北师版八年级数学下册 第六章 平行四边形 单元综合测试卷(含答案)
第6章 平行四边形 单元测试(基础过关)(备作业)-八年级数学下册同步备课系列(北师大版)(解析版)

第6章平行四边形单元测试(基础过关)一、单选题1.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【答案】B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2.如图,在平行四边形ABCD中,下列结论中错误的是().A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【答案】D【解析】试题分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选D.3.如图,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3大小无法确定【答案】B【解析】【分析】先判定四边形ABCD是平行四边形,再根据平行四边形的对角相等和三角形外角的性质进行判断即可.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠3+∠BCD=180°,∠1+∠2+∠A=180°,∴∠1+∠2=∠3.故选B.【点睛】考查平行四边形的性质和判定.平行四边形的判定方法共有多种,应用时要认真领会它们之间的联系与区别,同时要根据条件,合理、灵活地选择方法.4.某班同学在学完平行四边形的判定后,开展了一次课外活动课,课上探索出如下结论,其中正确的是()A.当四边形的一组邻角相等且一组对角互补时,此四边形一定为平行四边形B.当四边形的一组对角相等且一组对边相等时,此四边形一定为平行四边形C.当四边形的一组邻角相等且一组对边平行时,此四边形一定为平行四边形D.当四边形的一组对角相等且一组邻角互补时,此四边形一定为平行四边形【答案】D【解析】【分析】根据给出的条件,利用平行四边形的判定定理判定即可.A、等腰梯形满足此条件,但不是平行四边形,故此选项错误;B、根据条件“一组对边相等,一组对角相等”证不出是平行四边形,故此选项错误;C、等腰梯形也满足此条件,但不是平行四边形,故此选项错误;D、一组邻角互补,一组对角相等,可得到任意两对邻角互补,那么可得到两组对边分别平行,为平行四边形,故此选项正确;故选D.【点睛】此题主要考查了平行四边形的判定.关键是熟练掌握平行四边形的判定定理.①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.5.如图,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,则△DEF 的面积等于A.4B.5C.6D.7【答案】C【解析】【分析】根据三角形中位线的性质易得所求三角形的三边,判断出形状后可直接求得面积.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC,又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形,∴S△EDF=12DE•DF=12×3×4=6(cm2).故选C.【点睛】本题考查三角形中位线等于第三边的一半的性质;要注意,根据三角形中位线定理解得所求三角形三边的长后要先判断三角形的形状,不要盲目求解.6.如图,在▱ABCD中,O为对角线AC的中点,AC⊥AB,E为AD的中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.143°B.127°C.53°D.37°【答案】A【解析】【分析】首先根据平行四边形的性质得到:∠BAC=∠DCA=90°,然后根据点O为AC的中点,点E 为AD的中点利用中位线定理得到OE∥CD,从而得到∠AOE=∠ACD=90°,然后根据OF⊥BC得到∠FOC=∠B=53°,从而得到∠EOF=∠EOC+∠FOC=90°+53°=143°.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AC⊥AB,∴∠BAC=∠DCA=90°,∵点O为AC的中点,点E为AD的中点,∴OE∥CD,∴∠COE+∠ACD=180°,∴∠COE=90°∵∠D=∠B=53°,OF⊥BC,∴∠FOC=∠B=53°,∴∠EOF=∠EOC+∠FOC=90°+53°=143°,故选A.【点睛】本题考查了平行四边形的性质,三角形中位线,解题的关键是能够根据题意并利用中位线定理确定答案.7.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB 中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【答案】B【解析】试题分析:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°.∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°.∴∠PDC=90°.∴由折叠的性质得到∠CDE=∠PDE=45°.在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.8.如图,已知▱ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC.若EF=2,FG=GC=5,则AC的长是()A.12B.13C.D.【答案】B【解析】如图,设AC与DF交于M,AC与EH交于N,∵四边形ABCD是平行四边形,▱ABCD的四个内角的平分线分别相交于点E、F、G、H,∴四边形EFGH是矩形,△ABE≌△CDG,△AEN≌△CGM,∴FG=EH=CG=5,EF=GH=2,CH=7,EN=GM,CM=AN,∵EH=FG,∴FM=NH,设GM=EN=x,则HN=FN=5﹣x,∵GM∥HN,∴MG CG HN CH=,∴5 57 xx=-,∴x=25 12,在Rt △CMG 中,CM =AN 6512,在Rt △CNH 中,CN 9112,∴AC =AN +CN =6512+9112=13,故选B .【点睛】本题考查了平行四边形的性质,勾股定理等,能正确地利用勾股定理进行解题是关键.9.如图所示,在四边形ABCD 中,AD BC =,E 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于点H 、G ,则()A .AHE BGE∠>∠B .AHE BGE ∠=∠C .AHE BGE∠<∠D .AHE ∠与BGE ∠的大小关系不确定【答案】B【解析】【分析】连接BD ,取中点I ,连接IE ,IF ,根据三角形中位线定理得IE =122AD ,且平行AD ,IF =12BC 且平行BC ,再利用AD >BC 和IE ∥AD ,求证∠AHE =∠IEF ,同理可证∠BGE =∠IFE ,再利用IE >IF 和∠AHE =∠IEF ,∠BGE =∠IFE 即可得出结论.连接BD ,取中点I ,连接IE ,IF∵E ,F 分别是AB ,CD 的中点,∴IE,IF分别是△ABD,△BDC的中位线,∴IE=12AD,且平行AD,IF=12BC且平行BC,∵AD=BC,∴IE=IF,∵IE∥AD,∴∠AHE=∠IEF,同理∠BGE=∠IFE,∵在△IEF中,IE=IF,∴∠IFE=∠IEF,∵∠AHE=∠IEF,∠BGE=∠IFE,∴∠BGE=∠AHE.故选:B.【点睛】此题主要考查学生对三角形中位线定理和三角形三边关系等知识点的理解和掌握,有一定的拔高难度,属于难题.10.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是()A.②④B.①②④C.①②③④D.②③④【答案】B【解析】【分析】根据易得DF=CD,由平行四边形的性质AD∥BC即可对①作出判断;延长EF,交CD延长线于M,可证明△AEF≌△DMF,可得EF=FM,由直角三角形斜边上中线的性质即可对②作出判断;由△AEF≌△DMF可得这两个三角形的面积相等,再由MC>BE易得S△BEC <2S△EFC,从而③是错误的;设∠FEC=x,由已知及三角形内角和可分别计算出∠DFE及∠AEF,从而可判断④正确与否.①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正确;②延长EF,交CD延长线于M,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDM AF DF AFE DFM ⎧⎪⎨⎪=∠=∠=∠⎩∠,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM =EF ,∴FC =FE ,∴∠ECF =∠CEF ,故②正确;③∵EF =FM ,∴S △EFC =S △CFM ,∵MC >BE ,122ECM EFC S CM CE S =⨯= ,12BEC S BE CE =⨯ ∴S △BEC <2S △EFC ,故S △BEC =2S △CEF ,故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确,故选:B.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点.二、填空题11.在平行四边形ABCD中,∠B+∠D=200°,则∠A的度数为____.【答案】80°【解析】【分析】利用平行四边形的对角相等、邻角互补可求得答案.详解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°.故答案为:80°.【点睛】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等、邻角互补.12.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.【答案】6【解析】【分析】由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.解:如图:∵△ABC中,D、E分别是AB、AC边上的中点,∴DE是三角形的中位线,∵DE=3cm,∴BC=2DE=6cm.故答案为:6.【点睛】本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.13.若n边形的内角和是它的外角和的2倍,则n=_______.【答案】6【解析】【分析】此题涉及多边形内角和和外角和定理.解:多边形内角和=180(n-2),外角和=360°,所以,由题意可得180(n-2)=2×360,解得:n=6.故答案为:6.14.如图,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于_______.【答案】【解析】如图,在直角△AOE中,cos AEEAOOA∠=,∴cos2AEOAEAO===∠又∵四边形ABCD是平行四边形,∴2AC OA==15.如图, ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为_____.【答案】15【解析】∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12 CD.∴OE=12 BC.∴△DOE的周长="OD+OE+DE="OD+12(BC+CD)=6+9=15,即△DOE的周长为15.故答案是:15.16.