2017-2018年河北省衡水市武邑中学高二(上)期末数学试卷(理科)及答案答案

合集下载

【全国百强校】河北省武邑中学2017-2018学年高二上学期期末考试数学(理)试题(解析版)

【全国百强校】河北省武邑中学2017-2018学年高二上学期期末考试数学(理)试题(解析版)

河北省武邑中学2017-2018学年高二上学期期末考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 从遂宁市中、小学生中抽取部分学生,进行肺活量调查.经了解,我市小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A. 简单的随机抽样 B. 按性别分层抽样 C. 按学段分层抽样 D. 系统抽样【答案】C【解析】我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大。

了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理。

故选:C.2. 某班有学生60人,现将所有学生按1,2, 3,…,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3, 33, 48号学生在样本中,则样本中另一个学生的编号为()A. 28 B. 23 C. 18 D. 13【答案】D【解析】∵高三某班有学生60人,用系统抽样的方法,抽取一个容量为4的样本,∴样本组距为60÷4=15,则3+15=18,即样本中还有一个学生的编号为18,故选:C.3. 中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”人们把此类题目称为“中国剩余定理”.若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图给出,执行该程序框图,则输出的等于()A. 21B. 22C. 23D. 24【答案】C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.4. 为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:)分别为,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A. 的平均数B. 的标准差C. 的最大值D. 的中位数【答案】C【解析】根据平均数,最大值,中位数,标准差的含义知,只有标准差是衡量一组数据稳定性的数字特征,故选B.5. 已知直线,平面,且,给出下列命题:①若,则;②若,则;③若,则;④若,则.其中正确的命题是()A. ①④B. ③④C. ①②D. ②③【答案】A【解析】若α∥β,且m⊥α⇒m⊥β,又l⊂β⇒m⊥l,所以①正确。

河北省武邑中学高二上学期期末考试数学(理)试题Word版含答案

河北省武邑中学高二上学期期末考试数学(理)试题Word版含答案

河北省武邑中学2017-2018学年高二上学期期末考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从遂宁市中、小学生中抽取部分学生,进行肺活量调查.经了解,我市小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.某班有学生60人,现将所有学生按1,2, 3,…,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3, 33, 48号学生在样本中,则样本中另一个学生的编号为( )A .28B .23C .18D .133.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”人们把此类题目称为“中国剩余定理”.若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()112mod3=.现将该问题以程序框图给出,执行该程序框图,则输出的n 等于( )A .21B .22C .23D .244.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,,n x x x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A. 12,,,n x x x 的平均数B. 12,,,n x x x 的标准差C.12,,,n x x x 的最大值D. 12,,,n x x x 的中位数5.已知直线,m l ,平面,αβ,且,m l αβ⊥⊂,给出下列命题: ①若//αβ,则m l ⊥; ②若αβ⊥,则//m l ; ③若m l ⊥,则αβ⊥;④若//m l ,则αβ⊥.其中正确的命题是( ) A.①④B.③④C.①②D.②③6.供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均用电量分为[)[)[)[)[]0,10,10,20,20,30,30,40,40,50五组,整理得到如下的频率分布直方图,则下列说法错误的是( )A.12月份人均用电量人数最多的一组有400人B.12月份人均用电量不低于20度的有500人C.12月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[)30,40—组的概率为1107.已知,x y 满足条件002x y y x ≤⎧⎪≥⎨⎪-≤⎩,则目标函数z x y =+从最小值连续变化到0时,所有满足条件的点(),x y 构成的平面区域的面积为( ) A .2 B .1 C .12 D .148.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A .30,4π⎡⎤⎢⎥⎣⎦B .30,,24πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .3,4ππ⎡⎫⎪⎢⎣⎭D .324ππ⎛⎤ ⎥⎝⎦,9.已知定义在R 上的函数()f x 满足:()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时,()1x f x e =-,则()()20162017f f +-=( )(其中e 为自然对数的底)A .1e -B .1e -C .1e --D .1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,16,2AB AC AE ED ===,则AE EB ⋅ 等于( )A .14-B .9-C .9D .1411.如图,正方体1111ABCD A B C D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是( )A .23π B .34π C .56π D .35π 12.在直角坐标系内,已知()3,5A 是以点C 为圆心的圆上的一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,若圆上存在点P ,使得()0MP CP CN ⋅-=,其中点()(),0,0M m N m -、,则m 的最大值为( )A .7B .6C .5D .4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图所示,有,,,,,A B C D E 5组数据,去掉组数据后,剩下的4组数据具有较强的线性相关关系.(请用A B C D E 、、、、作答)14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A B 、两点,则AB =. 15.已知12F F 、为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B 、两点若2212F A F B +=,则AB =.16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得最大利润是万元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆中,角A B C 、、的对边分别为,,a b c ,120C =︒. (1)若1c =,求ABC ∆面积的最大值; (2) 若2a b =,求t tan A .18.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了 1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y 关于x 的线性回归方程 y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:()()()1122211nnii i ii i nniii i xx y yx y nx yb xxxnx====---==--∑∑∑∑,a y bx =-)参考数据:1125132912268161092⨯+⨯+⨯+⨯=, 22221113128498+++=.19.如图,四面体ABCD 中,O E 、分别是BD BC 、的中点,2CA CB CD BD ====,AB AD ==(1)求证://OE 平面ACD ;(2)求直线OC 与平面ACD 所成角的正弦值. 20.遂宁市观音湖港口船舶停靠的方案是先到先停:(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2, 3, 4, 5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00〜8:00到达,乙船将于早上7:30〜8:30到达,请求出甲船先停靠的概率.21.如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(1)证明:1AC AB =;(2)若11,,3AC AB CBB AB BC π⊥∠==,求二面角111A A B C --的余弦值.22.已知椭圆()2222 0:1x y C a ba b =>>+的右焦点()1,0F ,过点F 且与坐标轴不垂直的直线与椭圆交于,P Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点()(),00T t t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.试卷答案一、选择题1-5: CDCCA 6-10: CBBAD 11、12:AB二、填空题13. D 14.16315. 8 16. 27 三、解答题17. 解:设(1)由余弦定理得222cos1201a b ab +-︒=,22123a b ab ab ab ab ++=≥+=,当且仅当a b =时取等号;解得13ab ≤,故1sin 2ABC S ab C ∆==≤ABC ∆. (2)因为2a b =,由正弦定理得sin 2sin A B =,又120C =︒,故60A B +=︒,∴()sin 2sin 60sin A A A A =︒--,2sin A A =,∴tan A =18.(1)由数据求得11,24x y == 由公式求得187b =再由307a y bx =-=-所以y 关于x 的线性回归方程为 183077y x =-(2)当10x =时, 1507y =,1502227-<;同样,当6x =时, 787y =,781227-< 所以,该小组所得线性回归方程是理想的.19.(1)证明:连结OE ,∵O E 、分别是BD BC 、的中点.∴//OE CD , 又OE ⊄平面ACD ,CD ⊂平面ACD , ∴//OE 平面ACD(2)法一:连结OC ,∵,BO DO AB AD ==,∴AO BD ⊥. ∵,BO DO BC CD ==,∴CO BD ⊥. 在AOC ∆中, 由已知可得1,AO CO ==而2AC =,∴222AO CO AC +=,∴AO OC ⊥. ∵BD OC O ⋂=,∴AO ⊥平面BCD .以OB OC OA 、、分别为x y z 、、轴,建立如图所示的直角坐标系 ()()()()0,0,1,1,0,0,,1,0,0A B C D -设平面ACD 的法向量(),,x y z η=,由()()1,0,1,DA DC == 则有0x z x +=⎧⎪⎨=⎪⎩,令1x =-,得η⎛⎫=- ⎪ ⎪⎝⎭又因为()OC =,所以sin OC OC ηαη⋅= 故直线OC 与平面ACD 所成角的正弦值为.法二:设O 到平面ACD 的距离为d ,由A ODC O ADC V V --=,有1111113232d ⨯⨯=⨯,得d =故直线OC 与平面ACD 所成角的正弦值为:d OC =. 20.(1)这种规则是不公平的设甲胜为事件A ,乙胜为事件B ,基本事件总数为5525⨯=种. 则甲胜即两编号和为偶数所包含的基本事件数有13个:()()()()()()()()1,1,1,3,1,5,2,2,2,4,3,1,3,3,3,5, ()()()()()4,2,4,4,5,1,5,3,5,5,∴甲胜的概率()1325P A =乙胜的概率()()12125P B P A =-= ∴这种游戏规则不公平.(2)设甲船先停靠为事件C ,甲船到达的时刻为x ,乙船到达的时刻为y ,(),x y 可以看成是平面中的点,试验的全部结果构成的区域为(){},78,7.58.5x y x y Ω=≤≤≤≤,这是一个正方形区域,面积111S Ω=⨯=,事件C 所构成的区域为(){},,78,7.58.5A x y y x x y =>≤≤≤≤,111712228A S =-⨯⨯=,这是一个几何概型,所以()78A S P C S Ω==.21.(1)连接1BC ,交1BC 于点O ,连接AO ,因为侧面11BB C C 为菱形, 所以11B C BC ⊥,且O 为1B C 及1BC 的中点,又11,AB B C AB BC B ⊥⋂= 所以1B C ⊥平面ABO .由于AO ⊂平面ABO , 故1B C AO ⊥.又1B O CO =,故1AC AB =. (2)因为1AC AB ⊥,且O 为1B C 的中点,. 所以AO CO =.又因为AB BC =, 所以BOA BOC ∆≅∆,故OA OB ⊥,从而1,,OA OB OB 两两相互垂直,O 为坐标原点,OB的方向为x 轴正方向,OB为单位长,建立如图所示空间直角坐标系O xyz -因为13CBB π∠=,所以1CBB ∆为等边三角形,又AB BC =,则()1,1,0,0,,0,A B B C ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1AB ⎛= ⎝⎭,111,0,A B AB ⎛== ⎝⎭,111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭ . 设(),,n x y z =是平面11AA B 的法向量,则11100n AB n A B ⎧⋅=⎪⎨⋅=⎪⎩,即00y z x z =⎨⎪=⎪⎩,所以可取(n = 设m 是平面111A B C 的法向量,则111100m A B m B C ⎧⋅=⎪⎨⋅=⎪⎩,同理可取(1,m = 1cos ,7n m n m n m ⋅==所以二面角111A A B C --的余弦值为17.22.解:(1)由题意知1c =,又tan60bc=︒=23b =, 2224a b c =+=,所以椭圆的方程为:22143x y +=.(2)当0k =时,0t =,不合题意设直线PQ 的方程为:()()1,0y k x k =-≠,代入22143x y +=,得:()22223484120k x k x k +-+-=,故 0∆>,则,0k R k ∈≠ 设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,R x y ,则()2120002243,123434x x k kx y k x k k +===-=-++, 由QP TP PQ TQ ⋅=⋅ 得:()()20PQ TQ TP PQ TR ⋅+=⋅=,所以直线TR 为直线PQ 的垂直平分线,直线TR 的方程为:2223143434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =得:T 点的横坐标22213344k t k k ==++, 因为()20,k ∈+∞,所以()2344,k +∈+∞,所以10,4t ⎛⎫∈ ⎪⎝⎭.所以线段OF 上存在点(),0T t ,使得QP TP PQ TQ ⋅=⋅ ,其中10,4t ⎛⎫∈ ⎪⎝⎭.。

