2020年北京市朝阳区中考数学模拟试卷
2020届3月北京市朝阳区中考数学模拟试卷(一)(有答案)(加精)

北京市朝阳区普通中学中考数学模拟试卷(一)(3月份)一.选择题1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.对于任何有理数a,b,c,d,规定,若,那么x的取值范围()A.x<3 B.x>0 C.x>﹣3 D.﹣3<x<03.如图,它们是一个物体的三视图,该物体的形状是()A. B. C. D.4.用一个平行于底面的平面去截如图放置的一个圆锥,将其分成上下两个几何体,如果设上面的小圆锥体积为x,下面的圆台体积为y,当截面由顶点向下平移时,y与x满足的函数关系的图象是()A.B.C.D.5.超市推出如下优惠方案(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款()A.288元B.332元C.288元或316元D.332元或363元6.AB是⊙O的直径,弦CD是与⊙O相切,且AB∥CD,弦CD=16cm,则阴影部分面积为()A.144πcm2B.64πcm2C.79πcm2D.81πcm27.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.B.C.D.8.用一把带有刻度的角尺,(1)可以画出两条平行的直线a与b,如图(1);(2)可以画出∠AOB的平分线OP,如图(2);(3)可以检验工件的凹面是否为半圆,如图(3);(4)可以量出一个圆的半径,如图(4);上述四种说法中,正确的个数是()A.1个 B.2个 C.3 个D.4个二.填空题9.2003年6月1日,举世瞩目的三峡工程正式下闸蓄水,26台发电机组发电量达84700000000千瓦时,用科学记数法表示应为千瓦时.10.直线y=x+b过点A(1,O),并与反比例函数y=(k≠0)只有一个公共点B,则k的值等于.11.某数为S,观察图形的规律:请按上面规律判断S与n的关系是.12.图(1),图(2)是两种方法把6根圆形钢管用钢丝捆扎的截面图,设图(1),图(2)两种方法捆扎所需要钢丝绳的长度分别为a,b(不记接头部分),则a、b的大小关系:a b (填“<”,“=”或“>”).三.解答题13.先化简,再求值..14.已知:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足分别是E、F.(1)求证:DE=DF;(2)只添加一个条件,使四边形EDFA是正方形,并给出证明.15.如图反映了被调查用户对甲,乙两种品牌空调售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意,四个等级,并依次记为1分,2分,3分,4分.(1)分别求甲,乙两种品牌空调售后服务的满意程度分数的平均值(计算结果精确到0.01)(2)根据条形统计图及上述计算结果说明哪个品牌空调售后服务的满意程度较高?该品牌用户满意程度分数的众数是多少?16.如图,∠ABC=30°,O是BA上一点,以O为圆心作圆与BC相切于D点,交BO于点E,连结ED,F是OA上的一点,从F作FG⊥AB交BC于点G,BD=.设OF=x,四边形EDGF的面积为y.(1)求x与y函数关系式(不必求自变量的取值范围).(2)若四边形EDGF的面积是△BED面积的5倍,试确定FG所在直线与⊙O的位置关系,并说明理由.17.某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?18.如图,ABCD是一块平形四边形田地,P为水井,现要把这块田地平均分给甲,乙两户,为了方便用水,要求两户分到的田地都与水井相邻,试在图中画出方案,并给予必要的解释,以说明方案是正确合理的.19.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA 的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.20.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,DC=,点P在BC边上运动(与B、C不重合),设PC=x,四边形ABPD的面积为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)若以点D为圆心,为半径作⊙D;以点P为圆心,以PC长为半径作⊙P,当x为何值时,⊙D与⊙P相切?并求出这两圆相切时四边形ABPD的面积.北京市朝阳区普通中学中考数学模拟试卷(一)(3月份)参考答案与试题解析一.选择题1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.2.对于任何有理数a,b,c,d,规定,若,那么x的取值范围()A.x<3 B.x>0 C.x>﹣3 D.﹣3<x<0【考点】解一元一次不等式.【分析】按新规定将化成不等式,再解不等式即可.【解答】解:根据题意得:2x•(﹣1)﹣2×(﹣1)<8,﹣2x+2<8,﹣2x<6,x>﹣3,故选C.3.如图,它们是一个物体的三视图,该物体的形状是()A. B. C. D.【考点】由三视图判断几何体.【分析】由立体图形的三视图可得立体图形有2列,且第一列是前后两个立方体,且后面一个上面有一个立方体,第二是一个立方体,进而画出图形.【解答】解:如图所示:故选C.4.用一个平行于底面的平面去截如图放置的一个圆锥,将其分成上下两个几何体,如果设上面的小圆锥体积为x,下面的圆台体积为y,当截面由顶点向下平移时,y与x满足的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意可以列出相应的函数解析式,根据解析式可以明确相应的函数图象,从而可以解答本题.【解答】解:由题意可得,圆锥的体积一定,设为V,则y=V﹣x(x≥0),∵﹣1<0,∴y随x的增大而减小,图象是一条射线,故选B.5.超市推出如下优惠方案(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款()A.288元B.332元C.288元或316元D.332元或363元【考点】一元一次方程的应用.【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元.第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【解答】解:(1)第一次购物显然没有超过100,即在第二次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此均可以按照8折付款:360×0.8=288元395×0.8=316元故选C6.AB是⊙O的直径,弦CD是与⊙O相切,且AB∥CD,弦CD=16cm,则阴影部分面积为()A.144πcm2B.64πcm2C.79πcm2D.81πcm2【考点】扇形面积的计算;切线的性质.【分析】作出辅助线,先判断出CE,EF分别是大圆与小圆的半径,求出CE2﹣EF2=64,用S阴影=S大圆﹣S小圆.【解答】解:如图,记直径是AB的圆的圆心为E,连接CE,做EF⊥CD,∵AB∥CD,∴EF是⊙O的半径,在RT△CEF中,CF=CD=8,∴CE2﹣EF2=82=64,CE2﹣πEF2=π(CE2﹣EF2)=64πcm2;∴S阴影=π×故选B7.