第三代MSTP关键技术专题
MSTP是多业务传送平台

MSTP是多业务传送平台(Multi-Service Transport Platform),又别称(MSPP,NG-SDH)。
它是以SD H平台为基础,同时实现TDM、ATM、以太网等业务的接入、处理和传送的技术。
MSTP完整概念首次亮相于1999年10月北京国际通信展。
2001年底,信产部委托华为公司主笔起草了MSTP的国家标准,该标准于2002年11月经审批之后正式发布。
2003年3月开始,由北京权威机构组织了MSTP互通性测试。
RPR是弹性分组环(Resilient Packet Transport Ring) Resilient Packet Ring 。
它是一种新的链路层协议。
从1999年开始由IEEE 802.17工作组对其进行标准化。
RPR是一种基于环形的带空间复用的传输方式,吸收了以太网的经济性和SDH的多种保护机制以及快速的倒换时间的优势。
在这里首先要声明的是,MSTP本身不是一种全新的网络,而是SDH的发展和延续。
众所周知,SDH原本是为传输话音业务而设计的,SDH由于其自身的优势所以在全世界的范围内都占据了非常大的份额。
有机构指出,在2001年时语音占总收入的百分比为60%,而到2006年则为46%。
以北美市场为例,2001年到2006年,语音服务将由接近70%降低到52%左右,而SDH又是支持话音业务的最成熟最广泛的传输技术。
所以,取代SDH设备是要花费运营商无法承受的金钱。
所以从金钱上来讲,MSTP就已经注定了它作为SDH延续或发展的性质。
MSTP的兼容性是它最大的优点。
一方面它支持各种速率从155Mb/s到10Gb/s甚至更高的各种速率话音业务,同时它又提供ATM处理、Ethernet透传以及Ethernet或RPR的L2交换功能来满足数据业务的汇聚、整合的需要。
MSTP经历了三个发展阶段,2001年国内行业标准《基于SDH多业务传送节点技术要求》中已经包含了“第一代”和“第二代”,两者之间的差别在于对二层交换的支持。
MSTP关键技术总结(个人整理和心得)

3.L2 交换模式:透传与交换
一个 WAN 口——一条 VCG(预先设定了路由和带宽) ;一个 LAN 口——FE/GE 口 以太网的透传模式:类 E1 专线,不需知道 MAC 地址,FE 端口与 VCG 为一对一映射 (不考虑保护) ,其映射关系通过网管固化。MSTP 专线对于业务终端设备来说只是一条透 明通道。第一代 MSTP 只支持透传,缺点在于:汇聚节点耗用 LAN 口数过多;不提供以太 网业务层保护;支持的业务带宽粒度受限于 SDH 的虚容器,最小为 2Mbps;不提供不同以 太网业务的 QoS 区分;不提供流量控制;不提供业务层(MAC 层)上的多用户隔离。第一 代 MSTP 在支持数据业务时的不适应性导致了第二代 MSTP 解决方案的产生。 以太网的交换模式:第二代 MSTP 以支持二层交换为主要特点。MSTP 交换板卡=二层 交换机,可识别 MAC 地址,实现任意端口(包括 LAN 口和 WAN 口)到任意端口的转发。 可以在 LAN 口和 WAN 口之间实现基于以太网链路层的数据包交换。多个以太网物理接口 可以对应一个 VCG(称为共享) ,一个以太网物理接口也可以对应多个 VCG(称为汇聚) 。 汇聚用于主站的 MSTP,汇聚多个端站的专线,在同一个 FE 接口上送主站。共享用于在站 里没有其他汇聚交换机时,汇接不同业务终端,送往同一个目的地。 下图示例了两种模式的区别:透传模式,调度中心的 MSTP 板卡需占用 6 个 FE 口,而 在交换模式下只需占用 2 个 FE 口,但传输网络开的带宽都是 6 条。同理,如同一远动端站 要同时送往多个调度端的远动主站,在交换模式下也只需 1 个 FE 口,通过 MAC 地址区分 信道, 这个场景比较多。 我认为需要开传输网专线、 两端没有交换机时时用交换模式比较好, 而承载调度数据网/综合数据网链路时用透传模式即可。 交换模式下的 MSTP 和以太网交换机一样,支持 VLAN 和 STP 等功能。