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M在x轴上,点N 在y轴上.如果以点A、B、M、N为顶点的四边形是平行四边形,那么符合条件的点M有____个.【答案】3.【解析】试题分析:利用一组对边相等且平行的四边形是平行四边形进而得出答案.试题解析:如图所示:当AB平行且等于NM时,四边形ABMN是平行四边形,当AB平行且等于N′M′时,四边形ABN′M′是平行四边形.当AB为对角线时,四边形ABN′M′是平行四边形.故符合题意的有3个点.考点:1.平行四边形的判定;2.坐标与图形性质.17.如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P 以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.【答案】2s【解析】【分析】设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.如图,设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6-2t,∵AD∥BC,∴AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,∴t=6-2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合.综上所述,2秒后四边形ABQP是平行四边形.故答案为2s.【点睛】此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.18.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD 的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.【答案】175°【解析】如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠C O5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为175°.三、解答题19.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.【答案】见解析.【解析】【分析】根据题意得出四边形AECD为平行四边形,得到AD=CE,根据角平分线的性质以及平行线的性质得到AB=AD,从而得到AB=CE.证明:∵AD∥BC,∴∠DBC=∠ADB.又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.∵AD∥BC,AE∥CD,∴四边形ADCE为平行四边形,∴AD=CE,∴AB=CE.点睛:本题考查了平行四边形的判定与性质以及等腰三角形的判定.注意“等量代换”在本题中的应用.20.小华从点A出发向前走10m,向右转36°然后继续向前走10m,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回到点A时共走多少米?若不能,写出理由【答案】可以走回到A点,共走100米【解析】【分析】他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.解:根据题意可知,360°÷36°=10,所以他需要转10次才会回到起点,它需要经过10×10=100m才能回到原地.所以小华能回到点A.当他走回到点A时,共走100m.21.如图,▱ABCD中,对角线AC与BD相交于O,EF是过点O的任一直线交AD于点E,交BC于点F,猜想OE和OF的数量关系,并说明理由.【答案】结论:OE=OF.理由见解析.【解析】试题分析:结论:OE=OF,欲证明OE=OF,只要证明△AOE≌△COF即可.试题解析:结论:OE=OF.理由∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,{OAE OCF AOE COF AO OC∠=∠∠=∠=,∴△AOE≌△COF,∴OE=OF.22.如图,在▱ABCD中,E、F为对角线BD上的两点,且AE⊥BD,CF⊥BD.求证:BE=DF.【答案】证明见解析【解析】试题分析:∵在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵∠BAE=∠DCF,∴△ABE≌△CDF(ASA),∴BE=DF.考点:平行四边形的性质23.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.24.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【答案】(1)见解析,(2)41【解析】【分析】(1)证明△ABN≌△ADN,即可得出结论.(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.(1)证明:∵BN⊥AN于点N,∴ANB AND∠=∠,在△ABN和△ADN中,∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN≌△ADN(ASA).∴BN=DN.(2)∵△ABN≌△ADN,∴AD=AB=10,DN=NB.又∵点M是BC中点,∴MN是△BDC的中位线.∴CD=2MN=6.∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.25.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.【答案】(1)证明见解析;(2【解析】(1)如图1中,结论:△BCE 是等腰三角形.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴∠CBE=∠AEB ,∵EB 平分∠AEC ,∴∠AEB=∠BEC ,∴∠CBE=∠BEC ,∴CB=CE ,∴△CBE 是等腰三角形;(2)如图2中,∵四边形ABCD 是平行四边形,∠A=90°,∴四边形ABCD 是矩形,∴∠A=∠D=90°,BC=AD=5,在Rt △ECD 中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,3AB CD ∴====,在Rt AEB 中,∵∠A=90°,AB=3.AE=1,BE ∴==26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D ,E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC ,DC ,DE 分别相交于点I ,F ,G ,过点C 作CH //BG 交DE 于点H .①求证:IBC HCE ≌;②若DF CF =,求DG 的长.(2)如图2,将直线BD 绕点O 逆时针旋转α(90α<︒),与线段AD ,BC 分别交于点P ,Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由.【答案】(1)①见解析;②DE 的长为2(2)不变;四边形ABQP 的面积为12【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可.(1)①证明:∵△DCE 由△ABC 平移得到,∴AC //DE ,BC =CE ,∠ACB =∠E ,∴∠ICB =∠E ,∵CH //BG ,∴∠IBC =∠HCE ,∴△IBC ≌△HCE (ASA );②由①可知,△IBC ≌△HCE ,∴IC =HE ,∵AC //DE ,CH //BG ,∴CI //GH ,CH //GI ,∴四边形ICHG 是平行四边形,∴IC =GH ;∵∠FDG =∠FCI ,∠DFG =∠CFI ,DF =CF ,∴△DFG ≌△CFI ,∴DG =IC ,∴DG =GH =HE ,∵DE =AC =6,∴DG =13DE =13AC =2.(2)不变;由平移可知AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,∴OA =OC ,∵AD //BC ,∴∠APO =∠CQO ,∵∠AOP =∠COQ ,∴△AOP ≌△COQ (AAS ),∴S △AOP =S △COQ ,AOP COQ ABC ABQP ABQO ABQO S S S S S S 四边形四边形四边形=+=+=,∵在ABC 中,5AB BC ==,6AC =,∴ABC 的面积不变,∴四边形ABQP 的面积不变,∵AB =BC =5,OA =OC =12AC =3,∴OB ⊥AC ,∴∠AOB =90°,∴4OB ===,∴S △ABC =12AC •OB =12×6×4=12,∴12ABQP S 四边形=.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理,熟练掌握全等三角形的判定方法和平行四边形的性质的判定是解题的关键.。
(常考题)北师大版初中数学八年级数学下册第六单元《平行四边形》检测卷(包含答案解析)(4)

一、选择题1.下列命题是假命题的是( )A .三角形的外角和是360°B .线段垂直平分线上的点到线段两个端点的距离相等C .有一个角是60°的等腰三角形是等边三角形D .有两边和一个角对应相等的两个三角形全等2.下面关于平行四边形的说法中,不正确的是( )A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形3.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是( ) A .6 B .8 C .10 D .124.如图,在周长为20厘米的平行四边形ABCD 中,AB ADAC BD ≠,,相交于点O ,OE BD ⊥交AD 于点E ,则ABE △的周长为( )A .10厘米B .12厘米C .14厘米D .16厘米 5.如图,AD 、BE 分别是ABC 的中线和角平分线,AD BE ⊥,4AD BE ==,F 为CE 的中点,连接DF ,则AF 的长等于( )A .2B .3C .5D .256.如图,在ABCD 中,AD= 10,点M 、N 分别是BD 、CD 的中点,则MN 等于( )A .4B .5C .6D .不能确定 7.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交CD 边于E ,AD =3,EC =2,则AB的长为( )A.1 B.2 C.3 D.58.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12 AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD,下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB 9.一个多边形每个外角都等于30°,则这个多边形是几边形( )A.9 B.10 C.11 D.1210.如图,在□ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.7 B.10 C.11 D.1211.正多边形的一个外角的度数为72°,则这个正多边形的边数为()A.4 B.5 C.6 D.712.如图,平行四边形ABCD的对角线,AC BD相交于点O,且14,5AC BD CD+==,则ABO∆周长是()A.10B.14C.12D.22二、填空题13.