河北省武邑中学高二上学期期末考试数学(理)试题有答案-最新精品

河北省武邑中学高二上学期期末考试数学(理)试题有答案-最新精品

河北省武邑中学高二上学期期末考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 从遂宁市中、小学生中抽取部分学生,进行肺活量调查.经了解,我市小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.某班有学生60人,现将所有学生按1,2, 3,…,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3, 33, 48号学生在样本中,则样本中另一个学生的编号为( ) A .28 B .23 C .18 D .133.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何? ”人们把此类题目称为“中国剩余定理”.若正整数N 除以正整数后的余数为,则记为()mod N n m =,例如()112mod3=.现将该问题以程序框图给出,执行该程序框图,则输出的等于( )A .21B .22C .23D .244.为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:kg )分别为12,,,n x x x ,下面给出的指标中可以用评估这种农作物亩产量稳定程度的是( ) A. 12,,,n x x x 的平均数 B. 12,,,n x x x 的标准差 C.12,,,n x x x 的最大值D. 12,,,n x x x 的中位数5.已知直线,m l ,平面,αβ,且,m l αβ⊥⊂,给出下列命题: ①若//αβ,则m l ⊥; ②若αβ⊥,则//m l ; ③若m l ⊥,则αβ⊥;④若//m l ,则αβ⊥.其中正确的命题是( ) A.①④B.③④C.①②D.②③6.供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均用电量分为[)[)[)[)[]0,10,10,20,20,30,30,40,40,50五组,整理得到如下的频率分布直方图,则下列说法错误的是( )A.12月份人均用电量人数最多的一组有400人B.12月份人均用电量不低于20度的有500人C.12月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[)30,40—组的概率为1107.已知,x y 满足条件002x y y x ≤⎧⎪≥⎨⎪-≤⎩,则目标函数z x y =+从最小值连续变化到0时,所有满足条件的点(),x y 构成的平面区域的面积为( ) A .2 B .1 C .12 D .148.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A .30,4π⎡⎤⎢⎥⎣⎦B .30,,24πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .3,4ππ⎡⎫⎪⎢⎣⎭D .324ππ⎛⎤ ⎥⎝⎦,9.已知定义在R 上的函数()f x 满足:()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时,()1x f x e =-,则()()20162017f f +-=( )(其中为自然对数的底) A .1e - B .1e - C .1e -- D .1e + 10.已知Rt ABC ∆,点D 为斜边BC 的中点,163,6,2AB AC AE ED ===,则AE EB ⋅等于( ) A .14- B .9- C .9 D .1411.如图,正方体1111ABCD A B C D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是( )A .23π B .34π C .56π D .35π 12.在直角坐标系内,已知()3,5A 是以点C 为圆心的圆上的一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,若圆上存在点P ,使得()0MP CP CN ⋅-=,其中点()(),0,0M m N m -、,则的最大值为( ) A .7 B .6 C .5 D .4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图所示,有,,,,,A B C D E 5组数据,去掉 组数据后,剩下的4组数据具有较强的线性相关关系.(请用A B C D E 、、、、作答)14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A B 、两点,则AB = . 15.已知12F F 、为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B 、两点若2212F A F B +=,则AB = .16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元, 该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得最大利润是 万元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆中,角A B C 、、的对边分别为,,a b c ,120C =︒. (1)若1c =,求ABC ∆面积的最大值;(2) 若2a b =,求 t tan A .18.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了 1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y 关于的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:()()()1122211nniii ii i nniii i x x yyx y nxyb x x xnx====---==--∑∑∑∑,a y bx =-)参考数据:1125132912268161092⨯+⨯+⨯+⨯=, 22221113128498+++=.19.如图,四面体ABCD 中,O E 、分别是BD BC 、的中点,2CA CB CD BD ====,AB AD =(1)求证://OE 平面ACD ;(2)求直线OC 与平面ACD 所成角的正弦值. 20.遂宁市观音湖港口船舶停靠的方案是先到先停:(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2, 3, 4, 5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上700〜800到达,乙船将于早上730〜830到达,请求出甲船先停靠的概率.21.如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(1)证明:1AC AB =; (2)若11,,3AC AB CBB AB BC π⊥∠==,求二面角111A A B C --的余弦值.22.已知椭圆()2222 0:1x y C a ba b =>>+的右焦点()1,0F ,过点F 且与坐标轴不垂直的直线与椭圆交于,P Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点()(),00T t t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.试卷答案一、选择题1-5 CDCCA 6-10 CBBAD 11、12:AB二、填空题13. D 14.16315. 8 16. 27 三、解答题17. 解:设(1)由余弦定理得222cos1201a b ab +-︒=,22123a b ab ab ab ab ++=≥+=,当且仅当a b =时取等号;解得13ab ≤,故1sin 2ABC S ab C ∆=≤ABC ∆. (2)因为2a b =,由正弦定理得sin 2sin A B =,又120C =︒,故60A B +=︒,∴()sin 2sin 60sin A A A A =︒-=-,2sin A A =,∴tan A =. 18.(1)由数据求得11,24x y == 由公式求得187b =再由307a y bx =-=-所以y 关于的线性回归方程为183077y x =-(2)当10x =时,1507y =,1502227-<;同样,当6x =时,787y =,781227-<所以,该小组所得线性回归方程是理想的.19.(1)证明:连结OE ,∵O E 、分别是BD BC 、的中点.∴//OE CD , 又OE ⊄平面ACD ,CD ⊂平面ACD , ∴//OE 平面ACD(2)法一:连结OC ,∵,BO DO AB AD ==,∴AO BD ⊥. ∵,BO DO BC CD ==,∴CO BD ⊥. 在AOC ∆中, 由已知可得1,AO CO ==而2AC =, ∴222AO CO AC +=,∴AO OC ⊥. ∵BD OC O ⋂=,∴AO ⊥平面BCD .以OB OC OA 、、分别为x y z 、、轴,建立如图所示的直角坐标系 ()()()()0,0,1,1,0,0,,1,0,0A B C D -设平面ACD 的法向量(),,x y z η=,由()()1,0,1,1,3,0DA DC ==则有 00x z x +=⎧⎪⎨=⎪⎩,令1x =-,得31,η⎛⎫=- ⎪ ⎪⎝⎭又因为()OC =,所以7sin OC OC ηαη⋅==故直线OC 与平面ACD .法二:设O 到平面ACD 的距离为d ,由A ODC O ADC V V --=,有1111113232d ⨯⨯=⨯,得d =故直线OC 与平面ACD 所成角的正弦值为:d OC =. 20.(1)这种规则是不公平的设甲胜为事件A ,乙胜为事件B ,基本事件总数为5525⨯=种 .则甲胜即两编号和为偶数所包含的基本事件数有13个:()()()()()()()()1,1,1,3,1,5,2,2,2,4,3,1,3,3,3,5,()()()()()4,2,4,4,5,1,5,3,5,5,∴甲胜的概率()1325P A =乙胜的概率()()12125P B P A =-= ∴这种游戏规则不公平.(2)设甲船先停靠为事件C ,甲船到达的时刻为,乙船到达的时刻为y ,(),x y 可以看成是平面中的点,试验的全部结果构成的区域为(){},78,7.58.5x y x y Ω=≤≤≤≤,这是一个正方形区域,面积111S Ω=⨯=,事件C 所构成的区域为(){},,78,7.58.5A x y y x x y =>≤≤≤≤,111712228A S =-⨯⨯=,这是一个几何概型,所以()78A S P C S Ω==. 21.(1) 连接1BC ,交1BC 于点O ,连接AO ,因为侧面11BB C C 为菱形, 所以11B C BC ⊥,且O 为1B C 及1BC 的中点,又11,AB B C AB BC B ⊥⋂= 所以1B C ⊥平面ABO .由于AO ⊂平面ABO , 故1B C AO ⊥.又1B O CO =,故1AC AB =. (2)因为1AC AB ⊥,且O 为1B C 的中点,. 所以AO CO =.又因为AB BC =, 所以BOA BOC ∆≅∆,故OA OB ⊥, 从而1,,OA OB OB 两两相互垂直, O 为坐标原点,OB 的方向为轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz - 因为13CBB π∠=,所以1CBB ∆为等边三角形,又AB BC =,则()1,1,0,0,,0,A B B C ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1AB ⎛= ⎝⎭,111,0,A B AB ⎛== ⎝⎭,111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭. 设(),,n x y z =是平面11AA B 的法向量,则11100n AB n A B ⎧⋅=⎪⎨⋅=⎪⎩,即00y x =⎨⎪=⎪⎩,所以可取(1,3,n = 设m 是平面111A B C 的法向量,则11110m A B m B C ⎧⋅=⎪⎨⋅=⎪⎩,同理可取(1,m =1cos ,7n m n m n m⋅==所以二面角111A A B C --的余弦值为17.22.解:(1)由题意知1c =,又tan60bc=︒=23b =, 2224a b c =+=,所以椭圆的方程为:22143x y +=.(2)当0k =时,0t =,不合题意设直线PQ 的方程为:()()1,0y k x k =-≠,代入22143x y +=,得:()22223484120k x k x k +-+-=,故 0∆>,则,0k R k ∈≠ 设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,R x y ,则()2120002243,123434x x k kx y k x k k +===-=-++, 由QP TP PQ TQ ⋅=⋅得 ()()20PQ TQ TP PQ TR ⋅+=⋅=, 所以直线TR 为直线PQ 的垂直平分线,直线TR 的方程为2223143434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =得:T 点的横坐标22213344k t k k ==++, 因为()20,k ∈+∞,所以()2344,k +∈+∞,所以10,4t ⎛⎫∈ ⎪⎝⎭. 所以线段OF 上存在点(),0T t ,使得QP TP PQ TQ ⋅=⋅,其中10,4t ⎛⎫∈ ⎪⎝⎭.。