MSTP和SDH

第二代MSTP:MSTP以太网二层交换功能是指在一个或多个用户以太网接口与一个或多个独立的基于SDH虚容器的点对点链路之间,实现基于以太网链路层的数据帧交换。
第三代MSTP:在数据业务和传输虚容器之间引入智能适配层(1.5层)、采用PPP/LAPS/GFP高速封装协议、支持虚级联和链路容量自动调整(LCAS)机制,因此可支持多点到多点的连接、具有可扩展性、支持用户隔离和带宽共享、支持以太网业务QoS、SLA增强、阻塞控制,公平接入以及提供业务层环网保护。
传统SDH技术来承载数据业务的网络通常是通过PoS将数据包映射到SDH的VCห้องสมุดไป่ตู้,该方式实际上是在使用基于传输设备的一种点到点的“专线”,要求预先确定带宽,大多数业务量以E1、E3、STM-1/4的粒度以专用“管道”形式进入网络。
针对以太网数据具有突发和不定长的特性,引入中间智能适配层(1.5层)、采用PPP/LAPS/GFP高速封装协议、支持虚级联和链路容量自动调整(LCAS)机制,完成以太数据封装,实现到SDH VC的帧映射。支持多点到多点的连接、具有可扩展性、支持用户隔离和带宽共享、支持以太网业务QoS、SLA增强、阻塞控制,公平接入以及提供业务层环网保护。
MSTP是基于SDH的多业务传输平台,从各厂商商用的MSTP看,除了具有SDH功能外,还具有Ethernet功能和ATM功能。伴随着电信网络的发展,MSTP的技术也在不断进步,主要体现在对以太网业务的处理上,共经历了从支持以太网透传的第一代MSTP、支持二层交换的第二代MSTP和当前支持以太网业务QoS的第三代MSTP三步。
MSTP、SDH+ATM、OTN、RPR四种技术的比较

MSTP、SDH+ATM、OTN、RPR四种技术的比较以下是我对四种常用于轨道交通传输组网技术的比较分析,不正之处欢迎指出,大家一起讨论:a)MSTPMSTP技术自问世以来已经发展到了第三代,它继承了SDH的一切优点,并与接入技术配合,能够很好地满足上述承载业务的特性要求。
MSTP技术具有下列特点:可以兼容PDH的网络体系,支持多种物理接口。
简化网络结构,支持多协议处理。
如:PPP、ML-PPP、LAPS、GFP等。
支持以太网业务透传、二层汇聚、二层交换,可实现对以太网业务的带宽共享以及统计复用、带宽管理和环路保护功能。
支持VP-Ring保护,可以和SDH的通道保护和复用段保护协同处理。
传输的高可靠性和自愈保护恢复功能。
MSTP继承了SDH的各种保护特性,实现99.99%的工作时间、硬件冗余、小于50ms的通道保护恢复时间,这些对提高服务质量至关重要。
具有622M、2.5G和10G平滑升级、扩容能力,并可与波分复用技术相结合,满足用户更大的带宽需求。
高度多网元功能集成,有效的带宽按需分配、管理。
支持弹性分组环(RPR)和多协议标志交换(MPLS)等新技术的应用。
技术的发展是永恒的,随着弹性分组环(RPR)、多协议标志交换(MPLS)等新技术在MSTP平台上的应用日趋成熟,MSTP技术在网络保护、带宽按需分配、流量控制等方面更具有优势。
第三代MSTP技术最明显的特点是引入了RPR over SDH,以及引入MPLS保证QoS并解决接入带宽公平性的问题,支持虚级联和链路容量自动调整(LCAS)机制,支持多点到多点的连接。
综上所述,MSTP技术可实现城市轨道交通系统通信网络和业务的综合化和一体化。