如图,小亮从点A出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°…… 照这样走下去,他第一次回到出发地点A时,共走了_____米.14.如图,在平行四边形ABCD中,∠B=60°,∠BCD的平分线交AD点E,若CD=3,四边形ABCE 的周长为13,则BC 长为__.15.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.16.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).17.如图,在ABCD 中,E 为边BC 延长线上一点,且2CE BC =,连结AE 、DE .若ADE 的面积为1,则ABE △的面积为____.18.一个多边形的内角和是1080°,则这个多边形是边形__________边形.19.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.20.如图,将平行四边形OABC 放置在平面直角坐标系xoy 中,O 为坐标原点,若点C 的坐标是()1,3,点A 的坐标是()5,0,则点B 的坐标是________.三、解答题21.如图1,在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作MN ∥BC .分别交AB 、AC 于M 、N .(1)求证:BM+CN=MN.(2)如图2,若△ABC是等边三角形,请从以下两个问题任选一题作答.若两题都作答,以问题①计分.问题①BC=6,求MN的长.问题②求证:O是MN的中点.22.已知一个多边形,它的内角和等于1800︒,求这个多边形的边数.=.求23.已知:如图,在BEDF中,点A、C在对角线EF所在的直线上,且AE CF证:四边形ABCD是平行四边形.OA=,24.如图,平行四边形ABCD在直角坐标系中,点B、点C都在x轴上,其中4 OB=,63AD=,E是线段OD的中点.(1)直接写出点C,D的坐标;(2)平面内是否存在一点N,使以A、D、E、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.25.如图1在Rt△ABC中,∠ACB=90°,CA=CB=2,P为AB上一个点,将线段CP绕点C逆时针旋转90°得到线段CD,连接PD,BD .(1)判断BD与AP的关系,并证明你的结论.(2)如图2,设点B关于直线CP的对称点为E,连接BE,CE.① 依题意补全图2;② 证明:BE∥CD;③ 当四边形CDBE为平行四边形时,求AP的长.26.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE= .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形外角和的性质即可对A进行判断;根据垂直平分线的性质即可对B进行判断;根据等边三角形的判定即可对C进行判断;根据三角形全等的证明即可对D进行判断;【详解】A、三角形的外角和为360°,故A正确;B、垂直平分线上的点到线段两端的距离相等,故B正确;C、有一个角是60°的等腰三角形是等边三角形,故C正确;D、由两边和它们的夹角对应相等的两个三角形全等,故D错误;故选:D.【点睛】本题考查了命题与定理,命题的真假是就命题的内容而言,正确掌握定理是解题的关键.2.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A、∵对角线互相平分的四边形是平行四边形,∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形,∴选项D 不符合题意;故选:C .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键. 3.B解析:B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B .【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.4.A解析:A【分析】由平行四边形求出OB=OD ,再利用等腰三角形的三线合一求出BE=DE 由此即可求出ABE △的周长.【详解】∵四边形ABCD 是平行四边形,∴OB OD =.∵OE BD ⊥,∴BE DE =,∴ABE △的周长为20210AB AE BE AB AE DE AB AD ++=++=+=÷=(厘米),故选:A.【点睛】此题考查平行四边形的对角线互相平分、对边相等的性质,等腰三角形的三线合一的性质. 5.D解析:D【分析】已知AD是ABC的中线,F为CE的中点,可得DF为△CBE的中位线,根据三角形的中位线定理可得DF∥BE,DF=12BE=2;又因AD BE⊥,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt△ADF中,根据勾股定理即可求得AF的长.【详解】∵AD是ABC的中线,F为CE的中点,∴DF为△CBE的中位线,∴DF∥BE,DF=12BE=2;∵AD BE⊥,∴∠BOD=90°,∵DF∥BE,∴∠ADF=∠BOD=90°,在Rt△ADF中,AD=4,DF=2,∴22224225AD DF+=+=故选D.【点睛】本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=12BE=2是解决问题的关键.6.B解析:B【分析】利用平行四边形的性质和三角形的中位线定理即可解决问题.【详解】∵四边形ABCD是平行四边形,∴BC=AD=10,∵点M、N分别是BD,CD的中点,∴MN=12BC=5,故选:B.【点睛】本题考查了平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识.7.D解析:D【分析】首先证明DA=DE,再根据平行四边形的性质即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴BA∥CD,AB=CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴DE=AD=3,∴CD=CE+DE=2+3=5,∴AB=5.故选:D.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.8.D解析:D【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【详解】∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题.9.D解析:D【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数计算即可.【详解】∵一个多边形的每个外角都等于30°,外角和为360°,∴n=360°÷30°=12,故选D.【点睛】本题主要考查了多边形外角和、利用外角求正多边形的边数的方法,解题的关键是掌握任意多边形的外角和都等于360度.第II卷(非选择题)请点击修改第II卷的文字说明10.B解析:B【分析】由平行四边形的性质得出DC=AB=4,AD=BC=6,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:B.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.11.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.12.C解析:C【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,AB=CD=5,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD=5,∵AC+BD=14,∴AO+BO=7,∴△ABO的周长是:AO+BO+ AB=7+5=12.故选:C.【点睛】本题主要考查了平行四边形的性质,正确得出AO+BO的值是解题关键.二、填空题13.【分析】根据多边形的外角和=360°求解即可【详解】解:∵多边形的外角和为360°∴边数==12即12×15米=180米故答案为:180【点睛】本题考查了多边形的外角和能熟记多边形的外角和定理是解此解析:【分析】根据多边形的外角和=360°求解即可.【详解】解:∵多边形的外角和为360°,∴边数=360=12,30即12×15米=180米,故答案为:180.【点睛】本题考查了多边形的外角和,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和等于360°.14.5【分析】利用平行四边形的对边相等且互相平行进而得出DE=CD=3再求出AE+BC=7BC-AE=3即可求出BC的长【详解】∵CE平分∠BCD交AD边于点E∴∠ECD=∠ECB∵在平行四边形ABCD解析:5【分析】利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC-AE=3,即可求出BC的长.【详解】∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD=3,AD=BC,∠D=∠B=60°,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=CD=3,∴△CDE是等边三角形,∴CE=CD=3,∵四边形ABCE的周长为13,∴AE+BC=13-3-3=7①,∵AD-AE═DE=3,即BC-AE=3②,由①②得:BC=5;故答案为:5.【点睛】此题主要考查了平行四边形的性质,等腰三角形的判定;熟练掌握平行四边形的性质,证出∠DEC=∠DCE是解题关键.15.720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数然后求内角和【详解】∵多边形的一个顶点出发的对角线共有(n-3)条∴n-3=3∴n=6∴内角和=(6-2)×180°=720°故解析:720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=720°,故答案是:720.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.16.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面,故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.17.3【分析】首先根据平行四边形的性质可得AD=BC 又由可得BE=3BC=3AD 和的高相等即可得出的面积【详解】解:∵∴AD=BCAD ∥BC ∴和的高相等设其高为又∵∴BE=3BC=3AD 又∵∴故答案为3解析:3【分析】首先根据平行四边形的性质,可得AD=BC ,又由2CE BC =,可得BE=3BC=3AD ,ADE 和ABE △的高相等,即可得出ABE △的面积.【详解】解:∵ABCD , ∴AD=BC ,AD ∥BC , ∴ADE 和ABE △的高相等,设其高为h ,又∵2CE BC =,∴BE=3BC=3AD ,又∵1=12ADE S AD h =△,1=2ABE S BE h △ ∴11=3322ABE S BE h AD h =⨯=△ 故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.18.