Synthesis, sintering and characterization of PLZST perovskite prepared by a lactate precursor route

合集下载

Materials Characterization

Materials Characterization

Materials Characterization Materials characterization is a crucial aspect of scientific research and development. It involves the study and analysis of the physical, chemical, and mechanical properties of materials. By understanding these properties, scientists and engineers can design materials with specific characteristics and improve existing materials for various applications. In this response, I will discuss the importance of materials characterization from multiple perspectives, including scientific, engineering, and industrial. From a scientific perspective, materials characterization plays a vital role in advancing our understanding of the fundamental properties of matter. By studying the structure and composition of materials at the atomic and molecular level, scientists can gain insights into the behavior and properties of different materials. For example, techniques such as X-ray diffraction and electron microscopy can provide information about the crystal structure and morphology of materials, helping scientists understand how these factors influence material properties. This knowledge is essential for developing new materials with tailored properties for specific applications. From an engineering perspective, materials characterization is essential for designing and selecting materials that can withstand specific conditions and perform optimally in different applications. For instance, in the aerospace industry, materials used in aircraft components need to have high strength, low weight, and resistance to high temperatures. By characterizing the mechanical properties of different materials, engineers can determine which materials are suitable for specific applications. This ensures the safety and reliability of engineering structures and devices. From an industrial perspective, materials characterization iscrucial for quality control and product development. Manufacturers need to ensure that their materials meet certain specifications and standards to guarantee the performance and durability of their products. By characterizing the properties of materials, such as hardness, tensile strength, and corrosion resistance, manufacturers can assess the suitability of materials for different applications. This helps in improving product quality and reducing the risk of failure or malfunction. Moreover, materials characterization also plays a significant role in the field of nanotechnology. As materials are miniaturized to the nanoscale,their properties can change drastically. Therefore, it is essential to characterize the size, shape, and composition of nanoparticles accurately. This information is crucial for understanding their behavior and interactions with other materials. Nanoparticles find applications in various fields, such as electronics, medicine, and energy, and their properties need to be thoroughly characterized to ensure their safe and effective use. In addition to scientific, engineering, and industrial perspectives, materials characterization also has societal implications. For instance, the development of new materials with improved properties can lead to technological advancements that benefit society. Materials with higher strength and lighter weight can contribute to the development of more fuel-efficient vehicles, reducing carbon emissions and combating climate change. Similarly, the development of materials with enhanced electrical conductivity can lead to the production of more efficient electronic devices, improving communication and connectivity. In conclusion, materials characterization is of utmost importance from multiple perspectives. It enables scientists to understand the fundamental properties of matter, engineers to design and select materials for specific applications, and manufacturers to ensure product quality. Moreover, materials characterization plays a significant role in the field of nanotechnology and has societal implications, contributing to technological advancements and addressing global challenges. Therefore, continued research and development in materials characterization are crucial for the progress of science, engineering, and society as a whole.。

