新㊁技术创新和服务创新,将信息资源的开发和利用与安徽的传统优势资源㊁主导产业有机结合,发挥信息资源的增值作用,建立促进安徽崛起的体制机制㊂1.2㊀地方经济、社会发展的需要淮南市是1984年国务院批准的首批13个 较大市 之一,20世纪八九十年代有过辉煌历史;进入21世纪,其他较大市发展势头强劲,淮南却发展缓慢㊂从全国范围看,重庆升格为直辖市,大连㊁青岛升格为副省级城市;无锡2020年实现GDP12370.48亿元,是淮南的近10倍;唐山2020年实现GDP7210.9亿元,是淮南市的5倍多㊂在全省16个地级市中,淮南近几年GDP总量始终在第12位和13位徘徊㊂与滁州相比,2010年淮南GDP总量603亿元,比滁州少92.2亿元;2020年,淮南GDP总量虽比十年前翻了一番达到1337.20亿元,却仍比滁州少了1694.90亿元,差距是明显的㊂淮南需要迎头赶上,怎么赶?除了各级干部思想大转变,还需要充分开发社会智力资源㊂推进高校图书馆工作机制的改革,充分发挥高校图书馆社会服务的功能,应该是其中应有之义㊂高校图书馆应通过与地方政府以及政府机关㊁行业组织㊁企事业单位等机构合作,联合地方公共图书馆㊁科研院所图书馆㊁大型企业情报资料室,建立区域图书馆联盟,发挥智库职能,为淮南地区经济社会发展服务㊂1.3㊀地方高校长效发展的需要高校图书馆校地合作是高校和地方政府建立的一种合作机制㊂从表面上看,高校图书馆只是高校的一个职能部门,是为高校师生服务的;从功能上来说,高校图书馆是当地社会智力资源极为重要的一部分,是属于整个社会并作用于整个社会的㊂校地合作是高校图书馆服务的创新,可进一步开发高校图书馆的社会服务功能,提高高校图书馆信息资源㊁智力资源的利用率,从而在一定程度上提高高校的社会知名度㊁美誉度及核心竞争力,为地方高校的长效发展提供新动能[5]㊂2㊀高校图书馆校地合作存在的问题2.1㊀高校图书馆缺乏校地合作意愿早在2002年,高校图书馆对外开放就已经写入‘普通高等学校图书馆规程“(简称 ‘规程“ ),提出有条件的高校图书馆 应尽可能向社会读者和社区读者开放 ;2015年,重新修订后的‘规程“更是明确提出高校图书馆要 开展面向社会用户的服务 [6]㊂但长期以来,高校图书馆界对此响应有限㊂受传统思想和体制的影响,大部分高校图书馆仍把校内师生当作唯一的服务对象,认为社会服务不是分内工作,甚至有些高校图书馆担忧开展社会服务占用学校资源,影响本校读者的利益,因而主动开展社会服务的意愿不强㊁积极性不高,真正开展社会服务的高校图书馆屈指可数[7],仅仅是馆藏资源丰富㊁实力较为雄厚的少数高校图书馆对此进行了尝试和探索,这些尝试和探索大多也只停留在向少数社会读者开放和科技查新服务层面㊂因为高校图书馆校地合作意愿不强,所以这项工作推动缓慢㊂2.2㊀地区内各类图书馆之间缺乏交流与合作机制这是影响高校图书馆全面㊁深度㊁有效开展校地合作的重要因素㊂具体来说有三个方面:一是高校图书馆与公共图书馆之间缺乏交流㊂因服务对象不同,二者在资源建设上存在一定的差异性㊂长期以来,地方高校图书馆与公共图书馆之间鲜有馆际互借㊁文献传递等业务的开展,使得二者无法全面㊁深入地服务地方经济社会发展㊂二是高校图书馆之间缺乏共享机制㊂高校图书馆相互间缺乏合作,没有形成高效的共享机制,智力资源缺乏科学㊁有效的交流程序㊂三是各类图书馆之间缺乏统一的管理服务平台㊂我国图书馆事业管理体系是以行政关系为主,呈现一种自上而下的纵向关系,这使得各系统之间各自为政,即使在一个系统内,也往往只有业务指导关系,而无行721总第193期大学图书情报学刊2022年第5期政隶属关系,造成地区缺乏统一的图书馆管理服务平台,形不成合力,无法有效开展校地合作㊂2.3㊀高校图书馆缺乏社会价值认同感高校图书馆主要依托自身优势,围绕参考咨询㊁文献传递等业务开展社会服务工作,服务范围和服务效应较小,几乎没产生什么社会影响㊂同时,因为缺乏有效的校内㊁校外合作和共享机制,没有较好地整合相关部门优势资源,往往是单兵作战,直接影响了社会服务成效㊁影响力和社会价值认同感,制约了校地合作的拓展[8]㊂2.4㊀高校图书馆缺乏校地合作管理人才新时代,高校图书馆馆员不仅需要一定的图书情报知识,引导或协助用户进行知识信息的获取㊁整理㊁组织及应用,还需要一定的科研能力,能够完成与学科教授和社会服务的高效对接㊂但现实中这种复合型人才尚有较大缺口㊂目前高校图书馆馆员具有较强的文献及信息检索能力,可以一定程度上帮助用户查找信息,但尚缺乏较好的科研能力,不具备与学校科研或校地服务项目完成高效对接的业务水平[9]㊂不仅如此,高校图书馆具备公关能力㊁管理能力和创新能力的校地合作管理人员远远不够,这也是校地合作的短板之一㊂3㊀高校图书馆校地合作的对策3.1㊀创建校地合作管理机制高校图书馆是高校直属机构,而不是党政部门或教学科研单位,因此可考虑通过学校办公室和科研处,联系地方政府及相关职能部门,探索校地合作的管理体制与操作机制,统筹协调校地合作事宜;同时,争取地方政府的支持,出台相应的扶持政策,打造高校图书馆与地方政府㊁政府机关㊁行业组织㊁企事业单位以及公共图书馆㊁科研院所图书馆㊁大型企业情报资料室等共同参与的校地共建管理系统㊂校办与科研处的加入,有利于居中协调高校图书馆与政府的关系;政府的引领与协调,有利于促进图书馆校地合作主体间的深度融合和服务价值创造,降低校地合作主体间交易成本,促进高校图书馆校地合作健康持续发展[10]㊂3.2㊀完善校地合作人才培养机制优秀人才是图书馆开展校地合作的前提㊂高校图书馆具有一定的人才优势,拥有一批高学历㊁高素质㊁高情报素养和学科服务能力的学科馆员㊂淮南地区现有7所高校,截至2021年底,共有工作人员148名,其中副高以上职称26名,馆员及硕士以上学位人员79名,具体见表1㊂表1㊀淮南地区高校图书馆人员构成单位职工人数(人)副高以上职称(人)中级职称及硕士以上学位(人)安徽理工大学64833淮南师范学院36719淮南联合大学926淮南市委党校521淮南职业技术学院20510安徽工贸职业技术学院826安徽现代信息工程职业学院6/4合㊀计1482679㊀㊀数据来源:各高馆官网及电话采访相关人员㊂要搞好高校图书馆校地合作,仅依靠图书馆专业人才还不够,还需要充分发挥高校各学科专家学者的作用,组织专家学者参与定题㊁定向服务㊂在淮南,安徽理工大学和淮南师范学院实力较为雄厚㊂安徽理工大学教职工4300余人,具有高级职称人员972人,拥有 115 产业创新团队4个㊁安徽省高校领军人才团队8个[11],该校安全㊁地矿㊁爆破等学科水平均居全国前列㊂淮南师范学院教职工1081人,其中高级职称人员302人,拥有2个省级人文社会科学重点研究基地,1个省级高校智库[12],文㊁法㊁经济㊁生物等学科较为突出㊂高校图书馆要全面了解学校各学科专业特色和专家学者情况及学术成就㊂这些专家学者一般都有自己的科研项目,许多科研项目正是针对地方社会经济发展的需要而立项,但由于双方交流不畅,导致理论研究与现实需要严重脱节㊂因此,如何与地方对接成为关键㊂这就需要图书馆专业人员做好协调工作,将这些专家学者纳入校地合作管理系统,让他们在校地合作体系中发光发热㊂高校图书馆要培养具有协调能力㊁管理能力㊁科研能力和创新能力的校地合作管理人才㊂当前,高校图书馆要做好图书馆馆员的系统培训,建立科学的培训㊁考核㊁评价机制,引导馆员在立足本职的基础上,提升馆员的科研意识与科研道德水平,培养馆员跨学科㊁跨专业㊁跨领域的科研素质,不断提高馆员公关㊁821王㊀玲:高校图书馆校地合作存在的问题及对策 以淮南市为例管理能力,创新工作方法[13],使其成为合格的校地合作管理人才㊂3.3㊀建设区域性图书馆联盟为有效开展校地合作,高校图书馆应主动与地区内公共图书馆㊁科研院所图书馆㊁大型企业情报资料室等联合组成区域图书馆联盟,再与省高校图书馆联盟㊁公共图书馆联盟紧密结为一体,通过资源㊁服务的联合共享,扩大图书馆服务范围和服务效率,实现高校图书馆服务地方社会经济发展的新突破[14]㊂高校图书馆还应积极寻求与政府及其相关社会组织,如政府部门㊁行业组织㊁企事业单位㊁研究院所等相关机构形成合作关系,充分发挥各方优势,探索在资源㊁服务㊁人员培训等领域的合作与交流[15],从而形成有效的校地合作机制,以保证校地合作的顺畅进行㊂淮南市在这方面有待努力㊂淮南市图书馆界曾于2010年7月㊁2011年12月分别在安徽理工大学图书馆和淮南师范学院图书馆召开 淮南地区数字资源建设研讨会 ,商讨建立全市图书馆联盟及数字资源共享平台建设问题[16-17],但后继乏力㊂笔者建议: 十四五 时期,淮南应以淮南师范学院图书馆㊁安徽理工大学图书馆为主,联合其他高校图书馆㊁公共图书馆㊁科研院所图书馆㊁大型企业情报资料室,建立淮南地区图书馆联盟㊂联盟要取得市政府的支持,并与相关政府机关㊁科研院所㊁企事业单位等机构建立协调机制,统筹协调校地合作,有效提高资源配置效率㊂市政府的首要任务是根据本市的实际情况和高校及高校图书馆资源情况做好顶层设计;协调高校图书馆与行业主管部门㊁财政部门㊁企事业单位等机构之间的关系,建立校地服务体系,构建覆盖全市的图书馆服务网络,从而实现高校图书馆和淮南地区经济社会高质量发展的良性互动㊂3.4㊀打造集成化资源共享平台图书馆联盟可根据淮南实际,在数字化文献资源建设的基础上,打造集成化的资源共享平台,集成各学科门类㊁各类型层次的综合性信息资源,与高校图书馆文献保障体系结合,形成完善的信息保障机制[18]㊂在当前校地合作体系中,高校图书馆要打破以往各自建设㊁各求其全的资源建设模式,根据各高校的人才优势㊁资源优势和技术优势,按照标准化㊁规范化的原则建立资源共享平台㊂淮南地区高校图书馆共藏有纸质图书543.84万册,电子图书515.2万册,基本满足教学和科研需要,但还不能完全满足校地合作的需要㊂因此,应以淮南师范学院和安徽理工大学为主,联合开展馆际互借和文献传递服务,搭建数字资源共享平台,包括协调采购中文数据库和外文数据库,联合建设中文书目数据库和外文书目数据库,一起建设特色数据库,共同建设淮南市经济社会发展数据库,实现图书馆资源及淮南市地方资源的无缝链接,为地方经济社会发展提供快捷㊁全面的情报服务㊂集成化的资源共享除了信息资源的共享,还包括用户㊁平台等多种资源的共享㊂如与书店的合作,既可有效补充图书馆馆藏,又能给书店带来稳定的客户源[19]㊂淮南师范学院于2020年9月1日开办了 阅+ 共享书店,读者可通过共享借阅免费阅读㊂图书馆通过馆店合作,开展线上㊁线下读者荐购活动㊂在线上,有智通达㊁云田智慧网和汇文系统三种荐购渠道;在线下,有 阅+ 共享书店 读者推荐区 读者推荐书架 及 图书荐购单 三种荐购形式㊂图书馆通过线上㊁线下融合 荐购 ,增加了精品图书的采购投入,效果显著㊂以2021年为例,图书馆共采购图书17000余种,其中来自读者荐购的就有8000余种,占比46%㊂图书馆通过馆店合作模式,不仅提高了馆藏利用率,最大限度地满足了读者的多元化信息需求,还扩大了自身影响力,推动了全民阅读的持续开展;而 阅+ 共享书店,则通过与图书馆的合作,拓宽了生存空间,扩大了客户量,提高了图书销售量,经济效益也得到了保障㊂3.5㊀建立项目运行机制高校图书馆推进校地合作,应该以具体项目为抓手,把各类合作做细㊁做实㊂高校图书馆要根据自身优势,结合地方经济社会发展的需求,通过学校科研处与地方共建一批实践项目,实现高校图书馆与地方政府部门㊁行业组织㊁企事业单位㊁社区等利益相关方的有效对接㊂通过项目的运行机制,把利益相关方聚集在一起,形成一个合作共同体,达到多赢的目的㊂这是高校图书馆校地合作的理想运行机制[20],它不仅可以提升高校及高校图书馆的知名度和影响力,使图书馆获得更多认可和发展机会,改变图书馆 校内热闹㊁校外寂然 的局面,而且可以使社会各利益相关者享受到更多的优质服务[21]㊂近年来,淮南师范学院在校地合作㊁地方文化建设等方面做了大量工作㊂如:淮南师范学院成语典故921总第193期大学图书情报学刊2022年第5期研究院㊁淮河文化研究院㊁淮南地域文化研究中心㊁淮南子文化研究中心㊁芍陂历史文化研究中心开展了有关淮南地方文化㊁淮南子文化研究,出版和发表了一大批研究成果,为淮南城市文化建设做出了积极贡献;资源型城市研究中心多年来针对淮南发展实际进行调查研究,提交了许多建设性研究报告,获得市政府采纳,为淮南这个资源型城市的转型发展提供了重要理论依据和政策建议㊂高校图书馆倘能介入其中,在政府统一协调下,利用自身人才㊁信息和技术资源优势,有针对性地为高校和地方专家学者的学术研究提供文献检索服务,并通过省高校图书馆联盟和全国高校图书馆联盟,为更多更优秀的高校学者与地方专家提供高质量服务,就能更好地发挥高校图书馆服务社会的功能,从而为淮南地区社会进步与经济发展提供最优服务㊂4 结语高校图书馆开展校地合作的关键,是创建平等㊁互利㊁共赢㊁共享的合作机制㊂高校图书馆在推进这项工作过程中,要不断激发自身与学校㊁地方政府等多元主体共同发展的需求与愿景,形成校地合作的动力源㊂参考文献:[1]钟玮.