既简化了网络层次,提高了带宽的使用效率,又降低了通信系统的运营维护成本,可供选择的厂家较多,主要有阿尔卡特、马可尼、ECI、朗迅、北电网络、泰乐、中兴、华为等。
MSTP 技术已经成为轨道交通通信网传输系统制式的选择之一。
MSTP技术及其在WCDMA本地传输网中的应用

、
前 言
术革 新 , 是对 已 有成 熟 技 术 的组 合 应 用 和 优 化 , 正 是 MS P的生 命 而 这 T
20 0 9年 , 中国迎来 了第三代 移动通信 ( G) 3 网络的大 规模建设 时 代 , 大运营商都将 3 各 G建设作 为 自己的首要任 务 , 同时也将 3 G业务 作为 自己的第一 品牌来推广, 消费者期盼已久的 3 G大规模正式商用 已 指 日可 待 。 作为移动通信 中的一个重要组成部分,传输 网络 的好坏直接影响 着 无 线 网 络 质量 、 务 质 量 以及 移 动 运 营 商 的成 本 。 由于 3 服 G业 务 网 包 含语音 、 数据 和多媒体业务 , 因此网络在不同的区域和发展阶段有着不 同的特性 , 虑到网络扩展性和灵 活性 , 考 多业务传输 平台 ( T 被认 MS P) 为是 比较 理想 的组 网选 择 。本文 首 先 简 单 介 绍 了 MS P的 关键 技 术 , T 然 后 以苏州联通 WC MA本地传输网为例 , D 详细介绍 了 MS P技术在 3 T G 传输 网络中的应用 。 二、 T MS P技 术
科技信息
计 算机 与 网络
MS P技市及其在 WC MA本地传输网巾昀应用 T D
苏州职业 大学 成珏飞 中 国联通 苏州分公 司 毕 晓峰
[ 摘 要 ] T ( l— evc rnp rPa om) 基于 S MS P Mut Sri i eT asot lfr t DH 的多业务 传送 平台, 提供 T MD、 M、 AT 以太网业务的接入 、 处理和传 送 。本 文首 先 简要 介 绍 了 MS P技 术及 其 优 势 , T 然后 以具 体 组 网为例 介 绍 了 MS P在 W CDMA 本地 传 输 网 中的 应 用 。 T [ 关键词 ] 多业务传输 平台( T M太网的二层交换 技术 、T D A M技术都已经十分成 熟 了 , 着 广 泛 的 市 场基 础 , 数 据 业 务 才 是 未 来 网 络 的 主 导 。 这样 看 有 但 来, 抛开现实去豪赌未来 的技术选择倾 向是不现实 的。MS P正好 满足 T 了“ 立足现状 , 放眼未来 ” 的战略 , 当前的 3 在 G传输 网技术 中是 比较好
MSTP概念详解

MSTP概念MSTP(基于SDH 的多业务传送平台)是指,基于SDH 平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点。
基于SDH的多业务传送节点除应具有标准SDH传送节点所具有的功能外,还具有以下主要功能特征。
(1)具有TDM业务、ATM业务或以太网业务的接入功能;(2)具有TDM业务、ATM业务或以太网业务的传送功能包括点到点的透明传送功能;(3)具有ATM业务或以太网业务的带宽统计复用功能;(4)具有ATM业务或以太网业务映射到SDH虚容器的指配功能。
基于SDH 的多业务传送节点可根据网络需求应用在传送网的接入层、汇聚层,应用在骨干层的情况有待研究。
城域网是当前电信运营商争夺的焦点,目前城域网组网技术种类繁多,大致包括基于SDH结构的城域网、基于以太网结构的城域网、基于ATM结构的城域网和基于DWDM结构的城域网。
其实,SDH、ATM、 Ethernet 、WDM等各种技术也都在不断吸取其他技术的长处,互相取长补短,即要实现快速传输,又要满足多业务承载,另外还要提供电信级的QoS,各种城域网技术之间表现出一种融合的趋势。