河北省2018届高三上学期期末考试数学(理)试题

河北省2018届高三上学期期末考试数学(理)试题

河北武邑中学2017—2018学年高三年级上学期期末考试数学试题(理)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A . 1 B . -1 C .12D .-22.设α为锐角,()()sin ,1,1,2a b α==,若a 与b 共线,则角α=( )A . 15°B . 30°C .45°D .60° 3.下列说法正确的是( )A .命题“若2340x x --=,则4x =”的否命题是“若2340x x --=,则4x ≠ ”B .0a >是函数a y x =在定义域上单调递增的充分不必要条件C .()000,0,34xxx ∃∈-∞<D .若命题:,3500n P n N ∀∈>,则00:,3500nP x N ⌝∃∈≤4. 已知点()()()()1,1,1,2,2,1,3,4A B C D ---,则向量AB 在CD方向上的投影为( )A .2 B C. 2- D . 5. 若双曲线()222210,0x y a b a b-=>>的渐近线与直线1y =-所围成的三角形面积为2,则该双曲线的离心率为( )A .2B C. D 6.《九章算术》卷五商功中有如下问题:今有刍甍(底面为矩形的屋脊的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何,下图网格纸中实线部分分为此刍甍的三视图,设网格纸上每个小正方形的边长为1丈,那么此刍甍的体积为( )A .3立方丈B .5立方丈 C.6立方丈 D .12立方丈7. 从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于( ) A .57 B .59 C. 27 D .498. 将曲线1:sin 6C y x π⎛⎫=- ⎪⎝⎭上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度,得到曲线()2:C y g x =,则()g x 在[],0π-上的单调递增区间是( ) A .5,66ππ⎡⎤--⎢⎥⎣⎦ B .2,36ππ⎡⎤--⎢⎥⎣⎦ C.2,03π⎡⎤-⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦ 9.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入,n x 的值分别为4,2,则输出v 的值为( )A . 32B . 64 C. 65 D .13010. 若()()50,2a x y ax y <-+展开式中42x y 的系数为-20,则a 等于( ) A . -1 B . 32-C. -2 D .52- 11. 已知三棱锥P ABC -的所有顶点都在球O 的球面上,0,,60,2,2,3PA AB PA AC BAC PA AB AC ⊥⊥∠====,则球O 的表面积为( )A .403π B .303π C. 203π D .103π 12.已知函数()213ln 2f x x x a x ⎛⎫=-+- ⎪⎝⎭在区间()1,3上有最大值,则实数a 的取值范围是 ( ) A .1,52⎛⎫-⎪⎝⎭ B .111,22⎛⎫- ⎪⎝⎭ C.111,22⎛⎫ ⎪⎝⎭ D .1,52⎛⎫⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为 .14.已知实数,x y 满足2041x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2y x +的最小值为 .15.已知()(),f x g x 分别是定义在R 上的偶函数和奇函数,且()()21xf xg x e x -=++,则函数()()()h x f x g x =+在点()()0,0h 处的切线方程是 .16.已知a b c 、、是ABC ∆的三边,()4,4,6,sin 2sin a b A C =∈=,则c 的取值范围为 .三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 满足221111,n n n n a a a a a ++=+=-,数列{}n b 的前n 项和n S 满足2n n S n a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列11n n a b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.已知表1和表2是某年部分日期的天安门广场升旗时刻表: 表1:某年部分日期的天安门广场升旗时刻表表2:某年1月部分日期的天安门广场升旗时刻表 (1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率; (2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记X 为这两人中观看升旗的时刻早于7:00的人数,求X 的 分布列和数学期望; (3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为31760),记表2中所有升旗时刻对应数据的方差为2s ,表1和表2中所有升旗时刻对应数据的方差为20s ,判断2s 与20s 的大小(只需写出结论).19.如图,直角梯形BDFE 中,//,,EF BD BE BD EF ⊥=ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.20. 已知中心在原点O ,焦点在x 轴上,离心率为3的椭圆过点3⎭. (1)求椭圆的方程;(2)设椭圆与y 轴的非负半轴交于点B ,过点B 作互相垂直的两条直线,分别交椭圆于,P Q 两点,连接PQ ,求BPQ ∆的面积的最大值.21. 已知函数()()22ln f x x x mx m R =+-∈.(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若1752m <<,且()f x 有两个极值点()1212,x x x x <,求()()12f x f x -的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,直线l 的参数方程是26x ty t =⎧⎨=+⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围. 23.选修4-5:不等式选讲已知函数()12f x x x a =+++. (1)当4a =-时,求()f x 的最小值; (2)若2a >时,()7f x ≥对任意的,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,求a 的取值范围.试卷答案一、选择题1-5:ABDAA 6-10: BCBCA 11、12:AB二、填空题13. 2 14.1515. 20x y +-=16. ( 三、解答题17.解:(1)因为2211n n n n a a a a +-+=-,所以,()()1110n n n n a a a a +++--=,因为10,0n n a a ->>,所以10n n a a -+≠,所以11n n a a --=, 所以{}n a 是以1为首项,1为公差的等差数列,所以n a n =, 当2n ≥时,12n n n b S S n -=-=, 当1n =时,12b =也满足,所以2n b n =; (2)由(1)可知()1111112121n na b n n n n -⎛⎫==- ⎪++⎝⎭,所以()11111111222334121n n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ . 18.解:(1)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以()153204P A ==; (2)X 可能的取值为0,1,2,记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00” 则()()()512;11533P B P B P B ===-=;()()()409P X P B P B === ;()1211411339P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭;()()()129P X P B P B === , 所以X 的分布列为:()44120129993E X =⨯+⨯+⨯=,(注:学生得到12,3X B ⎛⎫⎪⎝⎭,所以()12233E X =⨯=,同样给分);(3)220s s <.19.解:(1)∵平面BDFE ⊥平面ABCD ,BE BD ⊥,平面BDFE 平面ABCD BD =, ∴BE ⊥平面ABCD ,又AC ⊂平面ABCD ,∴AC BE ⊥, 又∵AC BD ⊥,且BE BD B = ,∴AC ⊥平面BDFE ; (2)设AC BD O = ,∵四边形ABCD 为等腰梯形,,242DOC AB CD π∠===,∴OD OC OB OA ====∵//OB FE ,∴四边形BOFE 为平行四边形,∴//OF BE , 又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角,∴4FBO π∠=,又∵2FOB π∠=,∴OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系,则()()(()(),0,,,,B D F C A,(),DF CD ==,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0,设平面DFC 的一个法向量为(),,n x y z =,由00DF n CD n ⎧=⎪⎨=⎪⎩得0+=-=⎪⎩,令2x =得,()2,2,1n =- ,2cos ,3n AC == ,∴二面角B DF C --的余弦值为23.20.解:(1)由题意可设椭圆方程为()222210x y a b a b +=>>,则2232719c a a b ⎧=⎪⎪⎨⎪+=⎪⎩, 故31a b =⎧⎨=⎩,所以,椭圆方程为2219x y +=; (2)由题意可知,直线BP 的斜率存在且不为0,故可设直线BP 的方程为1y kx =+,由对称性,不妨设0k >,由221990y kx x y =+⎧⎨+-=⎩,消去y 得()2219180k x kx ++=,则BP =0k >换成1k -,得:BQ =,22112211621829APQ S BP BQ k k k k ∆===⎛⎫==+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭⎝⎭设1k t k+=,则2t ≥,故2162162276496489BPQ t S t t t∆==≤=++,取等条件为649t t =,即83t =, 即183k k +=,解得k =时,BPQ S ∆取得最大值278. 21.解:(1)()f x 的定义域为()0,+∞,()22f x x m x'=+-, ()f x 的定义域内单调递增,则()220f x x m x'=+-≥, 即22m x x≤+在()0,+∞上恒成立, 由于224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞; (2)由(1)知()22222x m x f x x m x x-+'=+-=,当1752m <<时()f x 有两个极值点,此时12120,12mx x x x +=>=,∴1201x x <<<, 因为1111725,2m x x ⎛⎫⎛⎫=+∈⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211x x =,于是()()()()22121112122ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+, 令()2214ln h x x x x=-+,则()()222210x h x x --'=<, ∴()h x 在11,42⎛⎫⎪⎝⎭上单调递减,()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 即()()()()121141ln 2161ln 2416f x f x --<-<--, 故()()12f x f x -的取值范围为152554ln 2,16ln 2416⎛⎫--⎪⎝⎭.22.解:(1)由26x ty t =⎧⎨=+⎩,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y +=,故曲线C的普通方程为(222x y +=;(2)据题意设点)Mθ,则2sin 4x y πθθθ⎛⎫-+=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.23.解:(1)当4a =-时,()124f x x x =++-, 当1x ≤-时,()12433f x x x x =---+=-+; 当12x -<<时,()1245f x x x x =+-+=-+; 当2x ≥时,()12433f x x x x =++-=-;即()33,15,1233,2x x f x x x x x -+≤-⎧⎪=-+-<<⎨⎪-≥⎩,又因为()f x 在(),1-∞-上单调递减,在()1,2-上单调递减,在()2,+∞上单调递增,如图所示,所以当2x =时,()f x 有最小值3; (2)因为,12a x ⎡⎤∈--⎢⎥⎣⎦,所以10,20x x a +≤+≥,则()()()1217f x x x a x a =-+++=+-≥,可得8a x ≥-+对任意,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,即82a a ⎛⎫≥--+ ⎪⎝⎭,解得16a ≥, 故a 的取值范围为[)16,+∞.。