材料专业词汇大全

材料专业词汇大全

-可编辑材料科学专业学术翻译必备词汇编号中文英文1合金alloy 2材料material 3复合材料properties 4制备preparation 5强度strength 6力学mechanical 7力学性能mechanical 8复合composite 9薄膜films 10基体matrix 11增强reinforced 12非晶amorphous 13基复合材料composites14纤维fiber 15纳米nanometer 16金属metal 17合成synthesis 18界面interface 19颗粒particles 20法制备prepared 21尺寸size 22形状shape 23烧结sintering 24磁性magnetic 25断裂fracture 26聚合物polymer 27衍射diffraction 28记忆memory 29陶瓷ceramic 30磨损wear 31表征characterization 32拉伸tensile 33形状记忆memory 34摩擦friction 35碳纤维carbon36粉末powder 37溶胶sol-gel 38凝胶sol-gel 39应变strain 40性能研究properties 41晶粒grain 42粒径size 43硬度hardness 44粒子particles 45涂层coating 46氧化oxidation 47疲劳fatigue 48组织microstructure49石墨graphite 50机械mechanical 51相变phase 52冲击impact 53形貌morphology 54有机organic 55损伤damage 56有限finite 57粉体powder 58无机inorganic 59电化学electrochemical 60梯度gradient 61多孔porous 62树脂resin 63扫描电镜sem 64晶化crystallization 65记忆合金memory 66玻璃glass 67退火annealing 68非晶态amorphous 69溶胶-凝胶sol-gel 70蒙脱土montmorillonite 71样品samples 72粒度size73耐磨wear 74韧性toughness 75介电dielectric 76颗粒增强reinforced 77溅射sputtering 78环氧树脂epoxy 79纳米tio tio 80掺杂doped 81拉伸强度strength 82阻尼damping 83微观结构microstructure84合金化alloying 85制备方法preparation 86沉积deposition87透射电镜tem 88模量modulus 89水热hydrothermal90磨损性wear 91凝固solidification 92贮氢hydrogen 93磨损性能wear 94球磨milling 95分数fraction 96剪切shear 97氧化物oxide 98直径diameter 99蠕变creep 100弹性模量modulus 101储氢hydrogen 102压电piezoelectric 103电阻resistivity 104纤维增强composites 105纳米复合材料preparation 106制备出prepared 107磁性能magnetic 108导电conductive109晶粒尺寸size 110弯曲bending 111光催化tio-可编辑112非晶合金amorphous 113铝基复合材料composites 114金刚石diamond 115沉淀precipitation 116分散dispersion 117电阻率resistivity 118显微组织microstructure119sic 复合材料sic 120硬质合金cemented 121摩擦系数friction 122吸波absorbing 123杂化hybrid 124模板template 125催化剂catalyst 126塑性plastic 127晶体crystal 128sic 颗粒sic 129功能材料materials 130铝合金alloy 131表面积surface 132填充filled 133电导率conductivity 134控溅射sputtering 135金属基复合材料composites 136磁控溅射sputtering 137结晶crystallization 138磁控magnetron 139均匀uniform 140弯曲强度strength 141纳米碳carbon 142偶联coupling 143电化学性能electrochemical 144及性能properties 145al 复合材料composite 146高分子polymer 147本构constitutive148晶格lattice 149编织braided150断裂韧性toughness 151尼龙nylon 152摩擦磨损性friction 153耐磨性wear 154摩擦学tribological 155共晶eutectic 156聚丙烯polypropylene 157半导体semiconductor158偶联剂coupling 159泡沫foam 160前驱precursor 161高温合金superalloy 162显微结构microstructure163氧化铝alumina 164扫描电子显微镜sem 165时效aging 166熔体melt 167凝胶法sol-gel 168橡胶rubber 169微结构microstructure170铸造casting 171铝基aluminum 172抗拉强度strength 173导热thermal 174透射电子显微镜tem 175插层intercalation 176冲击强度impact 177超导superconducting 178记忆效应memory 179固化curing 180晶须whisker 181溶胶-凝胶法制sol-gel 182催化catalytic 183导电性conductivity184环氧epoxy 185晶界grain 186前驱体precursor 187机械性能mechanical188抗弯strength 189粘度viscosity 190热力学thermodynamic 191溶胶-凝胶法制备sol-gel 192块体bulk 193抗弯强度strength 194粘土clay 195微观组织microstructure196孔径pore 197玻璃纤维glass 198压缩compression199摩擦磨损wear 200马氏体martensitic 201制得prepared 202复合材料性能composites 203气氛atmosphere 204制备工艺preparation205平均粒径size 206衬底substrate 207相组成phase 208表面处理surface 209杂化材料hybrid 210材料中materials 211断口fracture 212增强复合材料composites 213马氏体相变transformation214球形spherical 215混杂hybrid 216聚氨酯polyurethane 217纳米材料nanometer 218位错dislocation 219纳米粒子particles 220表面形貌surface 221试样samples 222电学properties 223有序ordered 224电压voltage-可编辑225析出phase 226拉伸性tensile 227大块bulk 228立方cubic 229聚苯胺polyaniline 230抗氧化性oxidation 231增韧toughening232物相phase 233表面改性modification234拉伸性能tensile 235相结构phase 236优异excellent 237介电常数dielectric 238铁电ferroelectric 239复合材料力学性能composites240碳化硅sic 241共混blends 242炭纤维carbon 243复合材料层composite 244挤压extrusion 245表面活性剂surfactant 246阵列arrays 247高分子材料polymer 248应变率strain 249短纤维fiber 250摩擦学性能tribological 251浸渗infiltration 252阻尼性能damping 253室温下room 254复合材料层合板composite 255剪切强度strength 256流变rheological257磨损率wear 258化学气相沉积deposition 259热膨胀thermal 260屏蔽shielding 261发光luminescence 262功能梯度functionally263层合板laminates 264器件devices 265铁氧体ferrite 266刚度stiffness 267介电性能dielectric268xrd 分析xrd 269锐钛矿anatase 270炭黑carbon 271热应力thermal 272材料性能properties 273溶胶-凝胶法sol-gel 274单向unidirectional275衍射仪xrd 276吸氢hydrogen 277水泥cement 278退火温度annealing 279粉末冶金powder 280溶胶凝胶sol-gel 281熔融melt 282钛酸titanate 283磁合金magnetic 284脆性brittle 285金属间化合物intermetallic 286非晶态合金amorphous 287超细ultrafine 288羟基磷灰石hydroxyapatite 289各向异性anisotropy 290镀层coating 291颗粒尺寸size 292拉曼raman 293新材料materials294tic 颗粒tic 295孔隙率porosity 296制备技术preparation 297屈服强度strength 298金红石rutile 299采用溶胶-凝胶sol-gel 300电容量capacity 301热电thermoelectric302抗菌antibacterial 303聚酰亚胺polyimide 304二氧化硅silica 305放电容量capacity 306层板laminates 307微球microspheres 308熔点melting 309屈曲buckling 310包覆coated 311致密化densification 312磁化强度magnetization313疲劳寿命fatigue 314本构关系constitutive 315组织结构microstructure 316综合性能properties 317热塑性thermoplastic 318形核nucleation 319复合粒子composite 320材料制备preparation 321晶化过程crystallization 322层间interlaminar 323陶瓷基ceramic 324多晶polycrystalline 325纳米结构nanostructures 326纳米复合composite 327热导率conductivity 328空心hollow 329致密度density 330x 射线衍射仪xrd 331层状layered 332矫顽力coercivity 333纳米粉体powder 334界面结合interface 335超导体superconductor 336衍射分析diffraction 337纳米粉powders 338磨损机理wear 339泡沫铝aluminum-可编辑340进行表征characterized 341梯度功能gradient 342耐磨性能wear 343平均粒particle 344聚苯乙烯polystyrene 345陶瓷基复合材料composites 346陶瓷材料ceramics 347石墨化graphitization348摩擦材料friction 349熔化melting 350多层multilayer 351及其性能properties 352酚醛树脂resin 353电沉积electrodeposition 354分散剂dispersant 355相图phase 356复合材料界面interface 357壳聚糖chitosan 358抗氧化性能oxidation 359钙钛矿perovskite 360分层delamination 361热循环thermal 362氢量hydrogen 363蒙脱石montmorillonite 364接枝grafting 365导率conductivity 366放氢hydrogen 367微粒particles 368伸长率elongation 369延伸率elongation 370烧结工艺sintering 371层合laminated 372纳米级nanometer 373莫来石mullite 374磁导率permeability375填料filler 376热电材料thermoelectric377射线衍射ray 378铸造法casting 379粒度分布size 380原子力afm381共沉淀coprecipitation 382水解hydrolysis 383抗热thermal 