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看转盘停止后,指针都落在奇数上的情况数占总情况数的多少即可.【解答】解:列表得:所以两个转盘的组合有20种结果,其中有6种指针都落在奇数,所以指针都落在奇数上的概率是,故选B.8.用一把带有刻度的角尺,(1)可以画出两条平行的直线a与b,如图(1);(2)可以画出∠AOB的平分线OP,如图(2);(3)可以检验工件的凹面是否为半圆,如图(3);(4)可以量出一个圆的半径,如图(4);上述四种说法中,正确的个数是()A.1个 B.2个 C.3 个D.4个【考点】作图—应用与设计作图.【分析】直接利用平行线的判定方法以及角平线的判定方法和圆周角定理、切线的性质等知识,分别分析得出答案.【解答】解:(1)可以画出两条平行的直线a与b,如图(1),正确;(2)可以画出∠AOB的平分线OP,如图(2),正确;(3)可以检验工件的凹面是否为半圆,如图(3),正确;(4)可以量出一个圆的半径,如图(4),正确.故选:D.二.填空题9.2003年6月1日,举世瞩目的三峡工程正式下闸蓄水,26台发电机组发电量达84700000000千瓦时,用科学记数法表示应为8.47×1010千瓦时.【考点】科学记数法—表示较大的数.【分析】根据科学记数法的定义,写成a×10n的形式.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.且n的数值比原数的位数少1,84 700 000 000的数位是11,则n的值为10.【解答】解:84 700 000 000=8.47×1010千瓦时,故答案为:8.47×1010.10.直线y=x+b过点A(1,O),并与反比例函数y=(k≠0)只有一个公共点B,则k的值等于﹣.【考点】反比例函数与一次函数的交点问题.【分析】先把点A(1,O)代入一次函数y=x+b的解析式,求出b的值,进而得出一次函数的解析式,联立一次函数与反比例函数的解析式即可得出k的值.【解答】解:∵直线y=x+b过点A(1,O),∴1+b=0,解得b=﹣1,∴一次函数的解析式为:y=x﹣1,∵一次函数与反比例函数y=(k≠0)只有一个公共点B,∴,把①代入②得,x﹣1=,即x2﹣x﹣k=0与x轴只有一个交点,∴△=(﹣1)2+4k=0,解得k=﹣.故答案为:﹣.11.某数为S,观察图形的规律:请按上面规律判断S与n的关系是6n﹣6.【考点】规律型:图形的变化类.【分析】观察可得,n=2时,S=6;n=3时,S=6+(3﹣2)×6=12;n=4时,S=6+(4﹣2)×6=18,从而找出规律,得出答案.【解答】解:观察可得,n=2时,S=6;n=3时,S=6+(3﹣2)×6=12;n=4时,S=6+(4﹣2)×6=18;…所以,S与n的关系是:S=6+(n﹣2)×6=6n﹣6.故答案为:6n﹣6.12.图(1),图(2)是两种方法把6根圆形钢管用钢丝捆扎的截面图,设图(1),图(2)两种方法捆扎所需要钢丝绳的长度分别为a,b(不记接头部分),则a、b的大小关系:a= b (填“<”,“=”或“>”).【考点】相切两圆的性质;弧长的计算.【分析】分别将两个图形分成两部分来求解,线段和弧长;线段与圆的半径有关,利用相切两圆的圆心距离等于两圆的半径得出AB、EF、GH、DC等线段的长,弧长利用弧长公式,因为半径相等,只考虑圆心角即可.【解答】解:设每根圆柱形钢管的半径为r,如图1,四个角的扇形的圆心角都是90°,且AB=EF=4r,GH=CD=2r,四段扇形的弧长的和为一个圆的周长2πr,所以a的长为:a=4r+4r+2r+2r+2πr=12r+2πr,如图2,ON=QR=PM=4r,三个角的扇形的圆心角为:360°﹣90°﹣90°﹣60°=120°,三段扇形的弧长的和为一个圆的周长,所以b的长为:b=4r+4r+4r+2πr=12r+2πr,∴a=b,故答案为:=.三.解答题13.先化简,再求值..【考点】分式的化简求值.【分析】先通分,再把分子相加减,最后把x的值代入进行计算即可.【解答】解:原式=====,当x=﹣1时,原式===1﹣.14.已知:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足分别是E、F.(1)求证:DE=DF;(2)只添加一个条件,使四边形EDFA是正方形,并给出证明.【考点】正方形的判定.【分析】(1)连接AD,根据等腰三角形的性质可得AD是∠BAC的角平分线,再根据角平分线的性质可得DE=DF;(2)添加∠BAC=90°,根据三角形是直角的四边形是矩形可得四边形AFDE是矩形,再由条件DF=DE可得四边形EDFA是正方形.【解答】解:(1)连接AD,∵AB=AC,D是的BC边的中点,∴AD是∠BAC的角平分线,∵DE⊥AC,DF⊥AB,∴DF=DE;(2)添加∠BAC=90°,∵DE⊥AC,DF⊥AB,∴∠AFD=∠AED=90°,∴四边形AFDE是矩形,∵DF=DE,∴四边形EDFA是正方形.15.如图反映了被调查用户对甲,乙两种品牌空调售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意,四个等级,并依次记为1分,2分,3分,4分.(1)分别求甲,乙两种品牌空调售后服务的满意程度分数的平均值(计算结果精确到0.01)(2)根据条形统计图及上述计算结果说明哪个品牌空调售后服务的满意程度较高?该品牌用户满意程度分数的众数是多少?【考点】条形统计图;众数.【分析】(1)利用加权平均数公式即可求解;(2)根据(1)的结果即可作出判断.【解答】解:(1)≈2.78,≈3.04.答:甲满意程度的平均值约为2.78.乙满意程度的平均值约为3.04.(2)乙品牌用户满意程度高,乙品牌满意程度分数的众数为3分.16.如图,∠ABC=30°,O是BA上一点,以O为圆心作圆与BC相切于D点,交BO于点E,连结ED,F是OA上的一点,从F作FG⊥AB交BC于点G,BD=.设OF=x,四边形EDGF的面积为y.(1)求x与y函数关系式(不必求自变量的取值范围).(2)若四边形EDGF的面积是△BED面积的5倍,试确定FG所在直线与⊙O的位置关系,并说明理由.【考点】切线的性质.【分析】(1)连结OD.则OD⊥BC,由△BOD∽△BGF,推出,即可解决问题.(2)根据题意列出方程,求出OF的长即可解决问题.【解答】解(1)连结OD.则OD⊥BC.∵∠B=30°,BD=,∴OD=1,BO=2,∴BE=BO﹣OE=1,BF=2+x,S△BED=,∵∠B=∠B,∠ODB=∠BFG=90°∴△BOD∽△BGF,∴,∴,∴,即:.(2)由题意:得:x=1或x=﹣5(舍)∴OF=1∵FG⊥OF∴FG 与⊙O 相切.17.某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?【考点】二元一次方程组的应用.【分析】通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标=210元,甲种服装的标价×0.8+乙种服装的标×0.9=182元,根据这两个等量关系可列出方程组求解即可.【解答】解:设甲种服装的标价为x 元,则依题意进价为元;乙种服装的标价为y 元,则依题意进价为元,则根据题意列方程组得解得.所以甲种服装的进价===50(元),乙种服装的进价===100(元).