武邑中学2018届高三上学期期末考试数学(理)试题有答案-优选

武邑中学2018届高三上学期期末考试数学(理)试题有答案-优选

河北武邑中学2017—2018学年高三年级上学期期末考试数学试题(理)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A . 1 B . -1 C .12D .-2 2.设α为锐角,()()sin ,1,1,2a b α==,若a 与b 共线,则角α=( ) A . 15° B . 30° C .45° D .60° 3.下列说法正确的是( )A .命题“若2340x x --=,则4x =”的否命题是“若2340x x --=,则4x ≠ ”B .0a >是函数a y x =在定义域上单调递增的充分不必要条件C .()000,0,34x x x ∃∈-∞<D .若命题:,3500n P n N ∀∈>,则00:,3500n P x N ⌝∃∈≤4. 已知点()()()()1,1,1,2,2,1,3,4A B C D ---,则向量AB 在CD 方向上的投影为( )A B C. D . 5. 若双曲线()222210,0x y a b a b-=>>的渐近线与直线1y =-所围成的三角形面积为2,则该双曲线的离心率为( )A .2B D 6.《九章算术》卷五商功中有如下问题:今有刍甍(底面为矩形的屋脊的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何,下图网格纸中实线部分分为此刍甍的三视图,设网格纸上每个小正方形的边长为1丈,那么此刍甍的体积为( )A .3立方丈B .5立方丈 C.6立方丈 D .12立方丈7. 从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于( ) A .57 B .59 C. 27 D .498. 将曲线1:sin 6C y x π⎛⎫=- ⎪⎝⎭上各点的横坐标缩短到原的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度,得到曲线()2:C y g x =,则()g x 在[],0π-上的单调递增区间是( ) A .5,66ππ⎡⎤--⎢⎥⎣⎦ B .2,36ππ⎡⎤--⎢⎥⎣⎦ C. 2,03π⎡⎤-⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦ 9.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入,n x 的值分别为4,2,则输出v 的值为( )A . 32B . 64 C. 65 D .13010. 若()()50,2a x y ax y <-+展开式中42x y 的系数为-20,则a 等于( )A . -1B . 32- C. -2 D .52-11. 已知三棱锥P ABC -的所有顶点都在球O 的球面上,0,,60,2,2,3PA AB PA AC BAC PA AB AC ⊥⊥∠====,则球O 的表面积为( )A .403π B .303π C. 203π D .103π 12.已知函数()213ln 2f x x x a x ⎛⎫=-+- ⎪⎝⎭在区间()1,3上有最大值,则实数a 的取值范围是( )A .1,52⎛⎫- ⎪⎝⎭B .111,22⎛⎫- ⎪⎝⎭ C. 111,22⎛⎫ ⎪⎝⎭ D .1,52⎛⎫⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为 .14.已知实数,x y 满足2041x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2y x +的最小值为 .15.已知()(),f x g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x -=++,则函数()()()h x f x g x =+在点()()0,0h 处的切线方程是 .16.已知a b c 、、是ABC ∆的三边,()4,4,6,sin 2sin a b A C =∈=,则c 的取值范围为 . 三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 满足221111,n n n n a a a a a ++=+=-,数列{}n b 的前n 项和n S 满足2n n S n a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列11n n a b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.已知表1和表2是某年部分日期的天安门广场升旗时刻表: 表1:某年部分日期的天安门广场升旗时刻表表2:某年1月部分日期的天安门广场升旗时刻表(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记X 为这两人中观看升旗的时刻早于7:00的人数,求X 的 分布列和数学期望; (3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为31760),记表2中所有升旗时刻对应数据的方差为2s ,表1和表2中所有升旗时刻对应数据的方差为20s ,判断2s 与20s 的大小(只需写出结论).19.如图,直角梯形BDFE 中,//,,EF BD BE BD EF ⊥=ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.20. 已知中心在原点O ,焦点在x 轴上,离心率为3的椭圆过点3⎭. (1)求椭圆的方程;(2)设椭圆与y 轴的非负半轴交于点B ,过点B 作互相垂直的两条直线,分别交椭圆于,P Q 两点,连接PQ ,求BPQ ∆的面积的最大值. 21. 已知函数()()22ln f x x x mx m R =+-∈.(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若1752m <<,且()f x 有两个极值点()1212,x x x x <,求()()12f x f x -的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,直线l 的参数方程是26x ty t =⎧⎨=+⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围. 23.选修4-5:不等式选讲 已知函数()12f x x x a =+++. (1)当4a =-时,求()f x 的最小值;(2)若2a >时,()7f x ≥对任意的,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,求a 的取值范围.试卷答案一、选择题1-5ABDAA 6-10 BCBCA 11、12:AB二、填空题13. 2 14. 1515. 20x y +-=16. (三、解答题17.解:(1)因为2211n n n n a a a a +-+=-,所以,()()1110n n n n a a a a +++--=,因为10,0n n a a ->>,所以10n n a a -+≠,所以11n n a a --=, 所以{}n a 是以1为首项,1为公差的等差数列,所以n a n =, 当2n ≥时,12n n n b S S n -=-=,当1n =时,12b =也满足,所以2n b n =; (2)由(1)可知()1111112121n na b n n n n -⎛⎫==- ⎪++⎝⎭,所以()11111111222334121n n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 18.解:(1)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以()153204P A ==; (2)X 可能的取值为0,1,2,记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00” 则()()()512;11533P B P B P B ===-=;()()()409P X P B P B ===;()1211411339P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭;()()()129P X P B P B ===, 所以X 的分布列为:()44120129993E X =⨯+⨯+⨯=,(注:学生得到12,3X B ⎛⎫⎪⎝⎭,所以()12233E X =⨯=,同样给分);(3)220s s <.19.解:(1)∵平面BDFE ⊥平面ABCD ,BE BD ⊥,平面BDFE 平面ABCD BD =, ∴BE ⊥平面ABCD ,又AC ⊂平面ABCD ,∴AC BE ⊥, 又∵AC BD ⊥,且BEBD B =,∴AC ⊥平面BDFE ;(2)设AC BD O =,∵四边形ABCD 为等腰梯形,,242DOC AB CD π∠===,∴OD OC OB OA ====,∵//OB FE ,∴四边形BOFE 为平行四边形,∴//OF BE , 又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角,∴4FBO π∠=,又∵2FOB π∠=,∴OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系,则()()(()(),0,,,,B D F C A ,()()0,2,22,2,DF CD ==,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0, 设平面DFC 的一个法向量为(),,n x y z =,由00DF n CD n ⎧=⎪⎨=⎪⎩得00+==⎪⎩,令2x =得,()2,2,1n =-, 2222cos ,31221n AC ==++,∴二面角B DF C --的余弦值为23. 20.解:(1)由题意可设椭圆方程为()222210x y a b a b +=>>,则222719c a a b ⎧=⎪⎪⎨⎪+=⎪⎩, 故31a b =⎧⎨=⎩,所以,椭圆方程为2219x y +=;(2)由题意可知,直线BP 的斜率存在且不为0,故可设直线BP 的方程为1y kx =+,由对称性,不妨设0k >,由221990y kx x y =+⎧⎨+-=⎩,消去y 得()2219180k x kx ++=,则BP =0k >换成1k-,得:BQ =,22221118118122211621829APQ k k k S BP BQ k k k k ∆++===⎛⎫==+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭⎝⎭设1k t k+=,则2t ≥, 故2162162276496489BPQ t S t t t∆==≤=++,取等条件为649t t =,即83t =, 即183k k +=,解得43k =时,BPQ S ∆取得最大值278. 21.解:(1)()f x 的定义域为()0,+∞,()22f x x m x'=+-, ()f x 的定义域内单调递增,则()220f x x m x'=+-≥, 即22m x x≤+在()0,+∞上恒成立, 由于224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞;(2)由(1)知()22222x mx f x x m x x -+'=+-=,当1752m <<时()f x 有两个极值点,此时12120,12mx x x x +=>=,∴1201x x <<<, 因为1111725,2m x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211x x =,于是()()()()22121112122ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+,令()2214ln h x x x x=-+,则()()222210x h x x --'=<,∴()h x 在11,42⎛⎫ ⎪⎝⎭上单调递减,()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即()()()()121141ln 2161ln 2416f x f x --<-<--, 故()()12f x f x -的取值范围为152554ln 2,16ln 2416⎛⎫-- ⎪⎝⎭.22.解:(1)由26x ty t =⎧⎨=+⎩,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y -+=,故曲线C的普通方程为(222x y -+=;(2)据题意设点)Mθ,则2sin 4x y πθθθ⎛⎫--+=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.23.解:(1)当4a =-时,()124f x x x =++-, 当1x ≤-时,()12433f x x x x =---+=-+; 当12x -<<时,()1245f x x x x =+-+=-+; 当2x ≥时,()12433f x x x x =++-=-;即()33,15,1233,2x x f x x x x x -+≤-⎧⎪=-+-<<⎨⎪-≥⎩,又因为()f x 在(),1-∞-上单调递减,在()1,2-上单调递减,在()2,+∞上单调递增,如图所示,所以当2x =时,()f x 有最小值3;(2)因为,12a x ⎡⎤∈--⎢⎥⎣⎦,所以10,20x x a +≤+≥,则()()()1217f x x x a x a =-+++=+-≥,可得8a x ≥-+对任意,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,即82a a ⎛⎫≥--+ ⎪⎝⎭,解得16a ≥,故a 的取值范围为[)16,+∞.。