八【分析】首先设这个多边形的边数为n 由n 边形的内角和等于180(n-2)即可得方程180(n-2)=1080解此方程即可求得答案【详解】解:设这个多边形的边数为n 根据题意得:180(n-2)=108解析:八【分析】首先设这个多边形的边数为n,由n 边形的内角和等于180︒(n-2),即可得方程180(n-2)=1080,解此方程即可求得答案.【详解】解:设这个多边形的边数为n,根据题意得:180(n-2)=1080,解得:n=8,故答案为:八.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.19.140°【分析】先根据多边形内角和定理:求出该多边形的内角和再求出每一个内角的度数【详解】解:该正九边形内角和=180°×(9-2)=1260°则每个内角的度数=故答案为:140°【点睛】本题主要考解析:140°【分析】先根据多边形内角和定理:180(2)n ︒•-求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,则每个内角的度数=12601409︒=︒. 故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和. 20.【分析】利用平行四边形的性质即可解决问题;【详解】解:∵四边形ABCD 是平行四边形∴OA=BCOA ∥BC ∵A (50)∴OA=BC=5∵C (13)∴B (63)故答案为:(63)【点睛】本题考查平行四边解析:()6,3【分析】利用平行四边形的性质即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴OA=BC ,OA ∥BC ,∵A (5,0),∴OA=BC=5,∵C (1,3),∴B (6,3),故答案为:(6,3).【点睛】本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)见解析;(2)①MN=4;②见解析【分析】(1)根据角平分线定义和平行线的性质可证得∠MOB=∠MBO ,∠NOC=∠NCO ,再根据等角对等边的性质可得BM=MO ,CN=ON ,再由MO+ON=MN 即可证得结论;(2)①过M、N分别作ME⊥BC于E,NF⊥BC于F,可证得四边形MEFN为平行四边形,可得MN=EF,再根据等边三角形的性质可得∠ABC=∠ACB=60°,进而有∠BME=∠CNF=30°,根据直角三角形中30°角所对的直角边是斜边的一半可证得BE=12BM,CF=12CN,由BC=BE+EF+CF和BM+CN=MN可得BC=32MN,即可求得MN的长;②过M、N分别作ME⊥BC于E,NF⊥BC于F,可证得四边形MEFN为平行四边形,可得ME=NF,再根据等边三角形的性质可得∠ABC=∠ACB,再根据全等三角形的判定可证得△MEB≌△NFC,则有BM=CN,由(1)中BM=MO,CN=ON可得MO=ON,即可证得结论.【详解】(1)证明:∵BO、CO分别平分∠ABC、∠ACB,∴∠OBC=∠MBO,∠OCB=∠NCO,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MOB=∠MBO,∠NOC=∠NCO,∴BM=MO,CN=ON,∴BM+CN=MO+ON=MN,即BM+CN =MN;(2)若选①,解:如图2,过M、N分别作ME⊥BC于E,NF⊥BC于F,则ME∥NF,∠MEB=∠NFC=90°,∵MN∥BC,∴四边形MEFN为平行四边形,∴MN=EF,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,又∠MEB=∠NFC=90°,∴∠BME=∠CNF=30°,∴BE=12BM,CF=12CN,∵BC=BE+EF+CF=12BM+MN+12CN=32MN=6,∴MN=4;若选②,证明:如图2,过M、N分别作ME⊥BC于E,NF⊥BC于F,则ME∥NF,∠MEB=∠NFC=90°∵MN∥BC,∴四边形MEFN为平行四边形,∴ME=NF,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,又∠MEB=∠NFC=90°,∴△MEB ≌△NFC (AAS ),∴BM=CN ,∵ BM=MO ,CN=ON∴MO=ON ,即O 为MN 的中点.【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定、等边三角形的性质、平行四边形的判定与性质、含30°角的直角三角形的性质、全等三角形的判定与性质等知识,熟练掌握各知识点的运用,借助作辅助线进行计算或证明解答的关键.22.十二边形.【分析】设这个多边形的边数为n ,根据多边形的内角和定理即可列方程求解.【详解】解:设这个多边形是n 边形,根据题意得:()21801800n ︒︒-⨯=, 解得:12n =.故这个多边形是十二边形.【点睛】解题的关键是读懂题意,根据多边形的内角和:180°(n-2),正确列方程求解. 23.见解析.【分析】如图,连接BD ,交AC 于点O .由平行四边形的对角线互相平分可得OD OB =,OE OF =,结合已知条件证得OA OC =,由对角线互相平分的四边形是平行四边形即可判定四边形ABCD 是平行四边形.【详解】如图,连接BD ,交AC 于点O .∵四边形BEDF 是平行四边形,∴OD OB =,OE OF =.又∵AE CF =,∴AE OE CF OF +=+,即OA OC =,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的性质及判定,作出辅助线,证明OD OB =、OA OC =是解决问题的关键.24.(1)C (3,0),D (6,4);(2)存在,1N (3,6),2N (9,2),3N (3-,2-)【分析】(1)根据平行四边形的性质可求得OC 的长,从而求得点C ,D 的坐标;(2)分AD 为对角线,DE 为对角线,AE 为对角线三种情况讨论,利用中点坐标公式即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴BC=AD=6,∵OB=3,∴OC=6-3=3,∴点C 的坐标为(3,0),点D 的坐标为(6,4);(2)存在,理由如下:∵E 是线段OD 的中点,∴点E 的坐标为(602+,402+),即(3,2), 设点N 的坐标为(x ,y ),当AD 为对角线时,36022x ++=,242y +=, 解得:3x =,6y =,∴1N 的坐标为(3,6);当DE 为对角线时,06322x ++=,44222y ++=, 解得:9x =,2y =,∴2N 的坐标为(9,2);当AE 为对角线时,60322x ++=,40222y ++=, 解得:3x =-,2y =-,∴3N 的坐标为(3-,2-) .【点睛】本题考查了坐标与图形,平行四边形的性质.讨论平行四边形存在性问题时,按对角线进行分类讨论,画出图形再计算.25.(1)BD ⊥AP ,BD =AP ,证明见解析;(2)①见解析;②见解析;③2【分析】(1)由旋转的性质及题意易得△ACP ≌△PCD ,进而问题得证;(2)①根据题意直接作图即可;②根据轴对称的性质及题意可直接得证;③由(1)及平行四边形的性质可得AP =BD ,然后根据对称可求解.【详解】解:(1)结论:BD ⊥AP ,BD =AP证明:∵∠ACB =90°,∠PCD =90°∴ ∠ACP =∠BCD , ∠A =∠ABC =45°∵AC =BC ,PC =DC∴△ACP ≌△BCD∴BD =AP , ∠A =∠CBD =45°∴ ∠ABD =∠ABC+∠CBD=90°∴BD ⊥AP(2)① 如图② ∵点B关于直线CP的对称点为E∴CG⊥BE∵∠PCD=90°即CG⊥CD∴BE∥CD③∵四边形CDBE为平行四边形∴BD=CE由(1)可得AP=BD∵B、E关于直线CP的对称∴BC=CE∴AP=BC=2.【点睛】本题主要考查轴对称的性质、全等三角形的判定与性质及平行四边形的性质,熟练掌握各个知识点是解题的关键.26.(1)见解析;(2)3.【分析】根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.【详解】(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A 的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.考点:作图—复杂作图;平行四边形的性质。
北师大版八年级下册数学第六章 平行四边形含答案

北师大版八年级下册数学第六章平行四边形含答案一、单选题(共15题,共计45分)1、如图,在五边形 ABCDE 中,∠A+∠B+∠E=α,DP,CP 分别平分∠EDC,∠BCD,则∠P 的度数是()A.90°+ αB. α﹣90°C. αD.540° - α2、一个多边形的每一个内角都等于140°,则它的边数是()A.7B.8C.9D.103、如图,点P是四边形ABCD内的一点,AP平分∠DAB,BP平分∠ABC,设∠C+∠D的大小为x,∠P的大小为y,则x,y的关系是()A. B. C. D.4、若多边形的边数增加1,则其内角和的度数()A.增加180°B.其内角和为360°C.其内角和不变D.其外角和减少5、若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数( )A.增加B.减少C.不变D.不能确定6、若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.707、一个多边形的内角和是外角和的5倍,这个多边形是()A.正六边形B.正八边形C.正十边形D.正十二边形8、若一个正多边形的一个外角是40°,则这个正多边形的边数是()A.6B.8C.9D.109、如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1 的大小为().A.120°B.36°C.108°D.90°10、若一个多边形的内角和是900度,则这个多边形的边数为()A.6B.7C.8D.1011、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数是()A.40 0B.45 0C.50 0D.60 012、若一个多边形每一个内角都是120º,则这个多边形的边数是()A.6B.8C.10D.1213、如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5B.6C.8D.1014、若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A.90°;B.105°;C.130°;D.120°.15、一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是()A.2B.C.1D.二、填空题(共10题,共计30分)16、如图,六边形ABCDEF是正六边形,那么∠α的度数是________.17、四边形具有不稳定性.如图,矩形按箭头方向变形成平行四边形,当变形后图形面积是原图形面积的一半时,则________.18、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为________.19、如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC =3,则S△BCF=________.20、八边形的外角和等于________°.21、如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.22、如图,在正六边形ABCDEF中,连接AD,AE,则∠DAE=________.23、如图,EF是△ABC的中位线,将△AEF沿AB方向平移到△EBO的位置,点D在BC上,已知△AEF的面积为5,则图中阴影部分的面积为________.24、如图,在平行四边形ABCD中,∠A=30°.BE⊥CD.BF⊥AD,垂足分别为E.F.BE=1,BF=2.则DF=________.25、已知□ABCD中,若∠B+∠D=200°,则∠A的度数为________.三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.28、如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.29、如图,已知四边形ABCD为平行四边形,其对角线相交于点O,,,求的正弦值.30、已知:如图,▱ABCD的对角线AC,BD相交于0,点E,F分别在AO,CO 上,且AE=CF,求证:四边形BEDF是平行四边形.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、A5、C6、C7、D8、C9、C10、B11、A12、A14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