地方高校校地合作应用型转型发展研究:必要性㊁支持条件与对策建议[J].黑龙江高教研究,2021(5): 16-21.[2]王学军.在中部崛起中闯出新路㊀创造安徽发展美好前景[N].人民日报,2016-05-31(15).[3]贯彻新发展理念推动高质量发展奋力开创中部地区崛起新局面[N].光明日报,2019-05-23(1). [4]中国政府网.习近平在安徽考察[EB/OL].[2022-02-21]./xinwen/2020-08/21/content_ 5536435.htm?ivk_sa=1023197a.[5]杨静.基于新技术的公共图书馆跨界合作动因及发展策略探究[J].图书馆工作与研究,2019(9):36-41. [6]教育部关于印发‘普通高等学校图书馆规程“的通知[EB/OL].[2022-02-21]./ srcsite/A08/moe_736/s3886/201601/t20160120_228487. html.[7]曹文振.高校图书馆社会化服务的困境与突围[J].图书馆杂志,2018,37(9):51-57,85.[8]朱如龙,邢玎.基于校地合作的高职院校图书馆社会服务探索 以浙江工商职业技术学院图书馆为例[J].图书馆研究与工作,2018(10):73-76.[9]沈洋,刘恒. 双一流 背景下高校图书馆学科馆员队伍建设探究[J].图书馆工作与研究,2020(9):124-128.[10]唐虹,戴日光.城市图书馆多维联合跨界服务系统结构与运行模式研究[J].现代情报,2018,38(6):106 -110.[11]安徽理工大学.学校简介[EB/OL].[2022-02-21].https:///xxgk/xxjj.htm. [12]淮南师范学院.学校简介[EB/OL].[2022-02-21]./95/list.htm. [13]卢颖立. 四全媒体 视域下高校图书馆学科馆员胜任力素质提升策略研究[J].新世纪图书馆,2022(2):10 -15.[14]邓烨.试论高校图书馆开展校地合作的路径选择[J].经济与社会发展,2015,13(2):130-133. [15]王向真,黄刚.中医药高校图书馆社会服务创新研究 以广西中医药大学图书馆为例[J].大学图书情报学刊,2021,39(5):105-109.[16]e线图情.淮南地区第一届图书馆电子信息资源建设交流会在安徽理工大学召开[EB/OL].[2022-02-21]./Zhaiyao.aspx?id=198344.[17]淮南师范学院.淮南地区图书馆数字资源建设与创新服务座谈会在我校召开[EB/OL].[2022-02-21]./2015/0324/c199a30147/page.htm.[18]刘细文,熊瑞.图书馆跨界服务的内涵㊁模式和实践[J].中国图书馆学报,2008(6):32-37. [19]司姣姣. 互联网+ 环境下图书馆跨界融合的实践与模式[J].图书情报工作,2017,61(20):87-96. [20]赵俊颜,凌征强. 双高计划 背景下高职院校图书馆发展策略研究[J].大学图书情报学刊,2021,39(1): 44-49.[21]徐双. 互联网+ 背景下图书馆与利益相关者间跨界资源整合研究[J].图书馆工作与研究,2017(3):68 -71.作者简介:王㊀玲,女,副研究馆员㊂收稿日期:2022-03-20(责任编辑:孟凡胜)031王㊀玲:高校图书馆校地合作存在的问题及对策 以淮南市为例。
存储HCIP习题库及参考答案

存储HCIP习题库及参考答案一、单选题(共40题,每题1分,共40分)1、对源 lun 做了一次快照后,在同一位置进行修改后,修改后的数据会写在哪个位置?A、独享映射表B、快照卷C、原卷D、cow 卷正确答案:C2、下列哪个接口模块是 SX6018 上用于升级防火墙软件以及其他高级调试的:A、I2C 接口B、管理网口C、USB 接口D、CONSOLE 口正确答案:A3、关于存储层数据复制容灾技术,以下哪种说法是正确的?A、减少对服务器性能的影响:兼容性要求比较高,选择面小。
B、技术成熟,选择面大,连接距离限制小,稳定性高。
C、投入较少,兼容性好。
影响服务器性能。
D、服务器上安装专用的数据复制软件。
正确答案:B4、NAS 系统专注对于以下哪种类型的数据进行存储和管理?A、小块消息B、连续数据块C、大块数据D、文件数据正确答案:D5、帐户是使用对象存储服务(兼容 Amazon S3 接口)的凭证,其管理功能不包括:A、证书管理B、跨域访问策略管理C、签约业务管理D、帐户基本管理正确答案:B6、先把数据块存储在缓存中,等系统空闲时再进行去重处理。
优点是不影响数据传输性能,缺点是需要额外的存储空间“。
以上描述的是哪种重删技术,A、全局重删B、并行重删C、源端重删D、目标端重删正确答案:D7、HyperSnap 的共享映射表存放在哪个位置?A、COW DataB、Source LUNC、Cow MetaD、Snapshot LUN正确答案:C8、在存储规划设计流程中,以下哪一项不属于业务规划流程()A、网络规划B、容量规划C、基础业务D、增值功能正确答案:C9、在 oceanstor v3 存储中,edevlun 哪个信息是有华为存储直接提供的存储空间A、external lunB、meta volumeC、taget lunD、data volume正确答案:B10、关于华为 Oceanstor 9000 系统的组网,以下哪个选项描述是正确的?A、前端业务网络的交换机可进行堆叠,后端存储网络交换机不推荐进行堆叠B、无论是前端业务网络、还是后端存储网络,都推荐使用两台交换机连接所有的节点,实现冗余C、仅需要将存储节点连接到管理网络,其他设备不需要连接到管理网络D、为满足管理需求,仅需要集群的前三个节点连接到管理网络正确答案:B11、下列关于 FusionStorago 管理网络描述错误的是:A、只部署 FusionStorage 文件或对象存储服务,集群中前 3~5 个节点作为管理节点,并为其分配 1 个管理网络 IP 地址,自动在这几个节点的NIC1 接口上浮动B、部署了 DSS/OMS /FSM 的节点,两个接口组成逻辑上的 bond 接口,为bond 接口分配 1 个管理网络 IP 地址。
与成果共享尊重为基石有关的英语作文

In the modern world,the concept of sharing achievements and respecting each other as a foundation has become increasingly important.It is a principle that underpins not only personal relationships but also the broader social and professional interactions.Here is a detailed essay on the significance of sharing success and the role of respect in this process.Title:The Pillar of Respect in Sharing AchievementsIn the tapestry of human interaction,respect is the thread that weaves together the fabric of society.It is the cornerstone upon which the edifice of shared achievements is built. When individuals come together to celebrate their collective triumphs,it is the mutual respect that ensures the stability and longevity of their endeavors.The Essence of Sharing SuccessSharing success is not merely about distributing the fruits of ones labor it is about acknowledging the contributions of all involved.It is a recognition that no achievement is the result of a single individuals efforts alone.In a team setting,for instance,each members unique skills and dedication contribute to the final outcome.By sharing the credit and the rewards,a sense of camaraderie and unity is fostered,which in turn strengthens the teams resolve to face future challenges.The Role of Respect in CollaborationRespect plays a pivotal role in the collaborative process.It is the lubricant that eases the friction that can arise from differing opinions and approaches.When team members respect each others perspectives,they are more likely to listen actively,consider alternative viewpoints,and work towards a consensus.This respectful environment encourages open communication,which is essential for innovation and problemsolving.Cultivating a Culture of Respect and