2 MSTP工作原理MSTP可以将传统的SDH复用器、数字交叉链接器(DXC)、WDM终端、网络二层交换机和IP 边缘路由器等多个独立的设备集成为一个网络设备,即基于SDH技术的多业务传送平台(MSTP),进行统一控制和管理。
基于SDH的MSTP最适合作为网络边缘的融合节点支持混合型业务,特别是以TDM业务为主的混合业务。
它不仅适合缺乏网络基础设施的新运营商,应用于局间或POP间,还适合于大企事业用户驻地。
而且即便对于已敷设了大量SDH网的运营公司,以SDH为基础的多业务平台可以更有效地支持分组数据业务,有助于实现从电路交换网向分组网的过渡。
所以,它将成为城域网近期的主流技术之一。
这就要求SDH必须从传送网转变为传送网和业务网一体化的多业务平台,即融合的多业务节点。
MSTP技术介绍

MSTP(多业务传送平台)专辑(一)本专辑内容提要:随着城域数据业务的高速发展,电信城域网正面临深刻的变革—既要保证传统电信业务的实现,又要确保基于数据通信的多业务的承载。
MSTP正是满足了电信宽带城域网迅猛发展的业务需求,才被电信运营商所认可。
本专辑摘录了一组有关MSTP技术发展动态的文章,供读者参考。
目录1、MSTP为城域网带来什么2、MSTP该用在哪里3、基于SDH的MSTP技术分析4、从城域传送网技术与组网策略看MSTP5、MSTP撑起城域数据业务的桥梁6、MSTP加速城域网盈利进程MSTP为城域网带来什么一、“城域裂缝”在过去的几年中,为了适应快速增长的宽带业务需求,人们投入大量的精力改造了用户侧的接入网,目前的各种宽带接入技术如xDSL接入、以太网接入、HFC 接入、LMDS接入等,都能够比较好地疏通接入网的瓶颈,具备提供各种宽带数据、视频、音频业务的能力。
另一方面,由于DWDM技术的广泛应用,长途干线网的容量正向着T比特级进军,核心路由器的处理能力也达到了T比特级,干线网的巨大传输容量已经成为网络发展的坚实基础。
但是,在接入网和干线网高速发展的同时,传统的本地网的容量和接口能力都难以满足业务疏导、汇聚的要求,于是出现了所谓的“城域裂缝”。
二、MSTP的使命人们提出了多种方案来解决上述的“城域裂缝”问题,总的称之为MSPP(多业务提供平台,Multi-Service Provisioning Platform)。
在目前来说,MSPP主要包含三个流派:WDM流派、SONET/SDH流派、纯数据流派。
不论是哪一类的MSPP 技术,总的来说都具有多种业务承载能力集于一身的特点,而且容量普遍比较大,还有就是可解决网络的可靠性问题。
人们没有放弃目前的主流传输技术SDH,并对其作了各种改动,以期能够适应多业务的承载环境。
改动SDH的方向有两个:一个是简化,另一个是增强。
简化的SDH在这里姑且称之为SDHlite。
中国联通运维人员岗位培训传输MSTP技术培训

PPT文档演模板
中国联通运维人员岗位培训传输 MSTP技术培训
新一代SDH的演进背景
既可以在完全与时钟同步下,又可以在准同步工作。 支持保护倒换机制。 远程配置开创了网络的可控制性。
PPT文档演模板
中国联通运维人员岗位培训传输 MSTP技术培训
MSTP设计的针对性
多业务接入 QOS能力 网络的快速配置 线路接口数量和交叉连接容量的增大 更为容易地实现网络速率的升级与拓扑的改进
PPT文档演模板
中国联通运维人员岗位培训传输 MSTP技术培训
以太网点到点透传MSTP(第一代MSTP)
MSTP以太网接口的信号直接映射到SDH的虚容器(VC)中,进行点 到点传送
以太网透传租线业务 业务粒度受限于VC,一般最小为2Mbps 不能提供不同以太网业务的QoS区分 不提供流量控制 不提供多个以太网业务流的统计复用和带宽共享 保护完全基于SDH物理层,不提供以太网业务层保护