答:甲种服装的进价是50元、标价是70元,乙种服装的进价是100元、标价是140元.18.如图,ABCD 是一块平形四边形田地,P 为水井,现要把这块田地平均分给甲,乙两户,为了方便用水,要求两户分到的田地都与水井相邻,试在图中画出方案,并给予必要的解释,以说明方案是正确合理的.【考点】作图—应用与设计作图.【分析】直接利用平行四边形的性质即可得出S △ACD =S △ACB ,S △AOE =S △COF ,进而得出答案.【解答】解:如图所示:EF 即为所求.理由过□ABCD 两对角线的交点O 和点P 画直线EF ,分别交AD ,BC 于E ,F ,∵S △ACD =S △ACB ,S △AOE =S △COF ,∴S □EABF =S □DEFC .19.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F .(1)求证:EO=FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.【考点】矩形的判定.【分析】(1)根据平行线性质和角平分线性质,以及由平行线所夹的内错角相等易证. (2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.【解答】(1)证明:∵CE 平分∠ACB ,∴∠1=∠2,又∵MN ∥BC ,∴∠1=∠3,∴∠3=∠2,∴EO=CO ,同理,FO=CO ,∴EO=FO .(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形.理由:∵EO=FO ,点O 是AC 的中点.∴四边形AECF 是平行四边形,∵CF 平分∠BCA 的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90°,∴四边形AECF是矩形.20.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,DC=,点P在BC边上运动(与B、C不重合),设PC=x,四边形ABPD的面积为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)若以点D为圆心,为半径作⊙D;以点P为圆心,以PC长为半径作⊙P,当x为何值时,⊙D与⊙P相切?并求出这两圆相切时四边形ABPD的面积.【考点】相切两圆的性质;直角梯形.【分析】(1)如图作DE⊥BC于E,由矩形的性质可以得出DE=AB,由勾股定理可以得出EC的值,进而表示出EP.从而求出BP,再根据梯形的面积公式可以表示出梯形的面积就可以表示出y与x之间的函数的关系式.由点P不与B、C重合,从而可以得出x的范围.(2)设PC=x时,⊙D与⊙P外切或内切时,分别分析求出x的值,代入(1)的解析式就可以求出四边形ABPD的面积.【解答】解:作DE⊥BC于E,∴∠BED=90°,∵AB⊥BC,∴∠B=90°∵AD∥BC,∴∠A=90°,∴四边形ABED是矩形.∴AD=BE,AB=DE,∵AD=1,AB=2,∴BE=1,DE=2,在Rt△DEC中,由勾股定理,得EC===2,∴BC=3,∵PC=x,∴BP=3﹣x,y=×2×(1+3﹣x)=﹣x+4.∵P点与B、C不重合,∴0<x<3.(2)解:当圆P与圆D外切时,如图所示:过D作DE⊥BC,交BC于点E,可得∠DEP=90°,∵直角梯形ABCD中,AD∥BC,AB⊥BC,∴∠A=∠B=90°,∴四边形ABED为矩形,又AD=1,AB=2,∴AB=DE=2,AD=BE=1,在Rt△CED中,DC=2,DE=2,根据勾股定理得:EC==2,∴EP=EC﹣PC=2﹣x,∵圆D与圆P外切,圆D半径为,圆P半径为x,∴DP=+x,在Rt△DEP中,根据勾股定理得:DP2=DE2+EP2,即(+x)2=22+(2﹣x)2,解得:x=;即x=时⊙D与⊙P外切.=﹣+4=.此时S四边形ABPD当圆P与圆D内切时,如图所示:过D作DE⊥BC,交BC于点E,可得∠DEP=90°,∵直角梯形ABCD中,AD∥BC,AB⊥BC,∴∠A=∠B=90°,∴四边形ABED为矩形,又AD=1,AB=2,∴AB=DE=2,AD=BE=1,在Rt△CED中,DC=2,DE=2,根据勾股定理得:EC==2,∴EP=EC﹣PC=2﹣x,∵圆D与圆P内切,圆D半径为,圆P半径为x,∴DP=x﹣,在Rt△DEP中,根据勾股定理得:DP2=DE2+EP2,即(x﹣)2=22+(2﹣x)2,解得:x=,综上,当x=或时,圆D与圆P相切.即x=时⊙D与⊙P内切.=﹣+4=.此时S四边形ABPD2017年2月26日。
2020年北京市朝阳区中考数学一模试卷

中考数学一模试卷题号一二三总分得分一、选择题(本大题共8小题,共16.0分)1.自2020年1月23日起,我国仅用10天左右就完成了总建筑面积约为113800平方米的雷神山医院和火神山医院的建设,彰显了“中国速度”.将113800用科学记数法表示应为()A. 1.138×105B. 11.38×104C. 1.138×104D. 0.1138×1062.右图是某几何体的三视图,该几何体是()A. 圆锥B. 球C. 长方体D. 圆柱3.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是()A. aB. bC. cD. d4.一个不透明的袋中装有8个黄球,m个红球,n个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列m与n的关系一定正确的是()A. m=n=8B. n-m=8C. m+n=8D. m-n=85.如果,那么代数式的值为()A. 3B.C.D.6.如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=,则AB的长为()A. 2.5B. 4C. 5D. 107.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A. ∠ABC=70°B. ∠BAD=80°C. CE=CDD. CE=AE8.生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千1≤x<22≤x<33≤x<44≤x<55≤x≤6合计吨)频数12b3m频率0.050.10a0.151表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A. ①②B. ①③C. ②③④D. ①③④二、填空题(本大题共8小题,共16.0分)9.若分式有意义,则x的取值范围为______.10.分解因式:2x2+8x+8=______.11.如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,若AD=1,BD=4,则=______.12.如图所示的网格是正方形网格,则∠AOB______∠COD(填“>”、“=”或“<”).13.如图,∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=______°.14.用一个a的值说明命题“若a为实数,则a<2a”是错误的,这个值可以是a=______.15.某地扶贫人员甲从办公室出发,骑车匀速前往所A村走访群众,出发几分钟后,扶贫人员乙发现甲的手机落在办公室,无法联系,于是骑车沿相同的路线匀速去追甲.