SharingTo create a culture where respect and sharing are the norm,it is crucial to establish clear guidelines and expectations.Leaders must set the example by valuing diversity, encouraging open dialogue,and rewarding collaborative efforts.They should also ensure that recognition is given not just to the most visible contributors but to everyone who has played a part in the success.Overcoming Obstacles with Respect and SharingIn the face of adversity,the principles of respect and sharing can provide a solid foundation for overcoming challenges.When team members trust and respect one another, they are more likely to support each other during tough times.This mutual support can help to maintain morale and prevent the dissolution of the team in the face of setbacks.The Longterm Benefits of a Respectful and Sharing EnvironmentThe longterm benefits of fostering a culture of respect and sharing are manifold.It not only enhances the quality of work produced but also contributes to the personal growth of individuals.People who work in such an environment are more likely to develop a strong sense of selfworth,as their contributions are recognized and valued.This,in turn,can lead to increased job satisfaction and loyalty.ConclusionIn conclusion,the sharing of achievements and the foundation of respect are interwoven threads in the rich tapestry of human endeavor.They are not merely niceties but essential components of successful collaboration.By valuing and practicing respect in all interactions,we can create an environment where individuals thrive and collective achievements are celebrated.It is through this lens that we can truly appreciate the power of unity and the beauty of shared success.。
车载云计算系统中资源分配的优化方法

第1期2020年1月Journal of CAEIT Vol. 15 No. 1 Jan. 2020doi:10.3969/j.issn. 1673-5692.2020.01.015车载云计算系统中资源分配的优化方法董晓丹K2,吴琼2(1.江苏信息职业技术学院,江苏无锡214153;2.江南大学,江苏无锡214122)摘要:随着车联网(I〇V)应用服务的发展,提升网络的任务卸载能力成为满足用户服务需求的关 键.。
文中针对动态场景中车辆计算资源共享问题,提出了车栽云计算(V C C)系统的最优计算资源分配方案,以实现任务卸载能力的提升。
该方案将V C C系统中任务卸载的收入(节省的功耗、处理时间和转移成本的量化值)和开销(预期的任务处理开销)的差值作为系统奖励值,将最优分配问题转化为求解长期预期奖励的最大值问题。
进一步将问题表述为无限时域半马尔可夫决策过程 (SM D P),定义和分析了状态集、动作集、奖励模型以及转移概率分布,并考虑忙碌(B u sy)车辆离开的情况,称为B-S M D P的解决方案。
最后,仿真结果表明,与模拟退火算法(S A)和贪婪算法(G A)相比,B-S M D P方案有较明显的性能提升。
关键词:车载云计算;半马尔可夫决策过程;忙碌车辆;资源分配中图分类号:TP393;TN915.5;U495 文献标志码:A文章编号:1673-5692(2020)01:924)7Optimization Method of Resource Allocation in Vehiclular CloudComputing SystemDONG X iao-dan',WU Qiong'(1. Jiangsu vocational college of information technology, Wuxi 214153 ,China;2. Jiangnan University, Wuxi 214122, China)Abstract:With the developm ent of Internet of V ehicle (IoV)application serv ices,improving the offloading ability of network tasks has becom e the key to satisfying user service n eed s.A im ing at solving the problem of vehiclular com puting resource sharing in dynamic scen arios,this paper proposes an optimalcom puting resource allocation schem e for vehiclular cloud com puting (V C C)system to improve the task offloading capability.This solution uses the difference between the revenue(Quantified value of powersa v in g s,processing tim e,and transfer co sts)and the overhead(expected task processing overhead)of thetask offload in the VCC system as the system reward v a lu e,and converts the optimal allocation probleminto solving the problem of m aximizing the long-term expected rewards.The problem is further expressedas an infinite time domain sem i-M arkov decision process(SM D P). The state s e t,action s e t,rewardm o d el,and transition probability distribution are defined and an alyzed,and the case of a busy veh icle leaving is con sid ered,we name the proposed solution as B-SM DP solution.F in ally,simulation results show that compared with the sim ulated annealing algorithm(SA)and greedy algorithm(GA) ,theB-SM DP solution has a significant performance improvement.Key words:vehicular cloud com puting;semi-Markov decision process;busy v eh icles;resource allocation收稿日期:2019-12-17 修订日期:202(M)1 -10基金项目:国家自然科学基金(61701197);江苏省高职院校教师专业带头人高端研修项目(2019GRGDYX049);江苏信息职业技术学院重点科研课题(JSITKY201901 )2020年第1期董晓丹等:车载云计算系统中资源分配的优化方法93〇引言目前,车载网络已经受到国内外政府、企业等广 泛关注,预计在今后几年联网车辆占比将达到20%[1]。
sharing 的重要性英语作文

sharing 的重要性英语作文English:Sharing is incredibly important as it fosters connections, understanding, and growth. When we share our experiences, knowledge, and resources with others, we create stronger bonds and build a sense of community. Sharing also allows for the spread of information and perspectives, leading to greater understanding and empathy. Additionally, through sharing, we can learn from each other and grow as individuals, as exposure to different ideas and viewpoints challenges our own beliefs and encourages personal development. Whether it be sharing ideas in a work setting, sharing a meal with friends, or sharing resources with those in need, the act of sharing is crucial to creating a more interconnected and compassionate world.中文翻译:分享非常重要,因为它培养了人与人之间的联系、理解和成长。