河北省武邑中学2017-2018学年高二上学期周考(10.9)数学(理)试题 Word版含答案

河北省武邑中学2017-2018学年高二上学期周考(10.9)数学(理)试题 Word版含答案

2017-2018学年第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若双曲线:E 221916x y -=的左、右焦点分别为1F ,2F ,点P 在双曲线E 上,且1||3PF =,则2||PF 等于( ) A .11B .9C .5D .32.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A B C .6332D .943.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知||AB =||DE =,则C 的焦点到准线的距离为( )A .2B .4C .6D .84.下列双曲线中,焦点在y 轴上且渐进线方程为2y x =±的是( )A .2214y x -=B .2214x y -=C .2214y x -=D .2214x y -=5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .||1||1BF AF --B .22||1||1BF AF -- C .||1||1BF AF ++D .22||1||1BF AF ++6.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4PF FQ =-,则||QF =( ) A .72B .3C .52D .27.设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且||2||PM MF =,则直线OM 的斜率的最大值为( )A B .23C D .18.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12B .23C .34D .439.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3C D 10.设1F ,2F 分别为双曲线22221x y a b-=(0a >,0b >)的左、右焦点,双曲线上存在一点P 使得12||||3PF PF b +=,129||||4PF PF ab ⋅=,则该双曲线的离心率为( ) A .43B .53C .94D .311.设双曲线22221x y a b-=(0a >,0b >)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线交于点D ,若D 到直线BC的距离小于a +,则该双曲线的渐进线斜率的取值范围是( ) A .(1,0)(0,1)- B .(,1)(1,)-∞-+∞C .((0,2)D .(,(2,)-∞+∞12.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .()1,3B .()1,4C .()2,3D .(2,4)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a b <),原点O 为AD 的中点,抛物线22y px =(0p >)经过C ,F 两点,则ba= .14.已知双曲线E :22221x y a b-=(0a >,0b >),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是 .15.平面直角坐标系xOy 中,双曲线1C :22221x y a b-=(0a >,0b >)的渐进线与抛物线2C :22x py =(0p >)交于点O ,A ,B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为 .16.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设1F ,2F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .18.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明://AR FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.19.在直角坐标系xOy 中,曲线C :24x y =与直线y kx a =+(0a >)交于M ,N 两点.(1)当0k =时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.20.设椭圆22213x y a +=(a >的右焦点为F ,右顶点为A ,已知113||||||e OF OA FA +=,其中O 为坐标原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF HF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围.武邑中学2016—2017学年高二数学(理)周日测试答案一、选择题二、填空题1 14.2 15.3216.12 三、解答题17.解:(1)由题意知2||324MF c =,所以23||2MF c =, 由勾股定理可得15||2MF c =,由椭圆定义可得35222c c a +=,解得C 的离心率为12.(2)由题意,原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点(0,2D )是线段1MF 的中点,故24b a=,即24b a =,由2||5||MN F N =,得11||2||DF F N =,设11(,)N x y ,由题意知10y <,则112(),22,c x c y --=⎧⎨-=⎩即113,21,x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程得2229114c a b +=,将24b a=及c =1(,)22a b R +-.记过A ,B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=. (1)由于F 在线段AB 上,故10ab +=, 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a ab a a---=====-=+-, ∴//AR FQ .(2)设l 与x 轴的交点为1(,0)D x ,则1111||||||||222ABF S b a FD b a x ∆=-=--,||2PQF a b S ∆-=, 由题设可得111||||||222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y , 当AB 与x 轴不垂直时,由AB DE k k =,可得21ya b x =+-(1x ≠). 而2a by +=所以21y x =-(1x ≠). 当AB 与x 轴垂直时,E 与D 重合, 所以所求轨迹方程为21y x =-.19.解:(1)由题设可得)M a ,()N a -或()M a -,)N a .∵1'2y x =,故24x y =在x =C 在,)a 处的切线方程为y a x -=-0y a --=.故24x y =在x =-处的导数值为C 在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (2)存在符合题意的点,证明如下:设(0,)P b 为符合题意的点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为1k ,2k . 将y kx a =+代入C 的方程整理得2440x kx a --=. ∴124x x k +=,124x x a =-.∴1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==. 当b a =-时,有120k k +=,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故OPM OPN ∠=∠,所以(0,)P a -符合题意.20.解:(1)设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-, 可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.(2)设直线l 的斜率为k (0k ≠),则直线l 的方程为(2)y k x =-,设(,)B B B x y ,由方程组221,43(2),x y y k x ⎧+=⎪⎨⎪=-⎩整理得2222(43)1616120k x k x k +-+-=, 解得2x =,或228643k x k -=+,由题意得228643B k x k -=+,从而21243B ky k -=+. 由(1)知,(1,0)F ,设(0,)H H y ,有(1,)H FH y =-,2229412(,)4343k kBF k k -=++,由BF HF ⊥,得0BF HF ⋅=,所以222129404343H ky k k k -+=++,解得29412H k y k -=, 因此直线MH 的方程为219412k y x k k-=-+.设(,)M M M x y ,由方程组2194,12(2),k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩解得2220912(1)M k x k +=+,在△MAO 中,MOA MAO ∠≤∠等价于||||MA MO ≤, 即2222(2)M M M M x y x y -+≤+,化简得1M x ≥,即22209112(1)k k +≥+,解得k ≤或k ≥.所以,直线l 的斜率的取值范围为6(,[,)-∞+∞.。