384高能球ball 385干摩擦friction 386聚合物基polymer 387疲劳裂纹fatigue 388分散性dispersion 389硅烷silane 390弛豫relaxation 391物理性能properties 392晶相phase 393饱和磁化强度magnetization 394凝固过程solidification 395共聚物copolymer 396光致发光photoluminescence 397薄膜材料films 398导热系数conductivity399居里curie 400第二相phase 401复合材料制备composites 402多孔材料porous 403水热法hydrothermal404原子力显微镜afm 405压电复合材料piezoelectric406尼龙6nylon 407高能球磨milling 408显微硬度microhardness 409基片substrate 410纳米技术nanotechnology 411直径为diameter 412织构texture 413氮化nitride414热性能properties 415磁致伸缩magnetostriction 416成核nucleation 417老化aging 418细化grain 419压电材料piezoelectric 420纳米晶amorphous421si 合金si 422复合镀层composite 423缠绕winding 424抗氧化oxidation 425表观apparent 426环氧复合材料epoxy 427甲基methyl 428聚乙烯polyethylene 429复合膜composite 430表面修饰surface 431大块非晶amorphous 432结构材料materials 433表面能surface 434材料表面surface 435疲劳性能fatigue 436粘弹性viscoelastic437基体合金alloy 438单相phase 439梯度材料material 440六方hexagonal 441四方tetragonal 442蜂窝honeycomb 443阳极氧化anodic 444塑料plastics 445超塑性superplastic446sem 观察sem 447烧蚀ablation 448复合薄膜films 449树脂基resin 450高聚物polymer 451气相vapor-可编辑452电子能谱xps 453硅烷偶联coupling 454团聚particles 455基底substrate 456断口形貌fracture 457抗压强度strength 458储能storage 459松弛relaxation 460拉曼光谱raman 461孔率porosity 462沸石zeolite 463熔炼melting 464磁体magnet 465sem 分析sem 466润湿性wettability 467电磁屏蔽shielding 468升温heating 469致密dense 470沉淀法precipitation471差热分析dta 472成功制备prepared 473复合体系composites 474浸渍impregnation 475力学行为behavior 476复合粉体powders 477沥青pitch 478磁电阻magnetoresistance 479导电性能conductivity480光电子能谱xps 481材料力学mechanical 482夹层sandwich 483玻璃化glass 484衬底上substrates 485原位复合材料composites 486智能材料materials 487碳化物carbide 488复相composite 489氧化锆zirconia490基体材料matrix 491渗透infiltration 492退火处理annealing 493磨粒wear 494氧化行为oxidation 495细小fine 496基合金alloy 497粒径分布size 498润滑lubrication 499定向凝固solidification500晶格常数lattice 501晶粒度size 502颗粒表面surface 503吸收峰absorption504磨损特性wear 505水热合成hydrothermal506薄膜表面films 507性质研究properties 508试件specimen 509结晶度crystallinity510聚四氟乙烯ptfe 511硅烷偶联剂silane 512碳化carbide 513试验机tester 514结合强度bonding 515薄膜结构films 516晶型crystal 517介电损耗dielectric 518复合涂层coating 519压电陶瓷piezoelectric520磨损量wear 521组织与性能microstructure 522合成法synthesis 523烧结过程sintering 524金属材料materials 525引发剂initiator 526有机蒙脱土montmorillonite527水热法制hydrothermal528再结晶recrystallization 529沉积速率deposition 530非晶相amorphous531尖端tip 532淬火quenching 533亚稳metastable 534穆斯mossbauer 535穆斯堡尔mossbauer 536偏析segregation 537种材料materials 538先驱precursor 539物性properties 540石墨化度graphitization541中空hollow 542弥散particles 543淀粉starch 544水热法制备hydrothermal545涂料coating 546复合粉末powder 547晶粒长大grain 548sem 等sem 549复合材料组织microstructure550界面结构interface 551煅烧calcined 552共混物blends 553结晶行为crystallization554混杂复合材料hybrid 555laves 相laves 556摩擦因数friction 557钛基titanium 558磁性材料magnetic 559制备纳米nanometer 560界面上interface 561晶粒大小size 562阻尼材料damping 563热分析thermal 564复合材料层板laminates 565二氧化钛titanium-可编辑566沉积法deposition567光催化剂tio 568余辉afterglow 569断裂行为fracture 570颗粒大小size 571合金组织alloy 572非晶形成amorphous 573杨氏模量modulus 574前驱物precursor 575过冷alloy 576尖晶石spinel 577化学镀electroless 578溶胶凝胶法制备sol-gel 579本构方程constitutive 580磁学magnetic 581气氛下atmosphere 582钛合金titanium 583微粉powder 584压电性piezoelectric585sic 晶须sic 586应力应变strain 587石英quartz 588热电性thermoelectric589相转变phase 590合成方法synthesis 591热学thermal 592气孔率porosity 593永磁magnetic 594流变性能rheological 595压痕indentation 596热压烧结sintering 597正硅酸乙酯teos 598点阵lattice 599梯度功能材料fgm 600带材tapes 601磨粒磨损wear 602碳含量carbon 603仿生biomimetic 604快速凝固solidification605预制preform 606差示dsc 607发泡foaming 608疲劳损伤fatigue 609尺度size 610镍基高温合金superalloy 611透过率transmittance 612溅射法制sputtering 613结构表征characterization 614差示扫描dsc 615通过sem sem 616水泥基cement 617木材wood 618tem 分析tem 619量热calorimetry 620复合物composites 621铁电薄膜ferroelectric 622共混体系blends 623先驱体precursor 624晶态crystalline 625冲击性能impact 626离心centrifugal 627断裂伸长率elongation 628有机-无机organic-inorganic 629块状bulk 630相沉淀precipitation631织物fabric 632因数coefficient 633合成与表征synthesis 634缺口notch 635靶材target 636弹性体elastomer 637金属氧化物oxide 638均匀化homogenization 639吸收光谱absorption640磨损行为wear 641高岭土kaolin642功能梯度材料fgm 643滞后hysteresis 644气凝胶aerogel 645记忆性memory 646磁流体magnetic 647铁磁ferromagnetic648合金成分alloy 649微米micron 650蠕变性能creep 651聚氯乙烯pvc 652湮没annihilation 653断裂力学fracture 654滑移slip 655差示扫描量热dsc 656等温结晶crystallization 657树脂基复合材料composite 658阳极anodic 659退火后annealing 660发光性properties 661木粉wood 662交联crosslinking 663过渡金属transition 664无定形amorphous 665拉伸试验tensile 666溅射法sputtering 667硅橡胶rubber 668明胶gelatin 669生物相容性biocompatibility 670界面处interface 671陶瓷复合材料composite 672共沉淀法制coprecipitation 673本构模型constitutive674合金材料alloy 675磁矩magnetic 676隐身stealth 677比强度strength 678改性研究modification 679采用粉末powder-可编辑680晶粒细化grain 681抗磨wear 682元合金alloy 683剪切变形shear 684高温超导superconducting 685金红石型rutile 686晶化行为crystallization 687催化性能catalytic 688热挤压extrusion 689微观microstructure690tem 观察tem 691缺口冲击impact 692生物材料biomaterials 693涂覆coating 694纳米氧化nanometer695x 射线光电子能谱xps 696硅灰石wollastonite 697摩擦条件friction 698衍射峰diffraction699块体材料bulk 700溶质solute 701冲击韧性impact 702锐钛矿型anatase 703凝固组织microstructure704磨损试验机tester 705丙烯酸甲酯pmma 706raman 光谱raman 707减振damping 708聚酯polyester 709体材料materials 710航空aerospace 711光吸收absorption 712韧化toughening 713疲劳裂纹扩展fatigue 714超塑superplastic715凝胶法制备gel716半导体材料semiconductor717剪应力shear 718发光材料luminescence719凝胶法制gel 720甲基丙烯酸甲酯pmma 721硬质hard 722摩擦性能friction 723电致变色electrochromic724超细粉powder 725增强相reinforced 726薄带ribbons 727结构弛豫relaxation 728光学材料materials729sic 陶瓷sic 730纤维含量fiber 731高阻尼damping 732镍基nickel 733热导thermal 734奥氏体austenite 735单轴uniaxial 736超导电性superconductivity 737高温氧化oxidation 738树脂基体matrix 739含能energetic 740粘着adhesion 741穆斯堡尔谱mossbauer 742脱层delamination 743反射率reflectivity 744单晶高温合金superalloy 745粘结bonded 746快淬quenching 747熔融插层intercalation 748外加applied 749钙钛矿结构perovskite 750减摩friction 751复合氧化物oxide 752苯乙烯styrene 753合金表面alloy 754爆轰detonation755长余辉afterglow 756断裂过程fracture 757纺织textile。