乙刚出发2分钟,甲也发现自己手机落在办公室,立刻原路原速骑车返回办公室,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回办公室,甲继续原路原速赶往A村.甲、乙两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(乙给甲手机的时间忽略不计).有下列三个说法:①甲出发10分钟后与乙相遇;②甲的速度是400米/分;③乙返回办公室用时4分钟.其中所有正确说法的序号是______.16.某兴趣小组外出登山,乘坐缆车的费用如下表所示:乘坐缆车方式乘坐缆车费用(单位:元/人)往返180单程100已知小组成员每个人都至少乘坐一次缆车,去程时有8人乘坐缆车,返程时有17人乘坐缆车,他们乘坐缆车的总费用是2400元,该小组共有______人.三、解答题(本大题共12小题,共96.0分)17.计算:.18.解不等式组:;19.如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E.求证:∠BAD=∠CDE.20.关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个符合条件的m的值,并求出此时方程的根.21.如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE=2,求EG的长.22.先进制造业城市发展指数是反映一个城市先进制造水平的综合指数.对2019年我国先进制造业城市发展指数得分排名位居前列的30个城市的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.先进制造业城市发展指数得分的频数分布直方图(数据分成6组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x≤90):b.先进制造业城市发展指数得分在70≤x<80这一组的是:71.175.779.9c.30个城市的2019年快递业务量累计和先进制造业城市发展指数得分情况统计图:d.北京的先进制造业城市发展指数得分为79.9.根据以上信息,回答下列问题:(1)在这30个城市中,北京的先进制造业城市发展指数排名第______;(2)在30个城市的快递业务量累计和先进制造业城市发展指数得分情况统计图中,包括北京在内的少数几个城市所对应的点位于虚线l的上方.请在图中用“〇”圈出代表北京的点;(3)在这30个城市中,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为______亿件.(结果保留整数)23.如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.24.有这样一个问题:探究函数的图象与性质并解决问题.小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)函数的自变量x的取值范围是x≠2;(2)取几组y与x的对应值,填写在下表中.x…-4-2-1011.21.252.752.834568…y…11.52367.5887.563m1.51…m的值为______;(3)如下图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:①通过观察、分析、证明,可知函数的图象是轴对称图形,它的对称轴是______;②过点P(-1,n)(0<n<2)作直线l∥x轴,与函数的图象交于点M,N(点M在点N的左侧),则PN-PM的值为______.25.在平面直角坐标系xOy中,直线y=1与一次函数y=-x+m的图象交于点P,与反比例函数的图象交于点Q,点A(1,1)与点B关于y轴对称.(1)直接写出点B的坐标;(2)求点P,Q的坐标(用含m的式子表示);(3)若P,Q两点中只有一个点在线段AB上,直接写出m的取值范围.26.在平面直角坐标系xOy中,抛物线y=ax2-3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(-2,-a-2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.27.四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.28.在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是______;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是______.答案和解析1.【答案】A【解析】解:将数据113800用科学记数法可表示为:1.138×105.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是圆柱.故选:D.由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.此题考查了由三视图判断几何体,关键是熟练掌握三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.【答案】A【解析】解:根据图示,可得:a<b<c<d,∴这四个数中,相反数最大的是a.故选:A.首先根据:当数轴方向朝右时,右边的数总比左边的数大,可得:a<b<c<d;然后根据:哪个数越大,则它的相反数越小,判断出这四个数中,相反数最大的是哪个数即可.此题主要考查了实数大小比较的方法,在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.4.【答案】C【解析】解:∵一个不透明的袋中装有8个黄球,m个红球,n个白球,∴任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,∵是黄球的概率与不是黄球的概率相同,∴=,∴m+n=8.故选:C.由一个不透明的袋中装有8个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率与不是黄球的概率相同,可得=,即可得求得m与n的关系.此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.5.【答案】B【解析】解:原式=(+)•=•=a+1,当a=-1时,原式=-1+1=.故选:B.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6.【答案】C【解析】解:∵AB⊥CD,CD=4,∴CE=DE=2,∵∠B=∠C,tan C=,∴tan B=,∴AE=1,BE=4,∴AB=AE+BE=1+4=5,故选:C.首先根据垂径定理和CD的长求得CE和DE的长,然后根据同弧所对的圆周角相等确定∠B=∠C,根据正切的定义求得AE和BE的长即可求得答案.考查了圆周角定理及垂径定理的知识,解题的关键是根据垂径定理求得CE和DE的长,难度不大.7.【答案】C【解析】解:∵直线l1∥l2,∴∠ECA=∠CAB=40°,∵以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,∴BA=AC=AD,∴∠ABC=,故A正确;∵以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),∴CB=CD,∴∠CAB=∠DAC=40°,∴∠BAD=40°+40°=80°,故B正确;∵∠ECA=40°,∠DAC=40°,∴CE=AE,故D正确;故选:C.