河北省武邑中学2017-2018学年高二上学期周考(12.11)数学(理)试题 Word版含答案

河北省武邑中学2017-2018学年高二上学期周考(12.11)数学(理)试题 Word版含答案

2017-2018学年武邑中学高二数学周测导数及应用一、选择题:本大题共12小题,每小题5分,共60分.1.设曲线22y x x =+-在点M 处切线斜率为3,则点M 的坐标为( ). A .(0,-2) B .(1,0) C .(0,0) D .(1,1)2.抛物线2y x =在点11,24M ⎛⎫⎪⎝⎭的切线的倾斜角是( ).A . 30°B .45°C . 60°D .90° 3.函数33y x x =-在[]1,2-上的最小值为( ). A .2 B .-2 C .0 D .-44.设函数()f x 的导函数为()f x ',且()()221f x x x f '=+ ,则()0f '等于( ). A .0 B .-4 C .-2 D .25.已知曲线313y x =在点82,3P ⎛⎫⎪⎝⎭,则过P 点的切线方程为( ).A .312160x y --=B .123160x y --=C .312160x y -+=D .123160x y -+=6.已知函数()()sin 102f x x πϕϕ⎛⎫=--<< ⎪⎝⎭,且()()23010f x dx π+=⎰,则函数()f x 的一个零点是( ). A .56π B .3π C .6π D .712π7.函数()f x 的定义域为开区间(),a b ,导函数()f x '在(),a b 内的图像如下图所示,则函数()f x 在开区间(),a b 内有极大值点( ).A .1个B .2个C .3个D .4个8.用反证法证明命题“三角形的内角中至少有一个不大于60度”时,反设正确的是( ).A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度9.函数()ln 2xf x x=-的图像在点(1,-2)处的切线方程为( ). A .30x y --= B .20x y += C .10x y ++= D .240x y --= 10.函数()21ln 2f x x x =-的单调递减区间为( ). A .(-1,1) B . (),1-∞ C .(0,1) D .()1,+∞ 11.若4442224,,2a xdx b dx c dx x===⎰⎰⎰,则,,a b c 的大小关系为( ).A .a b c <<B .b a c <<C .b c a <<D .c b a << 12.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则B ∠的范围是( ).A .0,3π⎛⎫ ⎪⎝⎭B .0,3π⎛⎤ ⎥⎝⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .,3ππ⎛⎫ ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分.13.已知2200139x y ->,过点()00,P x y 作一直线与曲线2200139x y -=相交且仅有一个公共点,则该直线的倾斜角恰好等于此双曲线渐近线的倾斜角3π或23π;类比此思想,已知20001x y x <-,过点作一直线与函数21x y x-=的图像相交且仅有一个公共点,则该直线的倾斜角为____________.14.函数cos ,0,2y x x π⎡⎤=∈⎢⎥⎣⎦,与坐标轴围成的图像绕x 旋转一周所得旋转体的体积是____________.15. 220sin 2xdx π=⎰____________. 16.设()f x 与()g x 是定义在同一区间D 上的两个函数,若使得()()001f x g x -≤,则称()f x 和()g x 是D 上的“接近函数”,D 称为“接近区间”;若x D ∀∈,都有()()001f x g x ->,则称()f x 和()g x 是D 上的“远离函数”,D 称为“远离区间”.给出以下命题:①()21f x x =+与()232g x x =+是()-∞+∞,上的“接近函数”;②()234f x x x =-+与()23g x x =-的一个“远离区间”可以是[]2,3;③()f x =()(g x x b b =-+>是()1,1-上的“接近函数”,则1b <≤; ④若()ln 2xf x ex x=+与()22g x x a e =++(e 是自然对数的底数)是[)1,+∞上的“远离函数”,则1a > 其中的真命题有____________.(写出所有真命题的序号) 三、解答题:本大题共4小题,每小题10分,共40分.17.已知函数()()()()32436f x x m x mx n x R =+--+-∈的图像关于原点对称(),m n R ∈.(1)求,m n 的值;(2)若函数()()()2F x f x ax b =-+在区间[]1,2上为减函数,求实数a 的取值范围.18.已知函数()()3211ln ,32f x xg x x x mx n ==+++,直线l 与函数()(),f x g x 的图像都相切于点(1,0).(1)求直线l 的方程及函数()g x 的解析式;(2)若()()()h x f x g x '=-(其中()g x '是()g x 的导函数),求函数()h x 的极大值.19.已知函数()()2x f x x e =-和()32g x kx x =--.(1)若函数()g x 在区间()1,2不单调,求实数k 的取值范围;(2)当[)1,x ∈+∞时,不等式()()2f x g x x ≥++恒成立,求实数k 的最大值. 20.已知函数()()1ln f x ax x a R =--∈.(1)讨论函数()f x 在定义域内的极值点的个数;(2) 若函数()f x 在1x =处取得极值,且对()()0,,2x f x bx ∀∈+∞≥-恒成立,求实数b 的取值范围;(3)当20x y e <<<且x e ≠时,试比较y x与1ln 1ln y x --的大小.参考答案一、选择题二、填空题13. 4π或2π 14. 24π 15. 142π- 16. ①③三、解答题17.解:(1)∵函数()f x 的定义域为R ,且其图像关于原点对称,∴()f x 是奇函数,又()F x 在[]1,2上是减函数,得()()1321202124120F a F a '=--≤⎧⎪⎨'=--≤⎪⎩,解得0a ≥,故实数a 的取值范围为[)0,+∞.18.解:(1)∵直线l 是函数()ln f x x =在点()1,0处的切线,故其斜率()11k f '== ∴直线l 的方程为1y x =-,又因为直线l 与函数()g x 的图象相切,且切于点()1,0,∴()321132g x x x mx n =+++在点()1,0的导函数值为1,∴()()1101116m g g n =-⎧=⎧⎪⎪⇒⎨⎨'==⎪⎩⎪⎩,∴()32111326g x x x x =+-+. (2)∵()()()()2ln 10h x f x g x x x x x '=-=--+>,∴()()()221111221x x x x h x x x x x-+--'=--==-, 令()0h x '=,得12x =或1x =-(舍), 当102x <<时,()()0,h x h x '>单调递增 ; 当12x >时,()()0,h x h x '<单调递减. 因此,当12x =时,()h x 取得极大值,∴()111ln 224h x h ⎛⎫==+ ⎪⎝⎭极大 . 19.解:(1)依题意()231g x kx '=-,①当0k ≤时,()2310g x kx '=-≤,所以()g x 在()1,2单调递减,不满足题意,②当0k >时,()g x在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增, 因为函数()g x 在区间()12,不单调,所以12<<,解得11123k <<,综上所述,实数k 的取值范围是11123k <<.................6分(2)由已知得()32x x e k x -≤,...................7分令()()42x x e h x x-=,则()()2446xx x e h x x-+'=................10分()()24460xxx e h x x-+'=>,所以()()32x x e h x x-=在[)1,x ∈+∞单调递增,∴()()min 1h x h e ==-,∴k e ≤-,即k 的最大值为e -..................13分20.解:(1)()11ax f x a x x-'=--当0a ≤时,()0f x '≤在()0,+∞上恒成立,函数()f x '在()0,+∞单调递减, ∴()f x '在()0,+∞上没有极值点; 当0a >时,()0f x '≤得()10,0x f x a '<≤≥得1x a≥, ∴()f x 在10,a ⎛⎤ ⎥⎝⎦上递减,在1,a ⎡⎫+∞⎪⎢⎣⎭上递增,即()f x 在1x a =处有极小值.∴当0a ≤时,()f x 在()0,+∞上没有极值点, 当0a <时, ()f x 在()0,+∞上有一个极值点.(2)∵函数()f x 在1x =处取得极值,∴1a =,∴()1l n 21xf x bx b x x≥-⇔+-≥, 令()1ln 1x g x x x=+-,可得()g x 在(20,e ⎤⎦上递减,在)2,e ⎡+∞⎣上递增, ∴()()22min 11g x g e e ==-,即211b e≤-.(3)令()()1ln 1xh x g x x x=-=-, 由(2)可知()g x 在()20,e 上单调递减,则()h x 在()20,e 上单调递减, ∴当20x y e <<<时,()()h x h y >,即1ln 1ln x yx y-->; 当0x e <<时,1ln 0x ->,∴1ln 1ln y yx x->-,当2e x e <<时,1ln 0x -<,∴1ln 1ln y y x x-<-.。