PPT文档演模板
为2Mbps 4)VLAN的4096地址空间使其在核心节点的扩展能力很受限制,不适合大
型城域公网应用
PPT文档演模板
中国联通运维人员岗位培训传输 MSTP技术培训
以太网二层交换MSTP(第二代MSTP)
节点处在环上不同位置时,其业务的接入是不公平的 MAC地址的学习/维护以及MAC地址表影响系统性能 基于802.3x的流量控制只是针对点到点链路 多用户/业务的带宽共享是对本地接口而言,还不能对整
基于SDH的MSTP的系统模型
•PDH 接口 •ATM 接口
•以太 网接口
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三代MSTP关键技术专题华为技术有限公司版权所有侵权必究修订记录目录1MSTP概述 (5)2第三代MSTP关键技术 (6)3结语 (8)关键词:城域网,MSTP,MPLS,RPR摘要:首先概述了MSTP技术发展的三个阶段,接着详细介绍了第三代MSTP技术中虚级联、通用成帧规程、链路容量调整机制和智能适配层等关键技术,并对实现智能适配层的MPLS和RPR技术进行了介绍和比较。
缩略语清单:无。
参考资料清单:无第三代MSTP关键技术专题1 MSTP概述近年来,不断增长的IP数据、话音、图像等多种业务传送需求使得用户接入及驻地网的宽带化技术迅速普及起来,同时也促进了传输骨干网的大规模建设。
由于业务的传送环境发生了巨大变化,原先以承载话音为主要目的的城域网在容量以及接口能力上都已经无法满足业务传输与汇聚的要求。
于是,多业务传送平台(MSTP)技术应运而生。
MSTP技术的发展主要体现在对以太网业务的支持上,以太网新业务的QoS要求推动着MSTP的发展。
一般认为 MSTP技术发展可以划分为三个阶段。
第一代MSTP的特点是提供以太网点到点透传。
它是将以太网信号直接映射到SDH的虚容器(VC)中进行点到点传送。
在提供以太网透传租线业务时,由于业务粒度受限于VC,一般最小为2Mbit/s 因此,第一代MSTP还不能提供不同以太网业务的QoS区分、流量控制、多个以太网业务流的统计复用和带宽共享以及以太网业务层的保护等功能。
第二代MSTP的特点是支持以太网二层交换。
它是在一个或多个用户以太网接口与一个或多个独立的基于SDH虚容器的点对点链路之间实现基于以太网链路层的数据帧交换。
相对于第一代MSTP,第二代MSTP作了许多改进,它可提供基于802.3x的流量控制、多用户隔离和VLAN划分、基于STP的以太网业务层保护以及基于802.1p的优先级转发等多项以太网方面的支持。
目前正在使用的MSTP产品大多都属于第二代MSTP技术。
但是,与以太网业务需求相比,第二代MSTP仍然存在着许多的不足,比如不能提供良好的QoS支持,业务带宽粒度仍然受限于VC,基于STP的业务层保护时间太慢,VLAN功能也不适合大型城域公网应用,还不能实现环上不同位置节点的公平接入,基于802.3x的流量控制只是针对点到点链路,等等。
最近才出现的第三代MSTP的特点是支持以太网QoS。
在第三代MSTP中,引入了中间的智能适配层、通用成帧规程(GFP:Generic Framing Procedure)高速封装协议、虚级联和链路容量调整机制(LCAS)等多项全新技术。
因此,第三代MSTP可支持QoS、多点到多点的连接、用户隔离和带宽共享等功能,能够实现业务等级协定(SLA)增强、阻塞控制以及公平接入等。
此外,第三代MSTP还具有相当强的可扩展性。
可以说,第三代MSTP为以太网业务发展提供了全面的支持。
2 第三代MSTP关键技术1、虚级联VC的级联概念是在ITU-T G.7070中定义的,分为相邻级联和虚级联两种。