根据平行线的性质得出∠CAB=40°,进而利用圆的概念判断即可.此题考查平行线的性质,关键是根据平行线的性质得出∠CAB=40°解答.8.【答案】D【解析】解:①1÷0.05=20.故表中m的值为20,是合理推断;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15故这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D.①根据数据总和=频数÷频率,列式计算可求m的值;②根据3≤x<4组的频率a满足0.20≤a≤0.30,可求该范围的频数,进一步得到b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.考查频数(率)分布表,从表中获取数量及数量之间的关系是解决问题的关键.9.【答案】x≠2【解析】解:由题意,得x-2≠0.解得x≠2,故答案为:x≠2.根据分母不为零分式有意义,可得答案.本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.【答案】2(x+2)2【解析】解:原式=2(x2+4x+4)=2(x+2)2.故答案为:2(x+2)2.首先提公因式2,再利用完全平方公式进行分解即可.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.11.【答案】【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴==,故答案为:.证明△ADE∽△ABC,根据相似三角形的性质列出比例式,计算即可.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.12.【答案】<【解析】解:连接OE,则∠DOE=∠BOA,∵∠DOC=∠DOE+∠EOC,∴∠DOC>∠DOE,∴∠DOC>∠AOB,即∠AOB<∠COD,故答案为:<.连接OE,由图可知,∠DOE=∠BOA,然后根据∠DOC=∠DOE+∠EOC,可得∠DOC>∠DOE,从而可以得到∠AOB和∠COD的大小关系.13.【答案】360【解析】解:∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360.根据多边形的外角和等于360°解答即可.本题考查多边形的外角与内角,解题的关键是灵活应用多边形的外角和为360°解决问题,属于中考常考题型.14.【答案】-1(答案不唯一)【解析】解:当a=-1时,2a=-2,-1>-2,故答案为:-1(答案不唯一)根据题意找到一个使得命题不成立的a的值即可.考查了命题与定理的知识,解题的关键是能够根据题意举出反例,难度不大.15.【答案】①②③【解析】解:由题意可得,甲出发10分钟后与乙相遇,故①正确;甲的速度为2400÷6=400(米/分),故②正确;乙返回办公室用时14-10=4(分钟),故③正确;故答案为:①②③.根据题意和函数图象中的数据,可以判断各个小题中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16.【答案】20【解析】解:设该小组共有x人,往返的有y人,依题意有,解得.故该小组共有20人.故答案为:20.可设该小组共有x人,往返的有y人,根据等量关系:①去程时的人数+返程时的人数-往返的人数=该小组一共的人数;②乘坐缆车的总费用是2400元;列出方程组求解即可.此题主要考查了二元一次方程(组)的应用,关键是正确理解题意,找出题目中的等量关系,列出方程(组)求解.17.【答案】解:原式=+2×-1+3=+1-1+3=+3.【解析】原式利用绝对值的代数意义,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.【答案】解:,由①得:x<4,由②得:x>1,则不等式组的解集为1<x<4.【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.19.【答案】解:∵AB=AC,∴∠B=∠C,∵AD⊥BC,DE⊥AC,∴∠ADB=∠DEC=90°,∴△ADB∽△DEC,∴∠BAD=∠CDE.【解析】由等腰三角形的性质可得∠B=∠C,可证△ADB∽△DEC,可得结论.本题考查了相似三角形的判定和性质,等腰三角形的性质,证明△ADB∽△DEC是本题的关键.20.【答案】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△=(m+1)2-4×1×m2>0,解得m>-;(2)取m=0,此时方程为x2+x=0,则x(x+1)=0,∴x=0或x+1=0,解得x=0或x=-1(答案不唯一).【解析】(1)先根据方程有两个不相等的实数根得出△=(m+1)2-4×1×m2>0,解之可得答案;(2)取m=0,代入后利用因式分解法求解可得(答案不唯一).本题主要考查根的判别式,利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.21.【答案】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,且BE=DF,∠B=∠D,∴△AEB≌△AFD(AAS),∴四边形ABCD是菱形;(2)如图,∵AD∥BC,∴∠CEG=∠G=30°,∵AE⊥BC,AD∥BC,∴∠EAG=90°,且∠G=30°,∴EG=2AE=4.【解析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)由直角三角形的性质可求解.本题考查了菱形的判定和性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.22.【答案】2 30【解析】解:(1)∵在这30个城市中,先进制造业创新指数得分为79.9以上(含79.9)的城市有2个,∴北京的先进制造业城市发展指数排名2,故答案为:2;(2)如图所示:(3)由30个城市的先进制造业城市发展指数得分情况统计图可知,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为30万美元;故答案为:30.(1)由城市先进制造业创新指数得分为79.9以上(含79.9)的城市有2个,即可得出结果;(2)根据北京在虚线l的上方,北京的先进制造业城市发展指数得分为79.9,找出该点即可;(3)根据30个城市的先进制造业城市发展指数得分情况统计图,即可得出结果.本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.23.【答案】解:(1)如图,∵AB=3,AC=4,BC=5,∴33+42=52,∴∠A=90°,∴△ABC是直角三角形,由题意可知:图形G是以O为圆心,a为半径的圆,AB,AC,BC与圆O相切,设切点分别为F,D,Q,连接OF,OD,OQ,∴OF⊥AB,OD⊥AC,OQ⊥BC,∴四边形AFOD为正方形,∴AF=AD=OF=OD=a,根据切线长定理可知:BF=BQ=3-a,CD=CQ=4-a,∴3-a+4-a=5,解得a=1;(2)①由题意可知:点O是△ABC的内心,∴∠ABM=∠CBM,∵MA⊥AB,MB⊥BC,∴∠A=∠BNM=90°,∴∠BMA=∠BMN;②如图,作OE⊥MN于点E,∵∠BMA=∠BMN,∵OD⊥AC,∴OD=OE,∴OE为圆O的半径,∴MN为圆O的切线,∴直线MN与图形G的公共点个数为1.