科技英语交流(第2版)Lecture 5 How to write Methods

	 科技英语交流(第2版)Lecture 5 How to write Methods
To give the readers enough information to judge whether the methods are appropriately used or not.
Basic components
Generalization or introduction Materials or subjects Methods or procedures Data analysis
The experimental apparatus for...is shown in Fig.2.
5.4.3 Typical expressions of equipment and apparatus
The experimental system was based on a ... A fine wire screen is installed at the ... Example: The experimental system was composed of
vehicles 3. Decoupling PF dynamic model
… 4. Case study

3. Organization-related data selection
3.1 Fixed and dynamic keywords sources
3.2 Known accounts sources 3.3 Org keyusers sources 3.4 Two-class SUM
5.3 Specific analyses: generalization and introduction
This part is a general introduction of the principal activity, sometimes presenting the purpose of the research. For example, “In this letter we present the first systematic study on the electrical and magnetic effects of hole compensation.” It also introduces some background information related to the methods or the author’s hypothesis to the research. Study the example on page 87-89.

浅谈多孔陶瓷

浅谈多孔陶瓷

浅谈多孔陶瓷08 化本黄振蕾080900029摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学关键词:多孔陶瓷制备应用发展0. 引言多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。

多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。

多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料和传感器材料等方面得到广泛的应用[ 2]。

因此, 多孔陶瓷材料及其制备技术受到广泛关注。

1 多孔陶瓷材料的制备方法1. 1 挤压成型法挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。

一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。

其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。

目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。

美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。

我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。

例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型的多孔陶瓷。

其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T烧成T制品。

基于壳聚糖的分子印迹聚合物的制备和应用

基于壳聚糖的分子印迹聚合物的制备和应用

化工进展 2016年第35卷·846·of Mn,Fe,Co,Ni,Cu and Zn:relationship to the 3-methyl analogs[J].Inorg. Chim. Acta,2000,300-302:1082-1089.[36] GHASSEMZADEH M,FALLAHNEDJAD L,HERA VI M M,et al.Synthesis,characterization and crystal structure of new silver(I) andpalladium(Ⅱ) complexes containing 1,2,4-triazole moieties[J]. Polyhedron,2008,27(6):1655-1664.[37] ROBIN J Blagg R J,L´Opez-G´Omez M G,CHARMANT J P H,et al. The oxidative conversion of the N,S-bridged complexes[{RhLL’(μ-X)}2] to [(RhLL’)3(μ-X)2]+ (X = mt or taz):acomparison with the oxidation of N,N-bridged analogues[J]. Dalton.Trans.,2011,40(43):11497-11510.[38] CASTIN E A,GARCI´A-SANTOS I,DEHNEN S,et al. Synthesis,characterization and DFT calculations of a novel hexanuclear silver(I)cluster-complex containing 4-ethyl-5-pyridin-2-yl-2,4-dihydro-[1,2,4]triazol-3-thione as a result from the cyclization of 2-pyridinformamideN-4-ethylthiosemicarbazone [J]. Polyhedron,2006. 25(18):3653-3660.[39] BHARTI A,BHARTY M K,KASHY AP S,et al. Hg(Ⅱ) complexesof 4-phenyl-5-(3-pyridyl)-1,2,4-triazole-3-thione and 5-(4-pyridyl)-1,3,4-oxadiazole-2-thione and a Ni(Ⅱ) complex of 5-(thiophen-2-yl)-1,3,4-oxadiazole -2-thione:synthesis and X-ray structural studies[J].Polyhedron,2013,50(1):582-591.[40] YU H X,MA J F,XU G H,et al. Syntheses and crystal structures offour new organotin complexes with Schiff bases containing triazole[J].J. Organomet. Chem.,2006,691(16):3531-3539.[41] PATIL S A,MANJUNATHA M,KULKARNI A D,et al. Synthesis,characterization,fluorescence and biological studies of Mn(Ⅱ),Fe(Ⅲ)and Zn(Ⅱ) complexes of Schiff bases derived from Isatin and 3-substituted-4-amino-5-mercapto-1,2,4-triazoles[J]. Complex. Met.,2014,1:128-137.[42] CAMMI R,LANFRANCHI M,MARCHIO L,et al. Synthesis andmolecular structure of the dihydrobis (thioxotriazolinyl) boratocomplexes of zinc(Ⅱ),bismuth(Ⅲ),and nickel(Ⅱ). M…H-Binteraction studied by Ab initio calculations[J]. Inorg. Chem.,2003,42(5):1769-1778.[43] CHU W J,YAO H C,MA H C,et al. Syntheses,structures,andcharacterizations of two coordination polymers assembled from zinc(Ⅱ) salts with 1,2-bis[3-(1,2,4-triazolyl)-4-amino-5-carboxylmethylthio]ethane[J]. J. Coord. Chem.,2010,63(21):3734-3742.[44] CHU W J,YAO H C,FAN Y T,et al. Anion exchange inducedtunable catalysis properties of an uncommon butterfly-liketetranuclear copper(Ⅱ) cluster and magnetic characterization[J].Dalton. Trans.,2011,40(11):2555-2561.[45] CHU W J,HE Y,ZHAO Q H,et al. Two 3D network complexes ofY(Ⅲ) and Ce(Ⅲ) with 2-fold interpenetration and reversibledesorption-adsorption behavior of lattice water[J]. Journal of SolidState Chemistry,2010,183(10):2298-2304.[46] CHU W J,HOU X W,ZHAO Q H,et al. Four novel lanthanide(Ⅲ)coordination polymers with 3D network structures containing 2-foldinterpenetration[J]. Inorg. Chem. Commun.,2010,13(1):22-25. [47] AIN Q,PANDEY S K,PANDEY O P,et al. Synthesis,spectroscopic,thermal and antimicrobial studies of neodymium(Ⅲ) and samarium(Ⅲ) complexes derived from tetradentate ligands containing N and Sdonor atoms[J]. Spectrochim. Acta,Part A,2015,140:27-34.[48] BAHEMMAT S,GHASSEMZADEH M,AFSHARPOUR M,et al.Synthesis,characterization and crystal structure of a Pd(Ⅱ) complexcontaining a new bis-1,2,4-triazole ligand:a new precursor for thepreparation of Pd(0) nanoparticles[J]. Polyhedron,2015,89:196-202. [49] ZHANG R F,WANG Q F,LI Q L,et al. Syntheses andcharacterization of triorganotin(IV) complexes of Schiff base derivefrom 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and 5-amino-1,3,4-thiadiazole-2-thiol with p-phthalaldehyde[J]. Inorg. Chim. Acta,2009,362(8):2762-2769.[50] BHAT K S,POOJARY B,PRASAD D J,et al. Synthesis andantitumor activity studies of some new fused 1,2,4-triazole derivativescarrying 2,4-dichloro-5-fluorophenyl moiety[J]. Eur. J. Med. Chem.,2009,44:5066-5070.2016年第35卷第3期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·847·化工进展基于壳聚糖的分子印迹聚合物的制备和应用许龙1,黄运安1,朱秋劲1,2,叶春1(1贵州大学酿酒与食品工程学院,贵州贵阳550025;2贵州大学食品科学工程研究中心,贵州贵阳550025)摘要:壳聚糖具有良好的生物相容性和独特的分子结构,基于其制备的分子印迹聚合物因亲和性和选择性高、应用范围广等特点引起了广泛的关注。