当我们与他人分享我们的经验、知识和资源时,我们建立了更加紧密的联系,形成了社区意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Resource sharing among HPSG and LTAG communitiesby a method of grammar conversion from FB-LTAG to HPSGNaoki Y oshinaga Yusuke MiyaoDepartment of Information Science,Graduate school of Science,University of TokyoHongo7-3-1,Bunkyo-ku,Tokyo,113-0033,Japanyoshinag,yusuke@is.s.u-tokyo.ac.jpKentaro TorisawaSchool of Information Science,Japan Advanced Institute of Science and TechnologyAsahidai1-1,Tatsunokuchi-cho,Noumi-gun,Ishikawa,923-1292,JapanInformation and Human Behavior,PRESTO,Japan Science and Technology CorporationKawaguchi Hon-cho4-1-8,Kawaguchi-shi,Saitama,332-0012,Japantorisawa@jaist.ac.jpJun’ichi TsujiiDepartment of Computer Science,Graduate school of Information Science and Technology,University of TokyoHongo7-3-1,Bunkyo-ku,Tokyo,113-0033,JapanCREST,JST(Japan Science and Technology Corporation)Kawaguchi Hon-cho4-1-8,Kawaguchi-shi,Saitama,332-0012,Japantsujii@is.s.u-tokyo.ac.jpAbstractThis paper describes the RenTAL sys-tem,which enables sharing resourcesin LTAG and HPSG formalisms by amethod of grammar conversion froman FB-LTAG grammar to a stronglyequivalent HPSG-style grammar.Thesystem is applied to the latest versionof the XTAG English grammar.Ex-perimental results show that the ob-tained HPSG-style grammar success-fully worked with an HPSG parser,andachieved a drastic speed-up against anLTAG parser.This system enables toshare not only grammars and lexiconsbut also parsing techniques.1IntroductionThis paper describes an approach for shar-ing resources in various grammar formalisms such as Feature-Based Lexicalized Tree Adjoin-ing Grammar(FB-LTAG1)(Vijay-Shanker,1987; Vijay-Shanker and Joshi,1988)and Head-Driven Phrase Structure Grammar(HPSG)(Pollard and Sag,1994)by a method of grammar conver-sion.The RenTAL system automatically converts an FB-LTAG grammar into a strongly equiva-lent HPSG-style grammar(Yoshinaga and Miyao, 2001).Strong equivalence means that both gram-mars generate exactly equivalent parse results, and that we can share the LTAG grammars and lexicons in HPSG applications.Our system can reduce considerable workload to develop a huge resource(grammars and lexicons)from scratch. Our concern is,however,not limited to the sharing of grammars and lexicons.Strongly equivalent grammars enable the sharing of ideas developed in each formalism.There have been many studies on parsing tech-niques(Poller and Becker,1998;Flickinger et al.,2000),ones on disambiguation models(Chi-ang,2000;Kanayama et al.,2000),and ones on programming/grammar-development environ-1In this paper,we use the term LTAG to refer to FB-LTAG,if not confusing.Figure1:The RenTAL System:Overview ment(Sarkar and Wintner,1999;Doran et al., 2000;Makino et al.,1998).These works are re-stricted to each closed community,and the rela-tion between them is not well discussed.Investi-gating the relation will be apparently valuable for both communities.In this paper,we show that the strongly equiv-alent grammars enable the sharing of“parsing techniques”,which are dependent on each com-putational framework and have never been shared among HPSG and LTAG communities.We ap-ply our system to the latest version of the XTAG English grammar(The XTAG Research Group, 2001),which is a large-scale FB-LTAG gram-mar.A parsing experiment shows that an efficient HPSG parser with the obtained grammar achieved a significant speed-up against an existing LTAG parser(Yoshinaga et al.,2001).This result im-plies that parsing techniques for HPSG are also beneficial for LTAG parsing.We can say that the grammar conversion enables us to share HPSG parsing techniques in LTAG parsing.Figure1depicts a brief sketch of the RenTAL system.The system consists of the following four modules:Tree converter,Type hierarchy extrac-tor,Lexicon converter and Derivation translator. The tree converter module is a core module of the system,which is an implementation of the gram-mar conversion algorithm given in Section3.The type hierarchy extractor module extracts the sym-bols of the node,features,and feature values from the LTAGelementary tree templates and lexicon, and construct the type hierarchy from them.The lexicon converter module converts LTAG elemen-tary tree templates into HPSG lexical entries.The derivation translator module takes HPSG parse*Figure2:Elementary treestrees,and map them to LTAG derivation trees.All modules other than the last one are related to the conversion process from LTAG into HPSG,and the last one enables to obtain LTAG analysis from the obtained HPSG analysis.Tateisi et al.also translated LTAG into HPSG(Tateisi et al.,1998).However,their method depended on translator’s intuitive analy-sis of the original grammar.Thus the transla-tion was manual and grammar dependent.The manual translation demanded considerable efforts from the translator,and obscures the equiva-lence between the original and