【解析】(1)根据题意可得三角形ABC是直角三角形,再根据切线长定理即可求出a 的值;(2)①根据题意可得点O是三角形ABC的内心,再根据三角形内角和即可得结论;②作OE⊥MN于点E,根据角平分线的性质可得OD=OE,所以得OE为圆O的半径,进而可得MN为圆O的切线,即可得出结论.本题考查了三角形的内切圆与内心,解决本题的关键是掌握三角形的内心定义.24.【答案】2 x=2 6【解析】解:(2)由题意x=5时,y==2,∴m=2,故答案为2.(3)函数图象如图所示:(4)①观察图象可知图象是轴对称图形,对称轴x=2.故答案为x=2.②由题意,M(-+2,n),N(+2,n),∴PN=+2+1=+3,PM=-1-(-+2)=-3,∴PN-PM=+3-(-3)=6,故答案为6.(2)把x=5代入函数解析式求出函数值即可.(3)利用描点法画出函数图象即可.(4)①根据轴对称图形的定义判断即可.②求出PN,PM的长(用n表示)即可解决问题.本题考查反比例函数的性质,解题的关键是学会用描点法画出函数图象,学会利用参数解决问题,属于中考常考题型.25.【答案】解:(1)∵点A(1,1)与点B关于y轴对称,∴点B的坐标是(-1,1);(2)把y=1代入y=-x+m,得1=-x+m,解得x=m-1,∴点P的坐标为(m-1,1);把y=1代入,得1=,解得x=m,∴点Q的坐标为(m,1);(3)∵点P的坐标为(m-1,1),点Q的坐标为(m,1),∴点P在点Q的左边.当P,Q两点中只有一个点在线段AB上时,分两种情况:①只有P点在线段AB上时,由题意,得,解得1<m≤2;②只有Q点在线段AB上时,由题意,得,解得-1≤m<0.综上可知,所求m的取值范围是-1≤m<0或1<m≤2.【解析】(1)根据关于y轴对称的两点,其纵坐标相等横坐标互为相反数,即可写出点B的坐标;(2)把y=1代入y=-x+m,求出x,进而得到点P的坐标;把y=1代入,求出x,进而得到点Q的坐标;(3)由点P,Q的坐标,可知点P在点Q的左边.当P,Q两点中只有一个点在线段AB上时,分两种情况进行讨论:①只有P点在线段AB上;②只有Q点在线段AB上.分别列出关于m的不等式组,求解即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了关于y轴对称的点的坐标特征,一元一次不等式组的应用.26.【答案】解:(1)∵抛物线y=ax2-3ax+a+1与y轴交于A,令x=0,得到y=a+1,∴A(0,a+1).(2)由抛物线y=ax2-3ax+a+1,可知x=-=,∴抛物线的对称轴x=.(3)对于任意实数a,都有a+1>a,可知点A在点N的上方,令抛物线上的点C(-2,y),∴y c=11a+1,①如图1中,当a>0时,y c>-a-2,∴点C在点M的上方,结合图象可知抛物线与线段MN没有公共点.②当a<0时,(a)如图2中,当抛物线经过点M时,y c=-a-2,∴a=-,结合图象可知抛物线与线段MN巧有一个公共点M.(b)当-<a<0时,观察图象可知抛物线与线段MN没有公共点.(c)如图3中,当a<-时,y c<-a-2,∴点C在点M的下方,结合图象可知抛物线与线段MN恰好有一个公共点,综上所述,满足条件的a的取值范围是a≤-.【解析】(1)利用待定系数法求解即可.(2)根据抛物线的对称轴:x=-求解即可.(3)对于任意实数a,都有a+1>a,可知点A在点N的上方,令抛物线上的点C(-2,y),可得y c=11a+1,分a>0,a<0两种情形分别求解即可解决问题.本题属于二次函数综合题,考查了二次函数的性质,待定系数法等知识,解题的关键是理解题意,学会利用参数,构建不等式解决问题,属于中考压轴题.27.【答案】解:(1)补全图形,如图所示:(2)∠FBE=45°.设DF与AB交于点G,如图所示:由题意得,CD=CE=CB,∠ECD=2α,∠ABC=∠BCD=∠CDA=∠DAB=90°,∴∠EDC=90°-α,∠BCE=90°-2α,∴∠CBE=45°+α,∠ADF=α,∴∠BFD=90°.∵∠AGD=∠FGB,∴∠FBG=α∴∠FBE=∠FEB=45°.(3)DE=AF.证明:如图,作AH⊥AF,交BF的延长线于点H,由(2)得∠FBE=∠FEB=45°.∴FB=FE.∵AH⊥AF,∠BAD=90°,∴∠HAB=∠FAD,∴△HAB≌△FAD(ASA),∴HB=FD,AH=AF,∴HF=DE,∠H=45°.∴HF=AF.∴DE=AF.【解析】(1)按照题中的表述画出图形即可;(2)∠FBE的度数为45°.由题意得,CD=CE=CB,∠ECD=2α,∠ABC=∠BCD=∠CDA=∠DAB=90°,根据三角形内角和与互余关系分别推理即可;(3)作AH⊥AF,交BF的延长线于点H,判定△HAB≌△FAD(ASA),可得HB=FD,AH=AF,HF=DE,∠H=45°,从而可得HF与AF的数量关系,则可得线段AF与DE的数量关系.本题属于四边形综合题,考查了等腰三角形的性质、互余关系及全等三角形的判定与性质,数量掌握相关性质及定理是解题的关键.28.【答案】(0,2)-4<t≤-2或t=0或-2<t≤【解析】解:(1)①如图1中,由题意A(0,0),B(2,0),C(0,1),∵点P是线段AB关于射线OC的等腰点,故答案为(0,2).②如图2中,当OP=AB时,作PH⊥x轴于H.在Rt△POH中,∵PH=OC=1,OP=AB=2∴OH===,观察图象可知:若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1时,n<-.(3)如图3-1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.由题意C(,1),∴CH=,OH=1,∴tan∠COH==,∴∠COH=30°,当⊙B经过原点时,B(-2,0),此时t=-4,∵射线OC上只存在一个线段AB关于射线OC的等腰点,∴射线OC与⊙A,⊙B只有一个交点,观察图象可知当-4<t≤-2时,满足条件,如图3-2中,当点A在原点时,∵∠POB=60°,此时两圆的交点P在射线OC上,满足条件,此时t=0,如图3-3中,当⊙B与OC相切于P时,连接BP.∴OC是⊙B的切线,∴OP⊥BP,∴∠OPB=90°,∵BP=2,∠POB=60°,∴OB==,此时t=-2,如图3-4中,当⊙A与OC相切时,同法可得OA=,此时t=观察图形可知,满足条件的t的值为:-2<t≤,综上所述,满足条件t的值为-4<t≤-2或t=0或-2<t≤.故答案为:-4<t≤-2或t=0或-2<t≤.(1)①根据线段AB关于射线OC的等腰点的定义可知OP=AB=2,由此即可解决问题.②如图2中,当OP=AB时,作PH⊥x轴于H.求出点P的横坐标,利用图象法即可解决问题.(2)如图3-1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.首先证明∠COH=30°,∵由射线OC上只存在一个线段AB关于射线OC的等腰点,推出射线OC与⊙A,⊙B只有一个交点,求出几种特殊位置t的值,利用数形结合的思想解决问题即可.本题属于三角形综合题,考查了等腰三角形的判定和性质,线段AB关于射线OC的等腰点的定义,解直角三角形等知识,解题的关键是学会利用辅助圆解决问题,学会用转化的思想思考问题,属于中考压轴题.。