苯甲叉基丙二腈中间体合成黄酮类化合物及表征

苯甲叉基丙二腈中间体合成黄酮类化合物及表征

第 20 卷 第 1 期湖南理工学院学报(自然科学版)V ol.20 No.12007 年 3 月Jour n al of Hu n a n Ins titu te of Sc ien ce a nd Tech n o lo gy (N atu ral Sc ien ce s)Mar .2007苯甲叉基丙二腈中间体合成黄酮类化合物及表征杨 涛,周从山 ,谢 芳(湖南理工学院 化学化工系,湖南 岳阳 414000)摘 要:本文采用苯甲叉基丙二腈作为中间体,与间苯二酚在无水 ZnCl 2 和 HCl 气体的催化作用下制得亚胺盐,再水 解,脱羧,分离得到产物,通过液相色谱、紫外、红外等手段对中间产物和最终产物进行分析鉴定,确定最终产物是 7-羟基二 氢黄酮。

关键词:苯甲叉基丙二腈;黄酮;间苯二酚;7-羟基二氢黄酮中图分类号:O623.76文献标识码:A文章编号:1672-5298(2007)01-0080-03Synthesis using Phenylmethylenepropanedinitriles as intermediate and characterization of flavonoids compoundY ANG Tao, ZHOU Cong-shan, XIE Fang(Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Y ueyang 414000, C hina)Abstract: Two imino-compounds were obtained by the catalysis of ZnCl 2 and HCl using benzylidenemalononitrile and resorcinol as intermediate, which were directly hydrolyzed and decarboxylated without apart. The product was abstracted. All the intermediate and final product were analyzed and characterized by liquid chromatography, ultraviolet Spectrophotometer, infrared Spectrophotometer, we make sure that the final product is 7-hydroxy-2,3-dihydro-2-flaconoid.Key words: benzylidenemalononitrile ; falconoid ;resorcinol ;7-hydroxy-2,3-dihydro-2-flaconoid黄酮类化合物是一类广泛存在于自然界的天然有机化合物。

Synthesis and Characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 Cathode Material for Li-ion Batteries

Synthesis and Characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 Cathode Material for Li-ion Batteries

retention
Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 compound synthesized easily at low temperature by the proposed citric acid assisted sol-gel process is a promising cathode material for Li-ion batteries.
57
EP
TE D
(1−z)Li[Li1/3Mn2/3]O2−(z)Li[Mn0.5−yNi0.5−yCo2y]O2
M AN U
[11]. to
2
Li2MnO3–LiCo1/3Ni1/3Mn1/3O2
SC
The 4.0~4.5V)
storage power station applications. Therefore, new cathode materials with high capacity, low cost and environment friendly have been investigated thoroughly in recent years [1]. Among them the layered Li2MnO3-based solid solution materials have attracted more attention of the researchers, such as Li2MnO3-LiMO2 (M = Ni, Cr and Co) [2–5], LiNiO2–Li2MnO3–LiCoO2 [8], and [6], Li2MnO3–LiNi1−xCoxO2 [7], [9], [10], above-mentioned

Synthesis(怎样写Synthesis)