SDH中用来承载以太网业务的各个VC在SDH的帧结构中是连续的,共用相同的通道开销(POH),此种情况称为相邻级联,有时也直接简称为级联。
SDH中用来承载以太网业务的各个VC在SDH的帧结构中是独立的,其位置可以灵活处理,此种情况称为虚级联。
从原理上讲,可以将级联和虚级联看成是把多个小的容器组合为一个比较大的容器来传输数据业务的技术。
通过级联和虚级联技术,可以实现对以太网带宽和SDH虚通道之间的速率适配。
尤其是虚级联技术,可以将从VC-4到VC-12等不同速率的小容器进行组合利用,能够做到非常小颗粒的带宽调节,相应的级联后的最大带宽也能在很小的范围内调节。
虚级联技术的特点就是实现了使用SDH经济有效地提供合适大小的信道给数据业务,避免了带宽的浪费,这也是虚级联技术最大的优势。
2、通用成帧规程GFP是在ITU-T G.7041中定义的一种链路层标准 它既可以在字节同步的链路中传送长度可变的数据包,又可以传送固定长度的数据块,是一种简单而又灵活的数据适配方法。
GFP采用了与ATM技术相似的帧定界方式,可以透明地封装各种数据信号,利于多厂商设备互联互通;GFP引进了多服务等级的概念,实现了用户数据的统计复用和QoS功能。
GFP采用不同的业务数据封装方法对不同的业务数据进行封装,包括GFP-F和GFP-T两种方式。
GFP-F封装方式适用于分组数据,把整个分组数据(PPP、IP、RPR、以太网等)封装到GFP负荷信息区中,对封装数据不做任何改动,并根据需要来决定是否添加负荷区检测域。
GFP-T封装方式则适用于采用8B/10B编码的块数据,从接收的数据块中提取出单个的字符,然后把它映射到固定长度的GFP帧中。
3、链路容量调整机制LCAS是在ITU-T G.7042中定义的一种可以在不中断数据流的情况下动态调整虚级联个数的功能,它所提供的是平滑地改变传送网中虚级联信号带宽以自动适应业务带宽需求的方法。
LCAS是一个双向的协议,它通过实时地在收发节点之间交换表示状态的控制包来动态调整业务带宽。
控制包所能表示的状态有固定、增加、正常、EOS(表示这个VC是虚级联信道的最后一个VC)、空闲和不使用六种。
LCAS可以将有效净负荷自动映射到可用的VC上,从而实现带宽的连续调整,不仅提高了带宽指配速度、对业务无损伤,而且当系统出现故障时,可以动态调整系统带宽,无须人工介入,在保证服务质量的前提下显著提高网络利用率。
一般情况下,系统可以实现在通过网管增加或者删除虚级联组中成员时,保证“不丢包”;即使是由于“断纤”或者“告警”等原因产生虚级联组成员删除时,也能够保证只有少量丢包。
4、智能适配层虽然在第二代MSTP中也支持以太网业务,但却不能提供良好的QoS支持,其中一个主要原因就是因为现有的以太网技术是无连接的。
为了能够在以太网业务中引入QoS,第三代MSTP在以太网和SDH/SONET之间引入了一个智能适配层,并通过该智能适配层来处理以太网业务的QoS要求。
智能适配层的实现技术主要有多协议标签交换(MPLS)和弹性分组环(RPR)两种。
(1)多协议标签交换MPLS是1997年由思科公司提出,并由IETF制定的一种多协议标签交换标准协议,它利用2.5层交换技术将第三层技术(如IP路由等)与第二层技术(如ATM、帧中继等)有机地结合起来,从而使得在同一个网络上既能提供点到点传送,也可以提供多点传送;既能提供原来以太网尽力而为的服务,又能提供具有很高QoS要求的实时交换服务。
MPLS技术使用标签对上层数据进行统一封装,从而实现了用SDH承载不同类型的数据包。
这一过程的实质就是通过中间智能适配层的引入,将路由器边缘化,同时又将交换机置于网络中心,通过一次路由、多次交换将以太网的业务要求适配到SDH信道上,并通过采用GFP高速封装协议、虚级联和LCAS,将网络的整体性能大幅提高。