〖8套试卷汇总〗北京市朝阳区2020年中考数学第四次押题试卷

2020年数学中考模拟试卷一、选择题1.如图,在5×5的方格纸中将图①中的图形N 平移到如图②所示的位置,那么下列平移正确的是A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格 2.若直线y=kx+k+1经过点(m ,n+3)和(m+1,2n -1),且0<k <2,则n 的取值范围是( )A .3<n <5B .4<n <6C .5<n <7D .6<n <8 3.如图,四边形ABCD 内接于⊙O ,连接,OA OC .若OA CB ∥,70BCO ∠=︒.则∠ABC 的度数为( )A.110ºB.120ºC.125ºD.135º4.如图,在菱形ABCD 中,∠BAC=60°,AC 与BC 交于点O ,E 为CD 延长线上的一点,且CD=DE ,连接BE 分别交AC 、AD 于点F 、G ,连接OG ,则下列结论中一定成立的是( ).①OG=AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ;④由点A 、B 、D 、E 构成的四边形是菱形.A.①③④B.①④C.①②③D.②③④5.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( ) A . 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B . 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C . 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D . 4.5112y x y x =-⎧⎪⎨=-⎪⎩ 6.函数k y x=与y =﹣kx 2﹣k (k≠0)在同一直角坐标系中的大致图象可能是( )A .B .C .D .7.下列算式中,结果等于8x 的是( )A.2222x x x x ⋅⋅⋅B.2222x x x x +++C.24x x ⋅D.62x x + 8.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为( )A .B .C .或.或9.计算22m n m n n m+--的结果为( ) A.22m n +B.m n +C.m n -D.n m -10.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是( )A .10.9×104B .1.09×104C .10.9×105D .1.09×105二、填空题11.定义运算“※”的运算法则为:a ※b ,则(2※3)※3=_____.12.如图,某飞机于空中探测某座山的高度,在点A 处飞机的飞行高度是3700AF =米,从飞机上观测山顶目标C 的俯角是45,飞机继续以相同的高度飞行300米到B 地,此时观察目标C 的俯角是50,则这座山的高度CD 是________米(参考数据:sin500.77≈,cos500.64≈,tan50 1.20≈)13.方程(x+2)(x ﹣3)=x ﹣3的解是_____.14.将抛物线y =x 2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为_____.15.如图,已知△ABO 顶点A (-3,6),以原点O 为位似中心,把△ABO 缩小到原来的13,则与点A 对应的点A'的坐标是________.16.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为度.17.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.18.不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为__.19.某中学组织的“红旗大赛”,60名选手的成绩统计如右图,已知成绩在94.5分以上的选手中,男生和女生各占一半,学校从中随机确定2名参加“红歌大赛”,则恰好选到一名男生和一名女生的概率为__________.三、解答题20.如图,点在直线上,点的坐标分别是,连接,将沿射线方向平移,使点O移动到点M,得到(点分别对应点).(1)填空:m的值为_____________,点C的坐标是______________;(2)在射线上是否存在一点N,使,如果存在,请求出点N的坐标;如果不存在,请说明理由;(3)连接,点P是射线上一动点,请直接写出使是等腰三角形时点P的坐标.21.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β(1)求m的取值范围;(2)若α+β+αβ=0.求m的值.22.如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.23.我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?24.随着信息技术的迅猛发展,人们购物的支付方式更加多样、便捷,为调查大学生购物支付方式,某大学一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为(2)将条形统计图补充完整;(3)若该大学有10000名学生,请你估计购物选择用支付宝支付方式的学生约有多少人?25.先化简,再求值:2(2x 2y -xy 2)-(4x 2y -xy 2),其中x =-4,12y =. 26.如图,在平面直角坐标系中,抛物线y =ax 2+bx+c (a≠0)交x 轴于点A (2,0),B (﹣3,0),交y 轴于点C ,且经过点d (﹣6,﹣6),连接AD ,BD .(1)求该抛物线的函数关系式;(2)若点M 为X 轴上方的抛物线上一点,能否在点A 左侧的x 轴上找到另一点N ,使得△AMN 与△ABD 相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与A ,D 重合),过点P 作PQ ∥y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【参考答案】***一、选择题1.C2.B3.C4.B5.B6.D7.A8.C9.B10.D二、填空题11.212.190013.121,3x x =-=14.y=(x+3)2﹣115.(-1,2)或(1,-2)16.50°.17.4332a ≤≤ 18.14 19.23三、解答题20.(1);(2)或;(3)(,)或(,) 或(0,0)或(,) 或(,).【解析】【分析】(1)当x=2时,y=2x=4,故:m=4,则点M的坐标为(2,4),由平移,可知:CM=AO=4,即可求解;(2)存在,理由:分当NC在直线MC下方、上方,两种情况分别求解即可;(3)分AD=AP、AD=PD、AP=PD三种情况,分别求解即可.【详解】解:(1)当x=2时,y=2x=4,∴m=4,∴点M的坐标为(2,4),由平移,可知:CM=AO=4,∴点C的坐标为(6,4),则点D(2,6).