obtained gram-mars.Other works(Kasper et al.,1995;Becker and Lopez,2000)convert HPSG grammars into LTAG grammars.However,given the greater ex-pressive power of HPSG,it is impossible to con-vert an arbitrary HPSG grammar into an LTAG grammar.Therefore,a conversion from HPSG into LTAG often requires some restrictions on the HPSG grammar to suppress its generative capac-ity.Thus,the conversion loses the equivalence of the grammars,and we cannot gain the above ad-vantages.Section2reviews the source and the tar-get grammar formalisms of the conversion algo-rithm.Section3describes the conversion algo-rithm which the core module in the RenTAL sys-tem uses.Section4presents the evaluation of the RenTAL system through experiments with the XTAG English grammar.Section5concludes this study and addresses future works.2Background2.1Feature-Based Lexicalized TreeAdjoining Grammar(FB-LTAG)LTAG(Schabes et al.,1988)is a grammar formal-ism that provides syntactic analyses for a sentence by composing elementary trees with two opera-unifyFigure6:Parsing with an HPSGsubstitutionα1α2SNP VPVrunNWeFigure3:Substitutioncan*SNP VPVrunNWeSNP VPVPVcanNWe VrunFigure4:Adjunctiontions called substitution and adjunction.Elemen-tary trees are classified into two types,initial treesand auxiliary trees(Figure2).An elementary treehas at least one leaf node labeled with a terminalsymbol called an anchor(marked with).In anauxiliary tree,one leaf node is labeled with thesame symbol as the root node and is speciallymarked as a foot node(marked with).In an el-ementary tree,leaf nodes with the exception ofanchors and the foot node are called substitutionnodes(marked with).Substitution replaces a substitution node withanother initial tree(Figure3).Adjunction graftsan auxiliary tree with the root node and footnode labeled onto an internal node of anothertree with the same symbol(Figure4).FB-LTAG(Vijay-Shanker,1987;Vijay-Shanker andJoshi,1988)is an extension of the LTAG formal-ism.In FB-LTAG,each node in the elementarytrees has a feature structure,containing grammat-ical constraints on the node.Figure5shows aresult of LTAG analysis,which is described notVPVcanNWe VrunFigure5:Derived trees and derivation treesonly by derived trees(i.e.,parse trees)but also byderivation trees.A derivation tree is a structuraldescription in LTAG and represents the history ofcombinations of elementary trees.There are several grammars developed in theFB-LTAG formalism,including the XTAG En-glish grammar,a large-scale grammar for En-glish(The XTAG Research Group,2001).TheXTAG group(Doran et al.,2000)at the Univer-sity of Pennsylvania is also developing Korean,Chinese,and Hindi grammars.Development ofa large-scale French grammar(Abeill´e and Can-dito,2000)has also started at the University ofPennsylvania and is expanded at University ofParis7.2.2Head-Driven Phrase StructureGrammar(HPSG)An HPSG grammar consists of lexical entries andID grammar rules,each of which is describedwith typed feature structures(Carpenter,1992).Alexical entry for each word expresses the charac-teristics of the word,such as the subcategorizationframe and the grammatical category.An ID gram-mar rule represents a relation between a motherand its daughters,and is independent of lexicalcharacteristics.Figure6illustrates an example ofbottom-up parsing with an HPSG grammar.First,lexical entries for“can”and“run”are unified re-spectively with the daughter feature structures ofCanonical elementary treesNon-canonical elementary treesthinkV *a) Exception for Condition 1b) Exception for Condition 2Figure 7:A canonical elementary tree and exceptionsan ID grammar rule.The feature structure of the mother node is determined as a result of these uni-fications.The center of Figure 6shows a rule ap-plication to “can run ”and “we ”.There are a variety of works on efficient pars-ing with HPSG,which allow the use of HPSG-based processing in practical application con-texts (Flickinger et al.,2000).Stanford Univer-sity is developing the English Resource Gram-mar,an HPSG grammar for English,as a part of the Linguistic Grammars Online (LinGO)project (Flickinger,2000).In practical con-text,German,English,and Japanese HPSG-based grammars are developed and used in the Verb-mobil project (Kay et al.,1994).Our group has developed a wide-coverage HPSG grammar for Japanese (Mitsuishi et al.,1998),which is used in a high-accuracy Japanese dependency an-alyzer (Kanayama et al.,2000).3Grammar conversionThe grammar conversion from LTAG to HPSG (Yoshinaga and Miyao,2001)is the core portion of the RenTAL system.The conversion algorithm consists of:1.Conversion of canonical elementary trees to HPSG lexical entries.2.Definition of ID grammar rules to emulate substitution and adjunction.3.Conversion of non-canonical elementary trees to canonical ones.The left-hand side of Figure 7shows a canoni-cal elementary tree,which satisfies the following conditions:Condition 1A tree must have only