北师大版八下第六章《平行四边形》单元测试题(含答案)

第六章平行四边形时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC 的周长为()A.13 B.17 C.20 D.262.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.243.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE4.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10 5.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.46.如图,▱ABCD中,AC⊥AB,O为对角线AC的中点,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°第6题图第7题图7.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①②B.①④C.③④D.②③8.如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,连接EF.若EF=1,AC=6,则AB的长为()A.10 B.9 C.8 D.6第8题图第10题图9.马小虎在计算一个多边形的内角和时,由于粗心少算了两个内角,其和等于830°,则该多边形的边数是()A.7 B.8 C.7或8 D.无法确定10.如图,在△ABC中,DE∥AB,FD∥BC,EF∥AC,则下列说法:①图中共有3个平行四边形;②AF=BF,CE=BE,AD=CD;③EF=DE=DF;④图中共有3对全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:____________,使四边形ABCD为平行四边形(不添加任何辅助线).第12题图第13题图13.如图,P为▱ABCD的边CD上一点,若S▱ABCD=20cm2,则S△APB=________cm2.14.如图,在▱ABCD中,对角线AC,BD交于点O,AD=10,△BOC的周长为21,则AC+BD=________.第14题图第15题图15.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=________cm.16.如图,一块四边形绿化园地的四个角都做有半径为1m的圆形喷水池,则这四个喷水池占去的绿化园地的面积为________.第16题图第17题图17.如图,在▱ABCD中,AE⊥BC于点E,且DE平分∠CD A.若BE∶EC=1∶2,则∠BCD 的度数为________.18.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为________(n为正整数).三、解答题(共66分)19.(8分)如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD,连接CE.求证:CE平分∠BC D.20.(8分)如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.21.(8分)一个多边形的内角和与某个外角的度数的总和为1350°,试求此多边形的边数及此外角的度数.22.(10分)如图,△ABC中,BD平分∠ABC,AD⊥BD,D为垂足,E为AC的中点.求证:(1)DE∥BC;(2)DE=12(BC-AB).23.(10分)如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=M C.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.24.(10分)如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,BD =2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG =EF (提示:直角三角形中,斜边上的中线等于斜边的一半).25.(12分)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF .(1)求证:四边形CEDF 是平行四边形; (2)若AB =4,AD =6,∠B =60°,求DE 的长.参考答案BDBBD DDCCB11.10 12.AD =BC (答案不唯一) 13.10 14.22 15.3 16.πm 2 17.120° 18.12n19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE ,AE +CD =AE +AB =BE .(3分)又∵AE +CD =AD ,∴BE =AD =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BC D.(8分)20.证明:∵∠A +∠B +∠C +∠D =360°,∠A =∠C ,∠B =∠D ,∴∠A +∠B =180°.(3分)又∵∠A =∠C ,∴∠B +∠C =180°,∴AD ∥BC ,AB ∥CD ,(6分)∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).(8分)21.解:∵1350°=180°×7+90°,(2分)又∵多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,(5分)多边形的边数为7+2=9.(8分)22.证明:(1)延长AD 交BC 于F .∵BD 平分∠ABC ,AD ⊥BD ,∴AB =BF ,AD =DF .(3分)又∵E 为AC 的中点,∴DE 是△ACF 的中位线,∴DE ∥B C.(5分)(2)∵AB =BF ,∴FC =BC -A B.(7分)∵DE 是△ACF 的中位线,∴DE =12FC =12(BC -AB ).(10分)23.(1)证明:∵CN ∥AB ,∴∠1=∠2.在△AMD 和△CMN 中,⎩⎪⎨⎪⎧∠1=∠2,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN (ASA ),∴AD =CN .又∵AD ∥CN ,(3分)∴四边形ADCN 是平行四边形,∴CD =AN .(5分)(2)解:∵AC ⊥DN ,∠CAN =30°,MN =1,∴AN =2MN =2,∴AM =AN 2-MN 2= 3.(7分)∴S △AMN =12AM ·MN =12×3×1=32.(8分)∵四边形ADCN 是平行四边形,∴S四边形ADCN=4S △AMN =2 3.(10分)24.证明:(1)∵四边形ABCD 为平行四边形,∴AD =BC ,BD =2BO .(1分)又∵BD =2AD ,∴BO =AD =B C.(3分)∵E 为OC 的中点,∴BE ⊥A C.(5分)(2)由(1)知BE ⊥AC ,∴△ABE 为直角三角形,AB 为斜边.在Rt △ABE 中,G 为AB 的中点,∴EG =12A B.(7分)又∵E ,F 分别为OC ,OD 的中点,∴EF =12C D.(8分)∵四边形ABCD是平行四边形,∴AB =CD ,∴EG =EF .(10分)25.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =B C.(1分)∵F 是AD 的中点,∴DF =12A D.又∵CE =12BC ,∴DF =CE .(4分)又∵DF ∥CE ,∴四边形CEDF 是平行四边形.(5分)(2)解:过点D作DH⊥BE于点H.(6分)在▱ABCD中,∵AB∥CD,∠B=60°,∴∠DCE =60°,∴∠CDH=30°.(7分)∵AB=4,∴CD=AB=4,∴CH=2,DH=DC2-CH2=2 3.(9分)在▱CEDF中,CE=DF=12AD=3,则EH=CE-CH=1.(10分)∴在Rt△DHE中,由勾股定理得DE=DH2+HE2=(23)2+1=13.(12分) 。
北师大版2020八年级数学下册《第6章 平行四边形 》单元练习试题【含答案】

∵AC=8,
∴AO=4,
∵AB=6,AC⊥AB,
∴BO=
=
=2 ,
∴BD=2BO=4 . 19.解:(1)∵四边形 ABCD 是平行四边形,
∴OA=OC, ∵点 E 为 OA 中点,AD=AO,AD=2 ,
∴OE= ,OC=2 ,
∴CE=OE+OC=3 ,
∵DE⊥CD,CD=6,
∴DE=
=3;
(2)证明:取 AD 的中点 F,连接 OF, ∵AD=AO,点 E 为 OA 中点, ∴AE=AF, 在△ADE 和△AOF 中,
三.解答题(共 7 小题) 16.如图,在平行四边形 ABCD 中,点 E 为 AD 的中点,延长 CE 交 BA 的延长线于点 F.
(1)求证:AB=AF; (2)若 BC=2AB,∠BCD=100°,求∠ABE 的度数.
17.已知:如图,在▱ABCD 中,点 E、F 是对角线 AC 上的两点,且 AE=CF.求证: BF∥DE.
8,CD=10,点 F、M、N 分别是 BC、BD、CE 的中点,则 MN 的长为( )
A.
B.6
C.4
D.3
10.如图,正五边形 ABCDE 绕点 A 顺时针旋转后得到正五边形 AB′C′D′E′,旋转角
为 α (0°<α<90°),若 DE⊥B′C′,则∠α 为( )
A.36°
B.54°
C.60°
22.如图,在平行四边形 ABCD 中,点 E 在 AD 上,连接 BE、CE,EB 平分∠AEC. (1)如图 1,判断△BCE 的形状,并说明理由; (2)如图 2,∠A=90°,BC=5,AE=1,求线段 BE 的长.
一.选择题(共 10 小题) 1. D. 2. A. 3. B. 4. D. 5. B. 6. D. 7. D. 8. A. 9. A. 10. B. 二.填空题(共 5 小题) 11. .