Synthesis(怎样写Synthesis)
How write a synthesis
整理人: 报告人:
Definition
Definition of synthesis essay
A synthesis is a combination, usually a shortened version, of several texts. A synthesis is not a summary. A synthesis is an opportunity to create new knowledge out of already existing knowledge.
sources.
Difference between summary and synthesis
Shows what the original authours wrote.
Not only reflects your knowledge about what the original authors wrote, but also creates something new out of two or more pieces of writing.
one unified entity.
Presents a cursory overview.
Forcuses on both main ideas and details.
Demonstrates an understanding of the overall
meaning.
Achieves new insight.
Addresses one set of information(eg.article,chapte r,document) at a time Each
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of the European Ceramic Society26(2006)323–329Synthesis,sintering and characterization of PLZSTperovskite prepared by a lactate precursor routeLihong Xue a,Qiang Li a,∗,Yiling Zhang b,Rui Liu a,Xihe Zhen aa Department of Chemistry,Tsinghua University,Beijing100084,Chinab Department of Material Science and Engineering,Tsinghua University,Beijing100084,ChinaReceived24August2004;received in revised form26October2004;accepted12November2004Available online20April2005AbstractA lactate precursor route for synthesis of lanthanum-doped lead zirconate titanate stannate(PLZST)ceramic powders was developed,based on an aqueous solution of lactic acid and Pb2+,La3+,Zr4+,Ti4+,Sn4+ions.The metal ions were brought in solution through complex formation with lactic acid.An amorphous precursor was prepared by dehydration of the soluble metal–ion–lactate complex solution.Heat treatment of the precursor at650◦C for2h resulted in single phase perovskite PLZST powders.The effects of the ratio of lactic acid to mixed metal ions on the characteristics of PLZST powders were studied.The results showed that the powders prepared with the higher ratio(6:1)precursor consisted offiner particles with diameter of45nm and sintered readily to dense ceramics at the relatively low temperature of1100◦C for2h.A typical antiferroelectric double polarization hysteresis loop was measured.©2004Elsevier Ltd.All rights reserved.Keywords:PLZST;Perovskites;Electrical properties;Precursor-organic1.IntroductionLead zirconate titanate stannate(PZST)ceramics and their modifications are recognized as prominent antiferro-electric materials due to their excellent electrical properties for practical applications.1–7Since the discovery of the maxi-mum0.85%longitudinal strain in lanthanum-doped lead zir-conate titanate stannate(PLZST)ceramics by Cross and co-workers,7these ceramics have been investigated by various groups,for the purpose of improving their properties.8–15It is well known that the properties of materials are strongly re-lated to their preparation method and the starting materials. The conventional way to prepare PLZST ceramics is by solid-state method.This method often leads to compositionalfluc-tuation and structural inhomogeneities.To overcome these problems,different methods have been developed to generate high purity,homogeneous,reactive PLZST ceramic powders,∗Corresponding author.Tel.:+861062781694;fax:+861062771149.E-mail address:qiangli@(Q.Li).such as coprecipitation,13,20hydrolysis of metal alkoxides14 and other related methods.16–19Recently,a chemical method based on water-soluble chelated complexes as precursors to obtain the homogene-ity of the metal ion distribution on the atomic level becomes very popular.In this synthesis route,citric acid is often used as a chelating agent for it can function as a ligand for many elements.21,22And our experiment indicated that when using the citric acid process to obtain ceramic powders,the con-densing temperature should be controlled under70◦C un-til the formation of a highly viscous gel,otherwise,an irre-versible precipitation took place and the solution would be-come a paste.23Lactic acid similar to citric acid can function as a ligand for many elements.24,25However,contrary to cit-ric acid,lactic acid is less sensitive to temperature during the condensing or dehydration process through our experiments. And lactic acid contains less carboxy group than citric acid, which results in less crosslinked network during condensing or dehydration process.This property not only prevents pre-cipitate but also keepfluid,which leads to a more monodis-0955-2219/$–see front matter©2004Elsevier Ltd.All rights reserved. doi:10.1016/j.jeurceramsoc.2004.11.005324L.Xue et al./Journal of the European Ceramic Society 26(2006)323–329Fig.1.Flow chart for prepartion of PLZST ceramic powders.persed precursor with a smaller aggregate particle size.So use of lactic acid as a chelating agent is more effective to produce fine PLZST ceramic powders.In this study,such a technique was used to prepare PLZST ctic acid was used as a chelating agent to keep the metal ions in ho-mogeneous solution.The effects of the amount of lactic acid on the obtained powders were discussed,and the crystallinity behaviors during the precursor calcinations were investigatedas well.Additionally,the microstructures and electrical prop-erty of PLZST ceramics were studied.2.ExperimentalThe composition of Pb 0.98La 0.02(Zr 0.66Sn 0.27Ti 0.07)O 3was chosen for the powders preparation.The rawma-Fig.2.XRD patterns of PLZST powders calcined at different temperatures:(a)precursor,(b)450◦C,(c)550◦C,(d)650◦C,and (e)750◦C for 2h.L.Xue et al./Journal of the European Ceramic Society26(2006)323–329325Fig.3.SEM images of the powders calcined at650◦C for2h.terials were lead nitrate Pb(NO3)2,lanthanum nitrate La(NO3)3·6H2O,zirconium nitrate Zr(NO3)4·5H2O,hy-drous titanium oxide TiO2·n H2O,hydrous stannium ox-ide SnO2·n H2O,and lactic acid.Hydrous titanium oxide was prepared in the laboratory from titanium tetrachloride (TiCl4).Titanium tetrachloride reacted with ammonia solu-tion to form precipitate hydrous titanium oxide.Similarly, hydrous stannium oxide was precipitated from tin tetrachlo-ride(SnCl4·5H2O).The respective hydrous oxides were then separated from their solutions by usingfiltration and washed with distilled water to make TiO2·n H2O and SnO2·n H2O free of chloride ions detected by acidified silver nitrate.The procedure used to prepare PLZST powders by the lactate precursor method is shown in Fig.1.Stoichiometric amounts of the prepared hydrous oxides of titanium and stan-nium were mixed with the required amount of lactic acid(for lactic acid