河北省衡水中学2017-2018学年上学期高二第一学期期末数学(理科)试题及答案

河北省衡水中学2017-2018学年上学期高二第一学期期末数学(理科)试题及答案

高二期末理数参考答案1-5CCCAD 6-12 ABCAC AA13.14-π 14. 7,2⎛⎫-∞ ⎪⎝⎭ 15 18a ≥- 16.17. (1)解:记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,“该选手通过决赛”为事件C ,则P (A )=23,P (B )= 12,P (C )=13那么该选手在复赛阶段被淘汰的概率P=P (A B )=P (A )P (B )= 2111323⎛⎫⨯-= ⎪⎝⎭(2)解:ξ可能取值为1,2,3.P (ξ=1)=1﹣23= 13,P (ξ=2)= 2111323⎛⎫⨯-= ⎪⎝⎭P (ξ=3)= 211323⨯⨯+212323⨯⨯=13Eξ=1⨯ 13+2⨯ 13+3⨯ 13=218.(1)答案见解析;(2)2.【解析】试题分析:(1)求出导函数,得出切线方程,化为斜截式可得出定点坐标; (2)构造函数()()21ln 112g x x ax a x =-+--,把恒成立问题转化为最值问题进行求解即可.试题解析:(1)()21ln 12f x x ax =-+,所以()1f x ax x ='-,所以()()111,112f a f a =-'=-+,所以1x =处的切线为()()11112y a a x ⎛⎫--+=-- ⎪⎝⎭,所以12y a x x ⎛⎫=--+ ⎪⎝⎭,恒过11,22⎛⎫⎪⎝⎭;(2)令()()21ln 1102g x x ax a x =-+--≤恒成立, 因为()()211ax a x g x x -+-+'=, ①当0a ≤时, ()()0,g x g x '>递增, ()31202g a =-+>,不成立; ②当0a >时,当x 在10,a ⎛⎫ ⎪⎝⎭时, ()()0,g x g x '>递增; 当x 在1,a ⎛⎫+∞ ⎪⎝⎭时, ()()0,g x g x '<递减;所以函数最大值为11ln 2g a a a ⎛⎫=- ⎪⎝⎭, 令()1ln 2h a a a =-,可知为减函数,因为()()10,20h h ><,所以整数a 的值为2 19.解:(Ⅰ)记每台仪器不能出厂为事件A ,则()341114520P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, 所以每台仪器能出厂的概率()11912020P A =-=.——————————————3分 (Ⅱ)生产一台仪器利润为1600的概率3411455P ⎛⎫=-⨯= ⎪⎝⎭.————————5分 (Ⅲ)X 可取3800,3500,3200,500,200,2800-. ()33938004416P X ==⨯=,()1213335005410P X C ==⨯⨯=,()2113200525P X ⎛⎫=== ⎪⎝⎭,()12311350044540P X C ⎛⎫==⨯⨯⨯= ⎪⎝⎭,()12111120054550P X C ⎛⎫==⨯⨯⨯= ⎪⎝⎭,()2111280045400P X ⎛⎫=-=⨯= ⎪⎝⎭.()()380035003200500200280033501610254050400E X =⨯+⨯+⨯+⨯+⨯+-⨯=——12分 20. 【答案】 (Ⅰ) 由已知得x >0且. 当k 是奇数时, ,则f (x )在(0,+ )上是增函数;当k 是偶数时,则.所以当x 时, ,当x时,.故当k 是偶数时,f (x)在上是减函数,在上是增函数.(Ⅱ) 若,则. 记,, 若方程f (x )=2ax 有唯一解,即g (x )=0有唯一解; 令,得. 因为,所以(舍去),. 当时, ,在是单调递减函数; 当时,,在上是单调递增函数.当x =x 2时, ,.因为有唯一解,所以. 则 即设函数,因为在x >0时,h (x )是增函数,所以h (x ) = 0至多有一解.因为h (1) = 0,所以方程(*)的解为x 2 = 1,从而得21=a21(Ⅰ)2214x y +=;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)先利用四边形的面积求得2ab =,再利用直线和圆相切进行求解;(Ⅱ)设出直线方程,联立直线和椭圆的方程,得到关于x 的一元二次方程,利用根与系数的关系、直线的斜率公式和三角形的面积公式进行求解.试题解析:(Ⅰ)∵四边形A1B1A2B2的面积为4,又可知四边形A1B1A2B2为菱形, ∴,即ab=2①由题意可得直线A2B2方程为:,即bx+a y ﹣ab=0,∵四边形A1B1A2B2内切圆方程为,∴圆心O 到直线A2B2的距离为,即② 由①②解得:a=2,b=1,∴椭圆C 的方程为: (Ⅱ)若直线MN 的斜率存在,设直线MN 的方程为y=kx+m ,M (x1,y1),N (x2,y2), 由得:(1+4k2)x2+8mkx+4(m2﹣1)=0∵直线l 与椭圆C 相交于M ,N 两个不同的点, ∴△=64m2k2﹣16(1+4k2)(m2﹣1)>0得:1+4k2﹣m2>0③ 由韦达定理: ∵直线OM ,ON 的斜率之积等于, ∴, ∴, ∴ 14222+=k m 满足③…(9分) ∴, 又O 到直线MN 的距离为,, 所以△OMN 的面积 若直线MN 的斜率不存在,M ,N 关于x 轴对称 设M (x1,y1),N (x1,﹣y1),则,, 又∵M 在椭圆上,,∴, 所以△OMN 的面积S===1. 综上可知,△OMN 的面积为定值1. 22. .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河北省衡水市武邑中学高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)从孝感地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(5分)某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3,33,48号学生在样本中,则样本中另一个学生的编号为()A.28B.23C.18D.133.(5分)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N除以正整数m后的余数为n,则记为N=n(modm),例如11=2(mod3).现将该问题以程序框图的算法给出,执行该程序框图,则输出的n等于()A.21B.22C.23D.244.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数5.(5分)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.②③6.(5分)供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[30,40),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.12月份人均用电量人数最多的一组有400人B.12月份人均用电量不低于20度的有500人C.12月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为7.(5分)已知x,y满足条件,则目标函数z=x+y从最小值连续变化到0时,所有满足条件的点(x,y)构成的平面区域的面积为()A.2B.1C.D.8.(5分)过函数图象上一个动点作函数的切线,则切线倾斜角的范围为()A.B.C.D.9.(5分)已知定义在R上的函数f(x)满足:y=f(x﹣1)的图象关于(1,0)点对称,且当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=e x﹣1,则f(2016)+f(﹣2017)=()(其中e为自然对数的底)A.1﹣e B.e﹣1C.﹣1﹣e D.e+110.(5分)已知Rt△ABC,点D为斜边BC的中点,,,,则等于()A.﹣14B.﹣9C.9D.1411.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A.B.C.D.12.(5分)在直角坐标系内,已知A(3,5)是以点C为圆心的圆上的一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若圆上存在点P,使得,其中点M(﹣m,0)、N(m,0),则m的最大值为()A.7B.6C.5D.4二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)如图所示,有A,B,C,D,E,5组数据,去掉组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)14.(5分)过抛物线的焦点F作一条倾斜角为30°的直线交抛物线于A、B两点,则|AB|=.15.(5分)已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=.16.(5分)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)如图,已知△ABC中,角A,B,C的对边分别为a,b,c,C=120°.(Ⅰ)若c=1,求△ABC面积的最大值;(Ⅱ)若a=2b,求tanA.18.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:,)参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.19.(12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=(1)求证:OE∥平面ACD;(2)求直线OC与平面ACD所成角的正弦值.20.(12分)遂宁市观音湖港口船舶停靠的方案是先到先停.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率.21.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.22.(12分)已知椭圆C:+=1(a>b>0)的右焦点F(1,0),过点F且与坐标轴不垂直的直线与椭圆交于P,Q两点,当直线PQ经过椭圆的一个顶点时其倾斜角恰好为60°.(1)求椭圆C的方程;(2)设O为坐标原点,线段OF上是否存在点T(t,0),使得•=•?若存在,求出实数t的取值范围;若不存在,说明理由.2017-2018学年河北省衡水市武邑中学高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)从孝感地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【解答】解:常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,事先了解到该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生肺活量差异不大;最合理的抽样方法是按学段分层抽样.故选:C.2.(5分)某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3,33,48号学生在样本中,则样本中另一个学生的编号为()A.28B.23C.18D.13【解答】解:某班有学生60人,现将所有学生按1,2,3,…,60随机编号,采用系统抽样的方法抽取一个容量为4的样本(等距抽样),∴抽样间隔f==15,∵编号为3,33,48号学生在样本中,∴样本中另一个学生的编号为3+15=18.故选:C.3.(5分)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N除以正整数m后的余数为n,则记为N=n(modm),例如11=2(mod3).