oneanchor.think:*Figure 8:A conversion from a canonical elemen-tary tree into an HPSG lexical entry123132Figure 9:Left substitution ruleCondition 2All branchings in a tree must con-tain trunk nodes.Trunk nodes are nodes on a trunk ,which is a pathfrom an anchor to the root node (the thick lines in Figure 7)(Kasper et al.,1995).Condition 1guar-antees that a canonical elementary tree has only one trunk,and Condition 2guarantees that each branching consists of a trunk node,a leaf node,and their mother (also a trunk node).The right-hand side of Figure 7shows elementary trees vi-olating the conditions.Canonical elementary trees can be directly con-verted to HPSG lexical entries by regarding each leaf node as a subcategorization element of the anchor,and by encoding them into a list.Fig-ure 8shows an example of the conversion.By following the trunk from the anchor “think ”to the1234 3142appendFigure10:Left adjunction ruleroot node labeled S,we store each branching in a list.As shown in Figure8,each branching is specified by a leaf node and the mother node.A feature Sym represents the non-terminal symbol of the mother node.Features Leaf,Dir,Foot? represent the leaf node;the non-terminal symbol, the direction(on which side of the trunk node the leaf node is),and the type(whether a foot node or a substitution node),respectively.Figures9and10show ID grammar rules to em-ulate substitution and adjunction.These grammar rules are independent of the original grammar be-cause they don’t specify any characteristics spe-cific to the original grammar.In the substitution rule,the Sym feature of the substitution node must have the value of the Leaf feature3of the trunk node.The Arg feature of the substitution node must be a null list,because the substitution node must be unified only with the node corresponding to the root node of the ini-tial tree.The substitution rule percolates the tail elements2of the Arg feature of a trunk node to the mother in order to continue constructing the tree.In the adjunction rule,the Sym feature of a foot node must have the same value as the Leaf feature4.The value of the Arg feature of the mother node is a concatenation list of both Arg features2and3of its daughters because we first construct the tree corresponding to the ad-joining tree and next continue constructing the tree corresponding to the adjoined tree.The value “”or“”of the Foot?feature explicitly de-termines whether the next rule application is the adjunction rule or the substitution rule.Figure11shows an instance of rule applica-tions.The thick line indicates the adjoined tree ()and the dashed line indicates the adjoiningFigure11:An example of rule applicationsP NPforFigure12:Division of a multi-anchored elemen-tary tree into single-anchored treestree().The adjunction rule is applied to con-struct the branching marked with,where“think”takes as an argument a node whose Sym feature’s value is S.By applying the adjunction rule,the Arg feature of the mother node(B)becomes a concatenation list of both Arg features of(8) and(5).Note that when the construction of is completed,the Arg feature of the trunk node (C)will be its former state(A).We can continue constructing as if nothing had happened. Multi-anchored elementary trees,which violate Condition1,are divided into multiple canonical elementary trees.We call the cutting nodes in the divided trees cut-off nodes(Figure12).Note that a cut-off node is marked by an identifier to pre-serve a co-occurrence relation among the multiple anchors.Figure12shows an example of the con-version of a multi-anchored elementary tree for a compound expression“look for”.Wefirst select an anchor“look”as the syntactic head,and tra-verse the tree along the trunk from the root node S to the anchor“look”.We then cut off the multi-multi-anchored trees without non-anchored subtrees, …Figure 13:Combination of a non-anchored subtree into anchored treesanchored elementary tree at the node PP,and cut-off nodes PP in resulting single-anchored trees aremarked by an identifier.Non-canonical elementary trees violating Con-dition 2have a non-anchored subtree which is a subtree of depth 1or above with no anchor.A non-anchored subtree is converted into multi-anchored trees by substituting the deepest node (Figure 13).Substituted nodes are marked as breaking points to remember that the nodes orig-inate from the substitution nodes.In the resulting trees,all subtrees are anchored so that we can ap-ply the above conversion algorithms.Figure 13shows a conversion of a non-canonical elemen-tary tree for it-cleft .A substitution node P in the non-anchored subtree is selected,and is substi-tuted by each initial tree.The substituted node P in resulting multi-anchored trees are marked as breaking points.The above algorithm gives the conversion of LTAG,and it can be easily extended to handle an FB-LTAG grammar by merely storing a feature structure of each node into the Sym feature and Leaf feature