variation studies,two systems were prepared in such a way in which the molar ratio of lactic acid to total metal ions in the starting solutions was maintained at4:1and 6:1,respectively;defined as the R4system and the R6sys-tem),and the resulting solution was heated(∼100◦C)with constant stirring.The hydrous oxides dissolved in lactic acid through complex formation and resulted in a clear yellow solution.Lead nitrate,lanthanum nitrate and zirconium ni-trate were dissolved in distilled water to form a clear solution (pH<1)and added into the previously prepared titanium stan-nium complex solution.At the beginning,a whitegelatinous Fig.4.Density of the PLZST ceramics as a function of sintering tempera-tures.precipitate was formed.However,it dissolved when ammo-nia solution(NH4OH)was added to give afinal pH5–6. The clear and homogeneous solution was heated at∼200◦C for dehydration.During dehydration process,the complex-ing ability of lactic acid facilitated the homogeneous distri-bution of all metal ions in the solution and left sufficient flexibility for the system to exist homogeneously throughout the system without undergoing precipitation because poly-condensation reaction happened in lactic acid and lactates. On complete dehydration of the solution,lactic acid andTable1Average grain size and fracture characteristics of PLZST samples sintered at various temperaturesLatic acid to metal ions ratio(R)Sintering condition Average grain size(␮m)Fracture characteristics1:41050◦C/2h∼1Intergranular fracture1100◦C/2h∼2Intergranular fracture1150◦C/2h∼2.5Intergranular fracture with some transgranular fracture1200◦C/2h∼9Co-existence of transgranular and intergranular fracture 1:61050◦C/2h∼1.5Intergranular fracture with some transgranular fracture1100◦C/2h∼2.5Intergranular fracture with some transgranular fracture1150◦C/2h∼6.5Co-existence of transgranular and intergranular fracture1200◦C/2h Not measurable Transgranular fracture326L.Xue et al./Journal of the European Ceramic Society26(2006)323–329Fig.5.SEM images of the PLZST ceramics sintered at various temperatures for2h:(a)1050◦C,(b)1100◦C,(c)1150◦C,and(d)1200◦C.L.Xue et al./Journal of the European Ceramic Society26(2006)323–329327nitrates started to decompose leaving behind voluminous, black,fluffy,organic-based powders.These precursor pow-ders were ground and calcined at various temperatures.The crystalline phase of the powders was identified by X-ray diffraction(XRD)analysis using Cu K␣radiation.The par-ticle size and morphology of powders were investigated by using scanning electron microscopy(SEM).To study the sin-terability of the powders with pure perovskite phase,the cal-cined powders were subjected to axial pressing at100MPa to form pellets of10mm in diameter.The green pellets were sintered at1050◦C,1100◦C,1150◦C and1200◦C for2h, respectively,in a lead rich atmosphere.The lead atmosphere was provided by PbZrO3+8mol%ZrO2powders.SEM was used to investigate the microstructures of the sintered sam-ples.The density was determined by the Archimedes method in water.The polarization–electricfield(P–E)hysteresis loop was measured using a Sawyer–Tower circuit at room temperature.3.Results and discussionThe lactate precursors prepared from the two systems (the R4system and the R6system)and powders cal-cined at different temperatures for2h were characterized by XRD as shown in Fig.2.It indicates that the devel-opment of crystalline phase of powders is in the same trend for the two systems.The precursors are amorphous, and the PLZST perovskite phase is initiated at450◦C, but PbO is detected.The heat treatment of the precursors at650◦C for2h results in the formation of single-phase PLZST.The studies also reflect the growth of crystallinity in the powders with the increasing heat-treatment tempera-tures.Fig.3shows SEM micrographs of the PLZST powders calcined at650◦C for2h.It is shown that under the same formation temperature,the particle size decreases with an increase in the amount of lactic acid.The average particle di-ameter of the powders prepared from the R6system is about ∼45nm while that of the R4system is around70nm.And it indicates that the lactate precursor route succeeds in control-ling homogeneous grain size distribution.The decrease of the particle size with increasing lactic acid amount is probably due to the dilution effect of the organic matrix during plete dehydration of the solu-tion results in a loose and porous organic material.And during decomposition of the metal–ion–lactate complexes,metal ox-ide clusters with proper chemical homogeneity are formed, embedded in the porous material.Increasing the amount of lactic acid results in a larger amount of organic mass in the precursor and prevents aggregation of the metal oxide clus-ters during calcination.And the evolution of a large amount of gases(CO2,H2O,NH3)during the pyrolysis helps not only to disintegrate the agglomerated particles but also to dissi-pate the heat of combustion,thus inhibiting the sintering of nanocrystalline powders.To examine the sinterability of the nanosize powders pro-duced in the two systems,the powders calcined at650◦C for2h were pressed into the green pellets and sintered at 1050◦C,1100◦C,1150◦C,and1200◦C for2h,respectively. The density of the PLZST ceramics as a function of sintering temperatures is plotted in Fig.4.For the R6system,the den-sity increases from1050◦C to1100◦C,reaches a maximum value at1100◦C and decreases a little after further sintering at higher temperature.The decrease in density of PLZST ce-ramics sintered at high temperature may be due to the grains growth and loss of PbO.For the R4system,the maximum density value is obtained at1150◦C.Fig.5shows SEM micrographs of PLZST ceramics sin-tered at1050◦C,1100◦C,1150◦C and1200◦C for2h. The average grain size and fracture characteristics are sum-marized in Table1.It indicates that the sintering tempera-ture has influence on the morphology and microstructure of sintered PLZST ceramics.Samples sintered at lower tem-peratures contain smaller grains but also a considerable amount of pores in their structure,which explains the rel-atively low density measured for these samples.The grain size of the ceramics increases with an increase in sinter-ing pared with these two systems,the ce-ramics obtained from the R6system have higherdensity Fig.6.P–E hysteresis loops of the PLZST ceramics:(a)R4system,1150◦C for2h and(b)R6system,1100◦C for2h.328L.Xue et al./Journal of the European Ceramic Society26(2006)323–329than that obtained