现将该问题以程序框图的算法给出,执行该程序框图,则输出的n等于()A.21B.22C.23D.24【解答】解:该程序框图的作用是求被3除后的余数为2,被5除后的余数为3的数,在所给的选项中,满足被3除后的余数为2,被5除后的余数为3的数只有23,故选:C.4.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【解答】解:在A中,平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,故A不可以用来评估这种农作物亩产量稳定程度;在B 中,标准差能反映一个数据集的离散程度,故B可以用来评估这种农作物亩产量稳定程度;在C中,最大值是一组数据最大的量,故C不可以用来评估这种农作物亩产量稳定程度;在D中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D不可以用来评估这种农作物亩产量稳定程度.故选:B.5.(5分)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.②③【解答】解:对于①,m⊥α,若α∥β,则m⊥β,又l⊂β,则m⊥l,故①正确;对于②,m⊥α,若α⊥β,则m∥β或m⊂β,又l⊂β,则m∥l或m与l相交或m与l异面,故②错误;对于③,m⊥α,l⊂β,若m⊥l,则α∥β或α与β相交,故③错误;对于④,m⊥α,若m∥l,则l⊥α,又l⊂β,则α⊥β,故④正确.∴正确的命题是①④.故选:A.6.(5分)供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[30,40),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.12月份人均用电量人数最多的一组有400人B.12月份人均用电量不低于20度的有500人C.12月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为【解答】解:根据频率分布直方图知,12月份人均用电量人数最多的一组是[10,20),有1000×0.04×10=400人,A 正确;12月份人均用电量不低于20度的频率是(0.03+0.01+0.01)×10=0.5,有1000×0.5=500人,∴B正确;12月份人均用电量为5×0.1+15×0.4+25×0.3+35×0.1+45×0.1=22,∴C错误;在这1000位居民中任选1位协助收费,用电量在[30,40)一组的频率为0.1,估计所求的概率为,∴D正确.故选:C.7.(5分)已知x,y满足条件,则目标函数z=x+y从最小值连续变化到0时,所有满足条件的点(x,y)构成的平面区域的面积为()A.2B.1C.D.【解答】解:由x,y满足条件作出可行域如图,作直线x+y=0,由图可知,平移直线x+y=0至A时,目标函数z=x+y有最小值,平移直线z=x+y至O时,使目标函数与直线y=﹣x重合时,目标函数z=x+y的值是0,所有满足条件的点(x,y)构成的平面区域为△AOC及其内部区域的一半,面积为S==1.故选:B.8.(5分)过函数图象上一个动点作函数的切线,则切线倾斜角的范围为()A.B.C.D.【解答】解:由函数,得f′(x)=x2﹣2x,设函数图象上任一点P(x0,y0),且过该点的切线的倾斜角为α(0≤α<π),则f′(x)=x2﹣2x=(x﹣1)2﹣1≥﹣1,∴tanα≥﹣1,∴0≤α<或≤α<π.∴过函数图象上一个动点作函数的切线,切线倾斜角的范围为[0,)∪[,π).故选:B.9.(5分)已知定义在R上的函数f(x)满足:y=f(x﹣1)的图象关于(1,0)点对称,且当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=e x﹣1,则f(2016)+f(﹣2017)=()(其中e为自然对数的底)A.1﹣e B.e﹣1C.﹣1﹣e D.e+1【解答】解:∵y=f(x﹣1)的图象关于(1,0)点对称,∴y=f(x)的图象关于(0,0)点对称,∴函数为奇函数,∵当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=e x﹣1,∴f(2016)+f(﹣2017)=f(2016)﹣f(2017)=f(0)﹣f(1)=0﹣(e﹣1)=1﹣e.故选:A.10.(5分)已知Rt△ABC,点D为斜边BC的中点,,,,则等于()A.﹣14B.﹣9C.9D.14【解答】解:如图,分别以边AC,AB所在直线为x,y轴,建立平面直角坐标系,则:;;∴=;∴=,,;∴.故选:D.11.(5分)如图,正方体ABCD﹣A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是()A.B.C.D.【解答】解:如图,正方体ABCD﹣A1B1C1D1中,对角线BD1垂直于平面AB1C,且三角形AB1C为等边三角形,正方体绕对角线旋转120°能与原正方体重合.故选:C.12.(5分)在直角坐标系内,已知A(3,5)是以点C为圆心的圆上的一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若圆上存在点P,使得,其中点M(﹣m,0)、N(m,0),则m的最大值为()A.7B.6C.5D.4【解答】解:若,则•=0,即⊥,则∠MPN=90°,由题意,∴A(3,5)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(2,4),D(4,4),∵直线x﹣y+1=0和x+y﹣7=0互相垂直,∴BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4.圆上存在点P,使得∠MPN=90°,则过P,M,N的圆的方程为x2+y2=m2,(设m>0),与圆C有交点,若两圆内切时,m取得最大值,此时为=m﹣1,即5=m﹣1,则m=6,故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)如图所示,有A,B,C,D,E,5组数据,去掉D组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)【解答】解:A、B、C、E四点分布在一条直线附近且贴近某一直线,D点离得较远;∴去掉D点剩下的4组数据的线性相关性最大.故答案为:D.14.(5分)过抛物线的焦点F作一条倾斜角为30°的直线交抛物线于A、B两点,则|AB|=.【解答】解:根据抛物线方程得:焦点坐标F(0,1),直线AB的斜率为k=tan30°=,由直线方程的点斜式方程,设AB:y﹣1=x将直线方程代入到抛物线中,得:x2﹣x﹣1=0.设A(x1,y1),B(x2,y2)由一元二次方程根与系数的关系得:x1+x2=.x1x2=﹣4.弦长|AB|===.故答案为:.15.(5分)已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=8.【解答】解:椭圆=1的a=5,由题意的定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2的周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:816.(5分)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是27万元.【解答】解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且,联立,解得x=3 y=4,由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故答案为:27万元.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)如图,已知△ABC中,角A,B,C的对边分别为a,b,c,C=120°.(Ⅰ)若c=1,求△ABC面积的最大值;(Ⅱ)若a=2b,求tanA.【解答】(本题满分为12分)解:(Ⅰ)由余弦定理得a2+b2﹣2abcos120°=1,…(2分)a2+b2+ab=1≥2ab+ab=3ab,当且仅当a=b时取等号;解得,…(4分)故,即f(x)面积的最大值为.…(6分)(Ⅱ)因为a=2b,由正弦定理得sinA=2sinB,…(8分)又C=120°,故A+B=60°,∴,…(10分)∴,∴.…(12分)18.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:,)参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.【解答】解:(1)由数据求得=11,=24,由公式求得b=,再由=﹣b,求得a=﹣,∴y关于x的线性回归方程为=x﹣;(2)当x=10时,y=,x=6时,y=,|﹣22|=<2,|﹣12|=<2.∴该小组所得线性回归方程是理想的.19.(12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=(1)求证:OE∥平面ACD;(2)求直线OC与平面ACD所成角的正弦值.【解答】(1)证明:连结OE,∵O、E分别是BD、BC的中点,∴OE∥CD,又OE⊄平面ACD,CD⊂平面ACD,∴OE∥平面ACD.(2)证明:连结OC,∵BO=DO,AB=AD,∴AO⊥BD.∵BO=DO,BC=CD,∴CO⊥BD.在△AOC中,由已知可得AO=1,OC=.而AC=2,∴AO2+CO2=AC2,∴AO⊥OC.∵BD∩OC=O,∴AO⊥平面BCD.设O到平面ACD的距离为d,由V A﹣ODC=V O﹣ADC,有,得.故直线OC与平面ACD所成角的正弦值为:.20.(12分)遂宁市观音湖港口船舶停靠的方案是先到先停.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率.【解答】(本小题满分12分)(1)这种规则是不公平的.理由如下:设甲先停靠为事件A,基本事件总数为5×5=25种,…(1分)则甲先停靠即两编号和为偶数所包含的基本事件数有13个,分别为:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5),…(3分)∴甲先停靠的概率,乙先停靠的概率为…(5分)∴这种游戏规则不公平.…(6分)(2)设甲船先停靠为事件C,甲船到达的时刻为x,乙船到达的时刻为y,(x,y)可以看成是平面中的点,试验的全部结果构成的区域为Ω={(x,y)|7≤x≤8,7.5≤y≤8.5},这是一个正方形区域,面积SΩ=1×1=1,事件C所构成的区域为A={(x,y)|y>x,7≤x≤8,7.5≤y ≤8.5},,这是一个几何概型,所以…(12分)21.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为22.(12分)已知椭圆C:+=1(a>b>0)的右焦点F(1,0),过点F且与坐标轴不垂直的直线与椭圆交于P,Q两点,当直线PQ经过椭圆的一个顶点时其倾斜角恰好为60°.(1)求椭圆C的方程;(2)设O为坐标原点,线段OF上是否存在点T(t,0),使得•=•?若存在,求出实数t的取值范围;若不存在,说明理由.【解答】解:(1)根据题意,得c=1;又,所以b2=3,且a2=b2+c2=4,所以椭圆的方程为:;(2)设直线PQ的方程为:y=k(x﹣1),(k≠0),代入,得:(3+4k2)x2﹣8k2x+4k2﹣12=0;设P(x1,y1),Q(x2,y2),线段PQ的中点为R(x0,y0),则,由得:,所以直线TR为线段PQ的垂直平分线;直线TR的方程为:,令y=0得:T点的横坐标,因为k2∈(0,+∞),所以,所以;所以线段OF上存在点T(t,0),使得,其中.。

相关文档
最新文档