together with the non-terminal sym-bol.Feature structure unification is executed by ID grammar rules.The strong equivalence is assured because only substitution/adjunction operations performed in LTAG are performed with the obtained HPSG-style grammar.This is because each element in the Arg feature selects only feature structures corresponding to trees which can substitute/be adjoined by each leaf node of an elementary tree.By following a history of rule applications,each combination of elementary trees in LTAG derivation trees can be readily recovered.The strong equivalence holds also for conversion of non-canonical elementary trees.For trees violat-ing Condition 1,we can distinguish the cut-offTable 1:The classification of elementary tree templates in the XTAG English grammar (LTAG)and converted lexical entry templates correspond-ing to them (HPSG)::canonical elementary trees,:elementary trees violating only Condi-tion 1,:elementary trees violating only Condi-tion 2,:elementary trees violating both condi-tionsGrammar TotalLTAG 32676454501,194HPSG 3261,9921,0832,4745,875nodes from the substitution nodes owing to iden-tifiers,which recover the co-occurrence relation in the original elementary trees between the di-vided trees.For trees violating Condition 2,we can identify substitution nodes in a combined tree because they are marked as breaking points,and we can consider the combined tree as two trees in the LTAG derivation.4ExperimentsThe RenTAL system is implemented in LiL-FeS (Makino et al.,1998)2.LiLFeS is one of the fastest inference engines for processing fea-ture structure logic,and efficient HPSG parsers have already been built on this system (Nishida et al.,1999;Torisawa et al.,2000).We ap-plied our system to the XTAG English gram-mar (The XTAG Research Group,2001)3,which is a large-scale FB-LTAG grammar for English.2The RenTAL system is available at:http://www-tsujii.is.s.u-tokyo.ac.jp/rental/3We used the grammar attached to the latest distribution of an LTAG parser which we used for the parsing experi-ment.The parser is available at:ftp:///pub/xtag/lem/lem-0.13.0.i686.tgzTable2:Parsing performance with the XTAG En-glish grammar for the ATIS corpus.Parser Parse Time(sec.)lem19.64TNT0.77The XTAG English grammar consists of1,1944 elementary tree templates and around45,000lex-ical items5.We successfully converted all the elementary tree templates in the XTAG English grammar to HPSG lexical entry templates.Ta-ble1shows the classifications of elementary tree templates of the XTAG English grammar,ac-cording to the conditions we introduced in Sec-tion3,and also shows the number of correspond-ing HPSG lexical entry templates.Conversion took about25minutes CPU time on a700Mhz Pentium III Xeon with four gigabytes main mem-ory.The original and the obtained grammar gener-ated exactly the same number of derivation trees in the parsing experiment with457sentences from the ATIS corpus(Marcus et al.,1994)6(the average length is6.32words).This result empir-ically attested the strong equivalence of our algo-rithm.Table2shows the average parsing time with the LTAG and HPSG parsers.In Table2,lem refers to the LTAG parser(Sarkar et al.,2000), ANSI C implementation of the two-phase pars-ing algorithm that performs the head corner pars-ing(van Noord,1994)without features(phase1),and then executes feature unification(phase2).TNT refers to the HPSG parser(Torisawa et al.,2000),C++implementation of the two-phase parsing algorithm that performsfiltering with a compiled CFG(phase1)and then executes fea-ture unification(phase2).Table2clearly shows that the HPSG parser is significantly faster than the LTAG parser.This result implies that parsing techniques for HPSG are also beneficial for LTAG 4We eliminated32elementary trees because the LTAG parser cannot produce correct derivation trees with them.5These lexical items are a subset of the original XTAG English grammar distribution.6We eliminated59sentences because of a time-out of the parsers,and61sentences because the LTAG parser does not produce correct derivation trees because of bugs in its preprocessor.parsing.We can say that the grammar conversion enables us to share HPSG parsing techniques in LTAG parsing.Another paper(Yoshinaga et al., 2001)describes the detailed analysis on the factor of the difference of parsing performance.5ConclusionWe described the RenTAL system,a grammar converter from FB-LTAG to HPSG.The grammar conversion guarantees the strong equivalence, and hence we can obtain an HPSG-style grammar equivalent to existing LTAG grammars.Experi-mental result showed that the system enabled to share not only LTAG grammars,but also HPSG parsing techniques.This system will enable a variety of resource sharing such as the sharing of the programming/grammar-development environment(Makino et al.,1998;Sarkar and Wintner,1999)and grammar extraction methods from bracketed corpora(Xia,1999;Chen and Vijay-Shanker,2000;Neumann,1998).Although