北师大八年级下数学《平行四边形》单元检测卷含答案

单元检测卷:平行四边形(基础卷)一、选择题(每小题3分,共30分)1.一个多边形从一个顶点出发共引7条对角线,那么这个多边形对角线的总数为 ( ) A 、70 B 、35 C 、45 D 、50 【答案】B 【解析】试题分析:根据从一个顶点出发共引7条对角线可得:多边形的边数为10,则对角线的总条数=27102)3(⨯=-n n =35、 2。
已知,ABCD 中,若∠A+∠C=120°,则∠B 的度数是( )A 、100°B 、120°C 、80°D 、60° 【答案】B 【解析】试题分析:根据平行四边形的性质可得∠A=∠C=60°,则∠B=180°-60°=120°、 3.在下列性质中,平行四边形不一定具有的是( )A 。
对边相等 B.对边平行 C 。
对角互补 D 。
内角和为360° 【答案】C4.若一个多边形的每个内角都为135°,则它的边数为( ) A.8 B.9 C 。
10 D 。
12 【答案】A 【解析】试题分析:由一个正多边形的每个内角都为135°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案。
解:∵一个正多边形的每个内角都为135°,∴这个正多边形的每个外角都为:180°﹣135°=45°, ∴这个多边形的边数为:360°÷45°=8, 故选:A.5。
用下列图形不能进行平面镶嵌的是( )A 、正三角形和正四边形B 、正三角形和正六边形C 、正四边形和正八边形D 、正四边形和正十二边形 【答案】D6。
A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有( )A、3种B、4种C、5种D、6种【答案】B【解析】试题分析:根据一组对边平行且相等、两组对边分别平行、两组对边分别相等来进行判定、则正确的选法为:①③、②④、①②、③④四种判定方法、7。
北师大版八年级数学下册第六章 平行四边形练习(含答案)

北师大版八年级数学下册第六章 平行四边形练习(含答案)一、单选题1.下列性质中,平行四边形一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直2.如图,将折叠,使点分别落在点处(点都在所在的ABCD D C 、F E 、F E 、AB 直线上),折痕为,若,则等于( )MN 50AMF ∠=︒A ∠A .B .C .D .50︒55︒60︒65︒3.已知四边形的对角线相交于点,则下列条件中不能判定ABCD ,AC BD ,O OB OD =四边为平行四边形的是( )ABCD A .B .C .D .OA OC =//AB CD //AD BCAB CD =4.点A 、B 、C 、D 在一个平面内,若从①AB ∥CD ;②AB=CD ;③BC ∥AD ;④BC=AD . 这四个条件中选两个,但不能推导出四边形ABCD 是平行四边形的选项是()A .①②B .①④C .②④D .①③5.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等6.多边形每个外角为45°,则多边形的边数是( )A.8 B.7 C.6 D.57.如图,在三角形模板ABC中,∠A=60°,D、E分别为AB、AC上的点,则∠1+∠2的度数为()A.180°B.200°C.220°D.240°8.下列图形中,周长不是32 m的图形是( )A.B.C.D.A9.如图,小明从点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转A20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地点时,一共走了()A .80米B .160米C .300米D .640米10.如图,已知四边形中,,,平分,ABCD //AD BC ABC ACD D ∠=∠=∠AE CAD ∠下列说法:①;②;③;④,//AB CD AE CD ⊥AEF BCF S S =△△AFB BAD ABE ∠=∠-∠其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题11.如图,已知等边△ABC 的边长为10,P 是△ABC 内一点,PD 平行AC ,PE 平行AD ,PF 平行BC ,点D ,E ,F 分别在AB ,BC ,AC 上,则PD+PE+PF=_______________.12.如图,在平行四边形ABCD 中,AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠B =_____,∠AED 的度数为_____.13.D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .14.如图,以正六边形的边为直角边作等腰直角三角形,使点在ABCEDF AB ABG G 其内部,且,连接,则的大小是__________度.90BAG ∠=︒FG EFG Ð三、解答题15.如图,ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA .(1)求∠APB 的度数;(2)如果AD =5cm ,AP =8cm ,求△APB 的周长.16.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 交于点E ,点E 是BD 的中点,延长CD 到点F ,使DF =CD ,连接AF ,(1)求证:AE =CE ;(2)求证:四边形ABDF 是平行四边形;(3)若AB =2,AF =4,∠F =30°,则四边形ABCF 的面积为 .17.如图,等边的边长是4,,分别为,的中点,延长至点,ABC ∆D E AB AC BC F 使,连接和.12CF BC =CD EF (1)求证:;DE CF =(2)求的长;EF (3)求四边形的面积.DEFC 18.提出问题:(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为_______.(2)如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度数.由(1)结论得:∠AOC =∠PAO +∠PCO+∠P所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P因为∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D所以2∠AOC=∠BAO +∠DCO+∠B +∠D所以∠P=_______.解决问题:(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______;(4)如图(4),直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______.答案1.B 2.D 3.D 4.B5.C6.A7.D8.B9.A10.D11.1012.60°85°13.11.14.4515.(1)∵四边形是平行四边形,ABCD ∴∥ ,∥, ,AD CB AB CD AD BC,AB DC ==∴ ,DAB CBA 180∠∠+= 又∵和分别平分和,AP BP DAB ∠CBA ∠∴ ,()1PAB PBA DAB CBA 902∠∠∠∠+=+= ∴ ;()APB 180PAB PBA 90∠∠∠=-+= (2) ∵平分,∥ ,AP DAB ∠AB CD ∴ ,DAB PAB DPA ∠∠∠==∴ ,同理: ,AD DP 5cm ==PC BC AD 5cm ===∴ ,AB DC DP PC 10cm ==+=在中, , ∴ ,Rt APB AB 10cm,AP 8cm ==()BP 6cm ==∴△的周长.ABP ()681024cm ++=16.解:(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD ∥BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CBE (ASA ),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF ∥AB ,∴四边形ABDF 是平行四边形;(3)解:过C 作CH ⊥BD 于H ,过D 作DQ ⊥AF 于Q ,∵四边形ABCD 和四边形ABDF 是平行四边形,AB =2,AF =4,∠F =30°,∴DF =AB =2,CD =AB =2,BD =AF =4,BD ∥AF ,∴∠BDC =∠F =30°,∴DQ =DF ==1,CH =DC ==1,12122⨯12122⨯∴四边形ABCF 的面积S =S 平行四边形BDFA +S △BDC =AF×DQ+=4×1+=6,1BD CH 2⨯⨯1412⨯⨯故答案为:6.17.(1)在中,ABC ∆、分别为、的中点,D E AB AC 为的中位线,DE ∴ABC ∆,12DE BC ∴=,12CF BC = .DE CF ∴=(2),,AC BC =AD BD =,CD AB ∴⊥,,4BC = 2BD =CD ∴==,,//DE CF DE CF =四边形是平行四边形,∴DEFC.EF CD ∴==(3)过点作于,D DH BC ⊥H ,,90DHC ∠=︒ 30DCB ∠=︒12DH DC ∴==,2DE CF ==.2DEFC S CF DH ∴=⋅==四边形18.(1)如图,延长CO ,交AP 与B ,∵∠AOC=∠A+∠ABO ,∠ABO=∠C+∠P ,∴∠AOC=∠A+∠P+∠C ,故答案为∠AOC=∠A+∠P+∠C ,(2)∵2∠AOC =∠BAO +∠DCO+2∠P ,2∠AOC=∠BAO +∠DCO+∠B+∠D ,∴2∠P=∠B+∠D ,∴∠P=(28°+48°)=38°,12故答案为38°(3)∵直线AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,∴∠PAB=∠PAD ,∠PCB=∠PCE ,∴2∠PAB+∠B=180°-2∠PCB+∠D ,∴180°-2(∠PAB+∠PCB )+∠D=∠B∵∠P=∠PAB+∠B+∠PCB ,∴∠PAB+∠PCB=∠P-∠B ,∴180°-2(∠P-∠B )+∠D=∠B ,即∠P=90°+(∠B+∠D ).12(4)∵直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠FAP=∠PAO ,∠PCE=∠PCB ,在四边形APCB 中,(180°-∠FAP )+∠P+∠PCB+∠B=360°①,在四边形APCD 中,∠PAD+∠P+(180°-∠PCE )+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,12∴∠P=180°-(∠B+∠D)。
2020年北师大版八年级数学第二学期 第6章 平行四边形 单元测试卷 (解析版)