基于MPLS的第三代MSTP设备不但能够实现端到端的流量控制,而且还具有公平的接入机制与合理的带宽动态分配机制,能够提供独特的端到端业务QoS功能。
另外,通过嵌入二层MPLS技术,允许不同的用户使用同样的VLAN ID,从根本上解决了VLAN地址空间的限制。
再有,由于MPLS中采用标签机制,路由的计算可以基于以太网拓扑,大大减少了路由设备的数量和复杂度,从整体上优化了以太网数据在MSTP中的传输效率,达到了网络资源的最优化配置和最优化使用。
(2)弹性分组环RPR是IEEE定义的如何在环形拓扑结构上优化数据交换的MAC层协议,RPR可以承载以太网业务、IP/MPLS业务、视频和专线业务,其目的在于更好地处理环形拓扑上数据流的问题。
RPR环由两根光纤组成,在进行环路上的分组处理时,对于每一个节点,如果数据流的目的地不是本节点的话,就简单地将该数据流前传,这就大大地提高了系统的处理性能。
通过执行公平算法,使得环上的每个节点都可以公平地享用每一段带宽,大大提高了环路带宽利用率,并且一条光纤上的业务保护倒换对另一条光纤上的业务没有任何影响。
RPR是一种专门为环形拓扑结构构造的新型MAC协议,具有灵活、可靠等特点。
它能够适应任何标准(如SDH、以太网、DWDM等)的物理层帧结构,可有效地传送话音、数据、图像等多种类型的业务,支持SLA以及二层和三层功能,提供多等级、可靠的QoS服务 支持动态的网络拓扑更新。
其节点间可采用类似OSPF的算法交换拓扑识别信令并具有防止分组死循环的机制,增加了环路的自愈能力。
另外,RPR还具有较强的兼容性和良好的扩展性,具有TDM、SDH、以太网、POS等多种类多速率端口,能够承载IP、SDH、TDM、ATM、以太网等多种协议的业务 还可以方便地增加传输线路、传输带宽或插入新的网络节点,对将来可能出现的新业务、协议或物理层规范具有良好的适应性。
再有,由于RPR环路每个节点都掌握环路拓扑结构和资源情况,并根据实际情况调整环路带宽分配情况,所以网管人员并不需要对节点间资源分配进行太多干预,减少了人工配置所带来的人为错误。
RPR使得运营商能够在城域网内以较低成本提供电信级服务,是一种非常适合在城域网骨干层、汇聚层使用的技术。
(3)MPLS技术与RPR技术比较MPLS技术与RPR技术各有优缺点。
MPLS技术通过LSP标签栈突破了VLAN在核心节点的4096地址空间限制,并可以为以太网业务QoS、SLA增强和网络资源优化利用提供很好的支持;而RPR技术为全分布式接入,提供快速分组环保护,支持动态带宽分配、空间重用和额外业务。
从对整个城域网网络资源的优化功能来看,MPLS技术可以从整个城域网网络结构上进行资源的优化,完成最佳的统计复用,而RPR技术只能从局部(在一个环的内部)而不是从整个网络结构对网络资源进行优化。
从整个城域网的设备构成复杂性上来看,使用MPLS技术可以在整个城域网上避免第三层路由设备的引入,而RPR设备在环与环之间相连接时,却不可避免地要引入第三层路由设备。
从保护恢复来看,虽然MPLS技术也能提供网络恢复功能,但是RPR却能提供更高的网络恢复速度。
目前RPR技术已经为大多数厂商所采用,在市场上具有相对优势。
3 结语随着对业务种类和带宽需求的进一步增长,城域网必须要灵活可靠、具有大容量和良好的可扩展性、支持多协议和多业务、有灵活的电路调度和业务管理能力,从而使运营商在保护既往投资的同时,又能够灵活、快速地进行网络扩容和开展新业务,进而降低运营成本,增加业务收入,提升自身的竞争优势。
在城域网的建设中,虚级联可以提供一种更加灵活的信道容量组织方式以更好地满足数据业务的传输特点;LCAS可以提供一系列动态改变传送信道容量的规约和步骤;GFP可以提供一种对于以帧为单位组织的数据业务的简单有效的封装方式;MPLS和RPR可以提供大量数据业务传输的能力。