our system connects only FB-LTAG and HPSG, we believe that our approach can be extended to other formalisms such as Lexical-Functional Grammar(Kaplan and Bresnan,1982). Acknowledgment The authors are indebted to Mr.Anoop Sarkar for his help in using his parser in our experiment.The authors would like to thank anonymous reviewers for their valuable comments and criticisms on this paper. ReferencesAnne Abeill´e and Marie-H´e l`e ne Candito.2000.FTAG:A Lexicalized Tree Adjoining Grammar for French.In Anne Abeill´e and Owen Rambow,edi-tors,Tree Adjoining Grammars:Formal,Computa-tional and Linguistic Aspects,pages305–329.CSLI publications.Tilman Becker and Patrice Lopez.2000.Adapting HPSG-to-TAG compilation to wide-coverage gram-mars.In Proc.of TAG+5,pages47–54.Bob Carpenter.1992.The Logic of Typed Feature Structures.Cambridge University Press.John Chen and K.Vijay-Shanker.2000.Automated extraction of TAGs from the Penn Treebank.In Proc.of IWPT2000.David Chiang.2000.Statistical parsing with an automatically-extracted Tree Adjoining Grammar.In Proc.of ACL2000,pages456–463.Christy Doran,Beth Ann Hockey,Anoop Sarkar,B.Srinivas,and Fei Xia.2000.Evolution of theXTAG system.In Anne Abeill´e and Owen Ram-bow,editors,Tree Adjoining Grammars:Formal, Computational and Linguistic Aspects,pages371–403.CSLI publications.Dan Flickinger,Stephen Oepen,Jun’ichi Tsujii,and Hans Uszkoreit,editors.2000.Natural Language Engineering–Special Issue on Efficient Processing with HPSG:Methods,Systems,Evaluation.Cam-bridge University Press.Dan Flickinger.2000.On building a more effi-cient grammar by exploiting types.Natural Lan-guage Engineering–Special Issue on Efficient Pro-cessing with HPSG:Methods,Systems,Evaluation, 6(1):15–28.Hiroshi Kanayama,Kentaro Torisawa,Y utaka Mitsu-isi,and Jun’ichi Tsujii.2000.Hybrid Japanese parser with hand-crafted grammar and statistics.In Proc.of COLING2000,pages411–417.Ronald Kaplan and Joan Bresnan.1982.Lexical-Functional Grammar:A formal system for gram-matical representation.In Joan Bresnan,editor,The Mental Representation of Grammatical Relations, pages173–281.The MIT Press.Robert Kasper,Bernd Kiefer,Klaus Netter,and pilation of HPSG to TAG.In Proc.of ACL’94,pages92–99.M.Kay,J.Gawron,and P.Norvig.1994.V erbmo-bil:A Translation System for Face-to-Face Dialog.CSLI Publications.Takaki Makino,Minoru Y oshida,Kentaro Torisawa, and Jun’ichi Tsujii.1998.LiLFeS—towards a practical HPSG parsers.In Proc.of COLING–ACL ’98,pages807–811.Mitchell Marcus,Beatrice Santorini,and Mary Ann Marcinkiewicz.1994.Building a large annotated corpus of English:the Penn puta-tional Linguistics,19(2):313–330.Y utaka Mitsuishi,Kentaro Torisawa,and Jun’ichi Tsu-jii.1998.HPSG-style underspecified Japanese grammar with wide coverage.In Proc.of COLING–ACL’98,pages876–880.G¨u ter Neumann.1998.Automatic extraction of stochastic lexcalized tree grammars from treebanks.In Proc.of TAG+4,pages120–123.Kenji Nishida,Kentaro Torisawa,and Jun’ichi Tsujii.1999.An efficient HPSG parsing algorithm with ar-ray unification.In Proc.of NLPRS’99,pages144–149.Carl Pollard and Ivan A.Sag.1994.Head-Driven Phrase Structure Grammar.University of Chicago Press and CSLI Publications.Peter Poller and Tilman Becker.1998.Two-step TAG parsing revisited.In Proc.of TAG+4,pages143–146.Anoop Sarkar and Shuly Wintner.1999.Typing as a means for validating feature structures.In Proc.of CLIN’99,pages159–167.Anoop Sarkar,Fei Xia,and Aravind Joshi.2000.Some experiments on indicators of parsing com-plexity for lexicalized grammars.In Proc.of COL-ING2000,pages37–42.Yves Schabes,Anne Abeille,and Aravind K.Joshi.1988.Parsing strategies with‘lexicalized’gram-mars:Application to Tree Adjoining Grammars.In Proc.of12th COLING’92,pages578–583.Y uka Tateisi,Kentaro Torisawa,Y usuke Miyao,and Jun’ichi Tsujii.1998.Translating the XTAG En-glish grammar to HPSG.In Proc.of TAG+4,pages 172–175.The XTAG Research Group.2001.A Lex-icalized Tree Adjoining Grammar for English./˜xtag/.Kentaro Torisawa,Kenji Nishida,Y usuke Miyao,and Jun’ichi Tsujii.2000.An HPSG parser with CFG filtering.Natural Language Engineering–Special Issue on Efficient Processing with HPSG:Methods, Systems,Evaluation,6(1):63–80.Gertjan van Noord.1994.Head corner parsing for putational Intelligence,10(4):525–534. K.Vijay-Shanker and Aravind K.Joshi.1988.Fea-ture structures based Tree Adjoining Grammars.In Proc.of12th COLING’92,pages714–719.K.Vijay-Shanker.1987.A Study of Tree Adjoining Grammars.Ph.D.thesis,Department of Computer &Information Science,University of Pennsylvania. Fei Xia.1999.Extracting Tree Adjoining Grammars from bracketed corpora.In Proc.of NLPRS’99, pages398–403.Naoki Y oshinaga and Y usuke Miyao.2001.Grammar conversion from FB-LTAG to HPSG.In Proc.of ESSLLI2001Student Session.To appear.Naoki Y oshinaga,Y usuke Miyao,Kentaro Torisawa, and Jun’ichi Tsujii.2001.Efficient LTAG parsing using HPSG parsers.In Proc.of PACLING2001.To appear.。