八年级(下)数学第6章平行四边形单元测试卷一.选择题(共10小题)1.平行四边形一定具有的性质是()A.邻边相等B.邻角相等C.对角相等D.对角线相等2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是()A.10B.11C.12D.以上都有可能3.从五边形的一个顶点出发可以连接的对角线条数为()A.1B.2C.3D.44.平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是()A.BE DF=B.//AF CE C.AE CF=D.BAE DCF∠=∠5.如图,在平行四边形ABCD中,AB AC⊥,若8AB=,12AC=,则BD的长是()A.22B.16C.18D.206.如图所示,点D,E,F分别是()ABC AB AC∆>各边的中点,下列说法错误()A.12AD BC=B.12EF BC=C.EF与AD互相平分D.DEF∆的面积是ABC∆面积的1 47.如图,ABCDY的周长为32,对角线AC、BD相交于点O,点E是CD的中点,14BD=,则DOE∆的周长为()A .14B .15C .18D .218.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s二.填空题(共6小题) 11.八边形内角和度数为 .12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n =13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 .14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 .15.如图,在平行四边形ABCD 中,213AB =,4AD =,AC BC ⊥.则BD = .16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 .三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数. 18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF . (1)求证:四边形ABFD 是平行四边形; (2)求证:BF DC =.21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =. (1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式; (3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD . (1)求证:四边形ACED 是平行四边形;(2)若2AC=,4CE=,求四边形ACEB的周长.24.如图,在平面直角坐标系中,点A,B的坐标分别是(3,0)-,(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCODY.在线段OP延长线上一动点E,且满足PE AO=.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?参考答案一.选择题(共10小题)1.平行四边形一定具有的性质是( ) A .邻边相等B .邻角相等C .对角相等D .对角线相等【解答】解:A 、平行四边形的邻边不相等,故此选项错误; B 、平行四边形邻角互补,故此选项错误; C 、平行四边形的对角相等,故此选项正确;D 、平行四边形的对角线不相等,故此选项错误;故选:C .2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是( ) A .10B .11C .12D .以上都有可能【解答】解:Q 内角和是1620︒的多边形是1620211180+=边形, 又Q 多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形. 综上原来多边形的边数可能为10、11、12边形, 故选:D .3.从五边形的一个顶点出发可以连接的对角线条数为( ) A .1B .2C .3D .4【解答】解:n Q 边形(3)n >从一个顶点出发可以引(3)n -条对角线, ∴从五边形的一个顶点出发可以画出532-=(条)对角线.故选:B .4.平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得到四边形AECF 一定为平行四边形的是( ) A .BE DF =B .//AF CEC .AE CF =D .BAE DCF ∠=∠【解答】解:如图,连接AC 与BD 相交于O , 在ABCD Y 中,OA OC =,OB OD =,要使四边形AECF 为平行四边形,只需证明得到OE OF =即可;A 、若BE DF =,则OB BE OD DF -=-,即OE OF =,故本选项不符合题意;B 、//AF CE 能够利用“角角边”证明AOF ∆和COE ∆全等,从而得到OE OF =,故本选项不符合题意;C 、若AE CF =,则无法判断OE OE =,故本选项符合题意;D 、BAE DCF ∠=∠能够利用“角角边”证明ABE ∆和CDF ∆全等,从而得到DF BE =,然后同A ,故本选项不符合题意; 故选:C .5.如图,在平行四边形ABCD 中,AB AC ⊥,若8AB =,12AC =,则BD 的长是( )A .22B .16C .18D .20【解答】解:Q 四边形ABCD 是平行四边形,12AC =, 162OA AC ∴==,2BD OB =, AB AC ⊥Q ,8AB =,228610OB ∴=+=,220BD OB ∴==.故选:D .6.如图所示,点D ,E ,F 分别是()ABC AB AC ∆>各边的中点,下列说法错误( )A .12AD BC =B .12EF BC =C .EF 与AD 互相平分 D .DEF ∆的面积是ABC ∆面积的14【解答】解:A 、由于点D 是BC 的中点,所以12BD BC =,只有当BD AD CD ==时,结论12AD BC =成立,故本选项符合题意. B 、根据中位线定理,12EF BC =.故本选项不符合题意; C 、根据中位线定理,//AF ED ,//AE FD ,四边形AEDF 为平行四边形,对角线EF 与AD 互相平分.故正确;D 、因为DFE ∆和ABC ∆的各边对应成比例,为1:2,而且每组对应点所在的直线都经过同一个点,对应边互相平行,是位似图形. 故选:A .7.如图,ABCD Y 的周长为32,对角线AC 、BD 相交于点O ,点E 是CD 的中点,14BD =,则DOE ∆的周长为( )A .14B .15C .18D .21【解答】解:Q 四边形ABCD 是平行四边形, AB CD ∴=,AD BC =,172OB OD BD ===, ABCD Q Y 的周长为32, 16CD BC ∴+=,Q 点E 是CD 的中点,12DE CD ∴=,OE 是BCD ∆的中位线,12OE BC ∴=, 1()82DE OE CD BC ∴+=+=, DOE ∴∆的周长7815OD DE OE =++=+=;故选:B .8.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定【解答】解:Q 四边形ABCD 是平行四边形, AB DC ∴=,CMB ∆Q 的面积为12S DC =g 高,ADM ∆的面积为112S MA =g 高,CBM ∆的面积为212S BM =g 高, 而它们的高都是等于平行四边形的高, 1212S S AD ∴+=g 高12BM +g 高1()2MA BM =+g 高12AB =g 高12CD =g 高S =, 则S ,1S ,2S 的大小关系是12S S S =+. 故选:A .9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-【解答】解:连接OB 和AC 交于点M ,过点M 作ME x ⊥轴于点E ,过点B 作CB x ⊥轴于点F ,如下图所示:Q 四边形ABCD 为平行四边形,132ME BF ∴==,122OE OF ==, ∴点M 的坐标为(2,3),Q 直线3y kx k =+将ABCO Y 分割成面积相等的两部分, ∴该直线过点M ,323k k ∴=+,35k ∴=. 故选:A .10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s【解答】解:设运动时间为xs ,则753CP x =+-,BQ x =, Q 四边形PQBC 为平行四边形, CP BQ ∴=, 123x x ∴-=, 124x ∴=, 3x ∴=,故选:A .二.填空题(共6小题)11.八边形内角和度数为 1080︒ . 【解答】解:(82)180********-︒=⨯︒=︒g . 故答案为:1080︒.12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n = 8 【解答】解:Q 每个内角都相等,并且是它外角的3倍, 设外角为x ,可得:3180x x +=︒,解得:45x =︒,∴边数360458=︒÷︒=.故答案为:8.13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 9 .【解答】解:设这个多边形是n 边形.依题意,得36n -=,解得9n =.故该多边形的边数是9.故答案为:9.14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 45︒ .【解答】解:Q 四边形ABCD 是平行四边形,120ABC D ∴∠=∠=︒,//AB CD ,18060BAD D ∴∠=︒-∠=︒,AE Q 平分DAB ∠,60230BAE ∴∠=︒÷=︒,AE AB =Q ,(18030)275ABE ∴∠=︒-︒÷=︒,45EBC ABC ABE ∴∠=∠-∠=︒;故答案为:45︒.15.如图,在平行四边形ABCD 中,13AB =,4AD =,AC BC ⊥.则BD = 10 .【解答】解:Q 四边形ABCD 是平行四边形,4BC AD ∴==,OB OD =,OA OC =,AC BC ⊥Q ,∴由勾股定理得:2222(213)46AC AB BC =-=-=,132OC AC ∴==, Q 在Rt BCO ∆中,90BCO ∠=︒,2222345OB OC BC ∴=+=+=,210BD OB ∴==,故答案为:10.16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 (6,3) .【解答】解:(4,0)A Q ,4OA ∴=,Q 四边形OABC 是平行四边形,4OA BC ∴==,(2,3)C Q ,(6,3)B ∴,故答案为(6,3).三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.【解答】解:设这个多边形的边数为n ,则(2)180360(122)180n -⨯︒+︒=-⨯︒,解得:10n =,答:这个多边形的边数为10.18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.【解答】证明:ADB CBD ∠=∠Q ,//AD BC ∴,DAE BCF ∴∠=∠,在ADE ∆和CBF ∆中DAE BCF AED CFB DE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴∆≅∆,AD BC ∴=,∴四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.【解答】证明:ABC ∆Q 是等边三角形,AC BC AB ∴==,60ACB ∠=︒;Q 将AC 绕点E 旋转ED CE ∴=,EF AE =EDC ∴∆是等边三角形,DE CD CE ∴==,60DCE EDC ∠=∠=︒,FD AC BC ∴==,ABC ∴∆、AEF ∆、DCE ∆均为等边三角形,60CDE ABC EFA ∴∠=∠=∠=︒,//AB FD ∴,//BD AF ,∴四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF DC =.【解答】证明:(1)DE Q 是ABC ∆的中位线,//DE AB ∴,2AB DE =,AD CD =EF DE =Q2DF DE ∴=AB DF ∴=,且//AB DF∴四边形ABFD 是平行四边形;(2)Q 四边形ABFD 是平行四边形AD BF ∴=,且AD CD =BF DC ∴=21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =.(1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.【解答】(1)证明:连接BD ,交AC 于O ,如图所示:Q 四边形ABCD 是平行四边形,OB OD ∴=,OA OC =,AE CF =Q ,OA AE OC CF ∴-=-,OE OF ∴=,∴四边形BFDE 是平行四边形;(2)解:AE CF =Q ,OE OF =,22EF AE ==,1AE CF OE OF ∴====,4AC =,3CE =,45ACB ∠=︒Q ,BE AC ⊥,BCE ∴∆是等腰直角三角形,3BE CE ∴==,Q 四边形ABCD 是平行四边形,ABCD ∴Y 的面积2ABC =∆的面积1243122AC BE =⨯⨯⨯=⨯=.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式;(3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.