from the R4system at the same tem-perature.It shows that the PLZST powders with thefiner particle size can more readily be sintered than the coarser powders.Fig.6shows the room temperature P–E hysteresis loops of the ceramics sintered at1150◦C(the R4system)and1100◦C (the R6system)respectively for2h.Typical antiferroelectric double hysteresis loops are observed.There is no distinct difference in the polarization properties of these two samples including the transformationfield from AFE to FE and the re-vertingfield FE–AFE.The coercivefield,necessary to switch the polarization,is related with grain size;possible origin of this grain size effect is the presence of internal elastic stresses from grain boundaries and surrounding grains.26The stresses hinder the motion of domain walls,which controls the polar-ization switching.27So it is expected that the stress should be same in these two ceramics with similar grain size because the polarization properties of the two systems are similar. 4.ConclusionsPLZST powders were synthesized by a lactate precur-sor method.Well-crystallized PLZST powders were obtained at650◦C for2h.The powders show nanometric-scale size and highly homogeneous grain size par-ing the two systems,the powders obtained from the R6sys-tem have smaller primary particle size(∼45nm)than the powders prepared from the R4system(∼70nm).Thefiner powders have better sinterability characteristics,and allow us to obtain dense ceramic bodies at lower temperatures than that of the coarser powders.For the R6system,the density reaches a maximum value at1100◦C while for the R4sys-tem the maximum value was obtained at1150◦C.For the two systems,typical antiferroelectric double hysteresis loops are observed with no distinct difference in the polarization properties.AcknowledgementThe authors thank the National Natural Science Founda-tion of China,NNSFC50272030,for thefinancial support of this work.References1.Berlincourt,D.,Jaffe,H.,Krueger,H.H.A.and Jaffe,B.,Release ofelectric energy in PbNb(Zr,Ti Sn)O3by temperature and by pressure-enforced phase transitions.Appl.Phys.Lett.,1963,3,90–98.2.Uchino,K.and Nomura,S.,Shape memory effect associated withthe forced phase transition in antiferroelectrics.Ferroelectrics,1983, 50,517–521.3.Nam,Y.-W.and Yoon,K.H.,Phase formation andfield-induced strainproperties in Y-modified lead zirconate stannate titanate ceramics.Jpn.J.Appl.Phys.,1999,38,5544–5548.4.Yang,P.and Payne,D.A.,Thermal stability offield-forced andfield-assisted antiferroelectric-ferroelectric phase transformations in Pb(Zr, Sn,Ti)O3.J.Appl.Phys.,1992,71,1361–1367.5.Sternberg,A.,Birks,E.,Shebanovs,L.,Klotins,E.,Ozolinsh,M.,Tyunina,M.et al.,Phase transitions and properties of perovskite fer-roelectric ceramics andfilms for certain applications.Ferroelectrics, 1999,226,217–241.6.Pan,W.Y.,Zhang,Q.M.,Bhalla,A.and Cross,L.E.,Field-forcedantiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics.J.Am.Ceram.Soc.,1989,72,571–578.7.Pan,W.Y.,Dam,C.Q.,Zhang,Q.M.and Cross,L.E.,Large dis-placement transducers based on electricfield forced phase transitions in the tetragonal(Pb0.97La0.02)(Ti,Zr Sn)O3family of ceramics.J.Appl.Phys.,1989,66,6014–6023.8.Blue,C.T.,Hicks,J.C.,Park,S.-E.,Yoshikawa,S.and Cross,L.E.,In situ X-ray diffraction study of the antiferroelectric–ferroelectricphase transition in PLSnZT.Appl.Phys.Lett.,1996,68,2942–2944.9.Park,S.-E.,Pan,M.-J.,Markowski,K.,Yoshikawa,S.and Cross,L.E.,Electricfield induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics.J.Appl.Phys.,1997, 82,1798–1803.10.Xu,B.M.,Ye,X.H.,Wang,Q.M.,Pai,N.G.and Cross,L.E.,Effect of compositional variations on electrical properties in phase switching(Pb,La)(Zr,Ti,Sn)O3thin and thickfilms.J.Mater.Sci., 2000,35,6027–6033.11.Essig,O.,Wang,P.,Hartweg,M.,Janker,P.,Nafe,H.and Aldinger,F.,Uniaxial stress temperature dependence offield induced strainsin antiferroelectric lead zirconate titanate stannate ceramics.J.Eur.Ceram.Soc.,1999,19,1223–1228.12.Xu,Z.,Feng,Y.J.,Zheng,S.G.,Jin,A.,Wang,F.L.and Yao,X.,Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure and temperature.J.Appl.Phys.,2002,92,2663–2667.13.Lee,J.H.and Chiang,Y.M.,Pyrochlore-perovskite phase transforma-tion in highly homogeneous(Pb,La)(Zr,Sn,Ti)O3powders.J.Mater.Chem.,1999,9,3107–3111.14.Zhai,J.W.and Chen,H.,Crystallization kinetics and dielectric prop-erties in sol–gel derived(Pb,La)(Zr,Sn Ti)O3ceramics.J.Appl.Phys.,2003,94,589–593.15.Viehland,D.,Forst,D.and Li,J.F.,Compositional heterogeneity andthe origins of the multicell cubic state in Sn-doped lead zirconate titanate ceramics.J.Appl.Phys.,1994,75,4137–4143.16.Chen,M.,Yao,X.and Zhang,L.Y.,Preparation of(Pb,La)(Zr,Sn Ti)O3antiferroelectric ceramics using colloidal processing and thefield induced strain properties.J.Eur.Ceram.Soc.,2001,21, 1159–1164.17.Kong,L.B.,Ma,J.,Zhang,T.S.,Zhu,W.and Tan,O.K.,Preparationof antiferroelectric lead zirconate titanate stannate ceramics by high-energy ball milling process.J.Mater.Sci.Mater.Electron.,2002,13, 89–94.18.Zeng,Y.P.,Zimmermann,A.and Zhou,L.J.,Tape casting of PLZSTtapes via aqueous slurries.J.Eur.Ceram.Soc.,2004,24,253–258.19.Zhou,L.J.,Zimmermann,A.,Aldinger,F.and Nygren,M.,Prepa-ration and properties of lead zirconate stannate titanate sintered by spark plasma sintering.J.Am.Ceram.Soc.,2004,87,606–611. 20.Xue,L.H.,Zhang,Y.L.,Li,Q.,Guo,Q.Y.and Liu,R.,Preparationof PLZST with complex perovskite structure by coprecipitation.J.Inorg.Mater.,2004,19,566–570.21.Choy,J.H.and Han,Y.S.,Citrate route to the preparation of nanome-ter size(Pb,La)(Zr,Ti)O3oxide.Mater.Lett.,1997,32,209–215.22.Pechini,M.P.,Method of preparing lead and alkaline earth titanatesand niobates coating method using the same to form a Patent,3,330,697,1967.23.Guo,Q.Y.,Preparation of lead lanthanum zirconate stannate titanate(PLZST)relaxor anti-ferroelectric thinfilms.M.S.thesis,Tsinghua University,Beijing,China,2004.L.Xue et al./Journal of the European Ceramic Society26(2006)323–32932924.Holted,C.H.,Muller,A.and Rehbinader,D.,Lactic Acid.VerlagChemie International Research Association,Copenhagen-Der,1971.25.John,A.Dean,Lange’s Handbook of Chemistry(5th ed.).McGraw-Hill,New York,1999,8.96pp.26.Randall,C.A.,Kim,N.,Kucera,J.P.,Cao,W.and Shrout,T.R.,Intrinsic and extrinsic size effects infine-grained morphotropic-phase-boundary lead zirconate titanate ceramics.J.Am.Ceram.Soc.,1998, 81,677–688.27.Arlt,G.,The influence of microstructure on the proper-ties of ferroelectric ceramics.Ferroelectrics,1990,104,217–227.。

相关文档
最新文档