【解答】(1)解:3∠Q 、4∠、5∠、6∠是四边形的四个内角, 3456360∴∠+∠+∠+∠=︒,34360(56)∴∠+∠=︒-∠+∠,15180∠+∠=︒Q ,26180∠+∠=︒,12360(56)∴∠+∠=︒-∠+∠,1234∴∠+∠=∠+∠;(2)答:四边形的任意两个外角的和等于与它们不相邻的两个内角的和;(3)解:240B C ∠+∠=︒Q ,240MDA NAD ∴∠+∠=︒,AE Q 、DE 分别是NAD ∠、MDA ∠的平分线, 12ADE MDA ∴∠=∠,12DAE NAD ∠=∠, 11()24012022ADE DAE MDA NAD ∴∠+∠=∠+∠=⨯︒=︒, 180()18012060E ADE DAE ∴∠=︒-∠+∠=︒-︒=︒.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD .(1)求证:四边形ACED 是平行四边形;(2)若2AC =,4CE =,求四边形ACEB 的周长.【解答】解:(1)证明:90ACB ∠=︒Q ,DE BC ⊥,//AC DE ∴又//CE AD Q∴四边形ACED 是平行四边形.(2)Q 四边形ACED 是平行四边形. 2DE AC ∴==.在Rt CDE ∆中,由勾股定理得2223CD CE DE =-=. D Q 是BC 的中点,243BC CD ∴==.在ABC ∆中,90ACB ∠=︒,由勾股定理得22213AB AC BC =+=. D Q 是BC 的中点,DE BC ⊥,4EB EC ∴==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+.24.如图,在平面直角坐标系中,点A ,B 的坐标分别是(3,0)-,(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造PCOD Y .在线段OP 延长线上一动点E ,且满足PE AO =.(1)当点C 在线段OB 上运动时,求证:四边形ADEC 为平行四边形;(2)当点P 运动的时间为32秒时,求此时四边形ADEC 的周长是多少?【解答】(1)证明:连接CD 交AE 于F , Q 四边形PCOD 是平行四边形,CF DF ∴=,OF PF =,PE AO =Q ,AF EF ∴=,又CF DF =,∴四边形ADEC 为平行四边形;(2)解:当点P 运动的时间为32秒时,32OP =,3OC =, 则92OE =, 由勾股定理得,2232AC OA OC =+=, 223132CE OC OE =+=,Q 四边形ADEC 为平行四边形, ∴周长为3(3213)2623132+⨯=+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版八年级数学下册第六章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线2.在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.下列不能判定一个四边形是平行四边形的条件是()A.两组对角分别相等B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等4.只用下面的一种正多边形,不能进行平面镶嵌的是()A.正三角形B.正方形C.正五边形D.正六边形5.如图,▱ABCD的对角线AC,BD相交于点O,EF经过点O,分别交AD,BC于点E,F,已知▱ABCD的面积是20 cm2,则图中阴影部分的面积是()A.12 cm2B.10 cm2C.8 cm2D.5 cm26. 如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,CG⊥BF,垂足为点G,若BF =4,则线段CG 的长为( )A.152B .4 3C .215 D.557. 顺次连接平面上A ,B ,C ,D 四点得到一个四边形,从①AB ∥CD ;②BC =AD ;③∠A =∠C ;④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有( )A .5种B .4种C .3种D .1种8.如图,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF ,GH 的交点P 在BD 上,则图中面积相等的平行四边形有( )A .3对B .2对C .1对D .0对9.如图,在四边形ABCD 中,E ,F ,P ,Q 分别为AB ,AD ,BC ,CD 的中点.若∠ABC =90°,∠AEF =60°,则∠CPQ 的度数为( )A .15°B .30°C .45°D .60°10.如图,在▱ABCD 中,∠ABC =60°,BC =2AB =8,点C 关于AD 的对称点为E ,连接BE 交AD 于点F ,点G 为CD 的中点,连接EG ,BG.则△BEG 的面积为( )A .16 3B .14 3C .8 3D .73二.填空题(共8小题,3*8=24)11.一个多边形的内角和等于900°,则这个多边形是_________边形.12. 如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=______.13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.E是CD的中点,BD=12,则△DOE 的周长为________.14.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是____________.15.如图,面积为12 cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是BC的3倍,则四边形ACED的面积为_________.16.如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=22,则▱ABCD 的周长是________.17.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY 交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是___________.18.如图,点A,E,F,C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于点E,BF⊥AC于点F,且AB=CD,则当点E,F不重合时,BD与EF的关系是____________.三.解答题(共7小题,66分)19.(8分) 如图,在▱ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且AE =CF ,连接EF 交BD 于点O.求证:OB =OD.20.(8分) 是否存在一个多边形,它的每一个内角都相等且等于相邻外角的14?请说明理由.21.(8分) 如图,在平行四边形ABCD 中,E 为AB 边上的中点,连接DE 并延长,交CB 的延长线于点F.(1)求证:AD =BF ;(2)若平行四边形ABCD 的面积为32,试求四边形EBCD 的面积.22.(10分) 如图,▱ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.23.(10分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.24.(10分)如图,在平行四边形ABCD中,∠ABC,∠BCD的平分线交于点E,且点E刚好落在AD上,分别延长BE,CD交于点F.(1)AB与AD之间有什么数量关系?并证明你的猜想;(2)CE与BF之间有什么位置关系?并证明你的猜想.25.(12分) 在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与CD相交,且∠EAB=90°时,请你写出线段EG,AG,BG之间的数量关系,并证明你的结论.参考答案1-5CBDCD 6-10CCABB11. 七 12. 72° 13.15 14.3<x <11 15. 60 cm 2 16.8 17. 2≤a +2b≤5 18.互相平分19. 证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC.∴∠ADB =∠CBD.又∵AE =CF ,∴AE +AD =CF +BC.∴ED =FB.又∵∠EOD =∠FOB ,∴△EOD ≌△FOB(AAS).∴OB =OD.20. 解:不存在,理由如下:假设存在这样的一个多边形,设其一个外角的度数度为x°,则相邻的内角度数为180°-x°,由题意,得14x =180-x , 解得x =144,即这个多边形的每一个外角的度数都是144°,由多边形的外角和为360°,得这个多边形的边数为360°÷144°=2.5,因为多边形的边数应为整数,所以不存在这样的多边形.21. 解:(1)∵E 是AB 边上的中点,∴AE =BE.∵AD ∥BC ,∴∠ADE =∠F.在△ADE 和△BFE 中,∠ADE =∠F ,∠DEA =∠FEB ,AE =BE ,∴△ADE ≌△BFE.∴AD =BF(2)过点D 作DM ⊥AB 与M ,则DM 同时也是平行四边形ABCD 的高.∴S △AED =12×12AB·DM =14AB·DM =14×32=8, ∴S 四边形EBCD =S ▱ABCD -S △ADE =32-8=2422. 证明:如图所示.∵点O 为▱ABCD 对角线AC ,BD 的交点,∴OA =OC ,OB =OD.∵G ,H 分别为OA ,OC 的中点,∴OG =12OA ,OH =12OC. ∴OG =OH.又∵AB ∥CD ,∴∠1=∠2.在△OEB 和△OFD 中,⎩⎪⎨⎪⎧∠1=∠2,OB =OD ,∠3=∠4,∴△OEB ≌△OFD(ASA).∴OE =OF.∴四边形EHFG 为平行四边形.23.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AB =CD ,∴∠B =∠ECF.∵E 为BC 的中点,∴BE =CE.在△ABE 和△FCE 中,⎩⎪⎨⎪⎧∠B =∠ECF ,BE =CE ,∠AEB =∠FEC ,∴△ABE ≌△FCE.(2)解:CH ⊥DG.理由如下:由(1)知△ABE ≌△FCE ,∴AB =CF.∵AB =CD ,∴DC =CF ,即点C 为DF 的中点.∵H 为DG 的中点,∴CH ∥FG.∵DG ⊥AE ,∴CH ⊥DG.24. 解:(1)AD =2AB.证明如下:∵BF 平分∠ABC ,∴∠ABE =∠FBC.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠FBC =∠AEB ,∴∠AEB =∠ABE ,∴AB =AE ,同理可证:CD =DE ,∴AD =AE +ED =AB +CD =2AB.(2)CE ⊥BF.证明如下:∵BF 平分∠ABC ,∴∠ABC =2∠EBC ,∵CE 平分∠BCD ,∴∠BCD =2∠BCE.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°,∴2∠EBC +2∠BCE =180°,∴∠EBC +∠BCE =90°,∴∠BEC =90°,即CE ⊥BF.25. 解:(1)证明:如图①,作∠GAH =∠EAB 交GE 于点H ,设EF 与AB 相交于点P.则∠GAB =∠HAE.∵∠EAB =∠EGB ,∠APE =∠BPG ,∴∠ABG =∠AEH.在△ABG 和△AEH 中,⎩⎪⎨⎪⎧∠GAB =∠HAE ,AB =AE ,∠ABG =∠AEH ,∴△ABG ≌△AEH(ASA).∴BG =EH ,AG =AH.∵∠GAH =∠EAB =60°,∴△AGH 是等边三角形.∴AG =HG.∴EG =AG +BG.(2)EG =2AG -BG.证明如下:如图②,作∠GAH =∠EAB 交GE 的延长线于点H.∴∠GAB =∠HAE.∵∠EGB =∠EAB =90°,∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH.又∵AB =AE ,∴△ABG ≌△AEH ,∴BG =EH ,AG =AH.∵∠GAH =∠EAB =90°,∴△AGH 是等腰直角三角形. ∴2AG =HG.∴EG =2AG -BG.。