故答案为:4;(6,4).(2)存在,理由:①当NC在直线MC下方时,直线OM的表达式为:y=2x…①,则tan∠MOB=,∠NCM=∠BOM,则tan∠NCM=,设直线NC的表达式为:y=将点C的坐标代入上式并解得:b=1,则直线NC的表达式为:y=将①②联立并求解得:x=,则点N(,) ;②当NC在直线MC上方时,同理可得:点N′(,);故点N(,) 或(,);(3)设点P(x,2x),点D(2,6),点A(4,0),则AD2=4+36=40,AP2=(x-4)2+4x2=5x2-8x+16,PD2=(x-2)2+(2x-6)2=5x2-28x+40,①当AD=AP时,40=5x2-8x+16,解得:x=,②当AD=PD时,同理可得:x=0或,③当AP=PD时,同理可得:x=,故点P坐标为(,)或(,) 或(0,0)或(,) 或(,).【点睛】本题考查的是一次函数综合运用,涉及到图形平移、等腰三角形等知识,难度不大.21.(1)m≥﹣;(2)m的值为3.【解析】【分析】(1)根据方程有两个相等的实数根可知△>0,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+3)2﹣4×1×m2≥0,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,∵α+β+αβ=0,∴﹣(2m+3)+m2=0,解得:m1=﹣1,m1=3,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为3.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.22.(1)详见解析;(2)30°或150°(3【解析】【分析】(1)根据要求好像图形即可.(2)分两种情形分别求解即可.(3)解直角三角形求出BE,BF即可解决问题.【详解】解:(1)满足条件的点D和D′如图所示.(2)作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF=12 BC,∵BC=BD,AF=DE,∴DE=12 BD,∴∠DBE=30°,∴∠D′BC=120°+30°=150°,∴满足条件的α的值为30°或150°.(3)由题意AB=AC=2,∴BC=,∴AF=BF=DE,∴BE,∴AD.【点睛】本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.,属于中考常考题型.23.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(1)200,81°;(2)补充完整的条形统计图如图所示;见解析;(3)购物选择用支付宝支付方式的学生约有2250人.【解析】【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人.【详解】(1)本次调查的人数为:(45+50+15)÷(1﹣15%﹣30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示;(3)10000×45200=2250(人), 答:购物选择用支付宝支付方式的学生约有2250人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.【解析】【分析】根据乘法分配律去括号,合并同类项,代入求值即可【详解】解:原式=4x 2y -2xy 2-4x 2y +xy 2=-xy 2,当x =-4,12y =时,原式=-(-4)×212⎛⎫ ⎪⎝⎭=1. 【点睛】此题考查整式的加减-化简求值,掌握运算法则是解题关键26.(1)2113442y x x =--+;(2)30,2M ⎛⎫ ⎪⎝⎭ 或31,2⎛⎫- ⎪⎝⎭ ,点(2N - 或(2 或(﹣3,0)或5,04⎛⎫-⎪⎝⎭;(3)125 . 【解析】【分析】(1)用交点式函数表达式得:y =a (x ﹣2)(x+3),将点D 坐标代入上式即可求解;(2)分∠MAB =∠BAD 、∠MAB =∠BDA ,两种大情况、四种小情况,分别求解即可; (3)QH =PHcos ∠PQH =22441133314125544242555PH x x x x x ++⎛⎫=---=-- ⎪⎝+⎭,即可求解. 【详解】解:(1)用交点式函数表达式得:y =a (x ﹣2)(x+3),将点D 坐标代入上式并解得:a =14-, 故函数的表达式为:y =2113442x x --+…①,则点C (0,32);(2)由题意得:AB =5,AD =10,BD = , ①当∠MAB =∠BAD 时,当∠NMA =∠ABD 时,△AMN ∽△ABD , 则tan ∠MAB =tan ∠BAD =34, 则直线MA 的表达式为:y =﹣34x+b , 将点A 的坐标代入上式并解得:b =32, 则直线AM 的表达式为:y =﹣34x+32…②, 联立①②并解得:x =0或2(舍去2),即点M 与点C 重合,则点M (0,2),则AM =,∵△AMN ∽△ABD ,∴AN AM AD AB,解得:AN =,故点N (2﹣,0);当∠MN′A=∠ABD 时,△ANM ∽△ABD ,同理可得:点N′(2,0),即点M (0,32),点N (2﹣,0)或(2,0); ②当∠MAB =∠BDA 时, 同理可得:点M (﹣1,32),点N (﹣3,0)或(﹣54,0);故:点M (0,32)或(﹣1,32), 点N (2﹣,0)或(2,0)或(﹣3,0)或(﹣54,0);(3)如图所示,连接PH ,由题意得:tan ∠PQH =34,则cos ∠PQH =45,则直线BD 的表达式为:y =34x ﹣32,设点P (x ,2113442x x --+),则点H (x ,3342x --),则QH =PHcos ∠PQH =45PH =2411333544242x x x ⎛--+-+ ⎝)=21412555x x --+,∵15-<0,故QH 有最大值,当x =﹣2时,其最大值为125.【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,其中(2)需要分类求解共四种情况,避免遗漏.2020年数学中考模拟试卷一、选择题1.一个几何体由一些小正方体摆成,其主视图与左视图如左图所示.其俯视图不可能是( )A. B. C. D.2.如图,在直角坐标系中,直线AB :y =﹣2x+b ,直线y =x 与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数y =k x 的图象过点C .当S △CDE =32时,k 的值是( )A.18B.12C.9D.33.如图,点P (﹣a ,2a )是反比例函数(k <0)与⊙O 的一个交点,图中阴影部分的面积为5π,则反比例函数的解析式( )A. B. C. D.4.已知二次函数y =ax 2+bx+c (a≠0)的图象过点(O ,m )(2,m )(m >0),与x 轴的一个交点为(x 1,0),且﹣1<x 1<0.则下列结论:①若点()是函数图象上一点,则y >0;②若点是函数图象上一点,则y >0;③(a+c )2<b 2.其中正确的是( )A.①B.①②C.①③D.②③5.已知四边形的对角线相交于点,,则下列条件中不能判定四边形为平行四边形的是( )A.B.C.D.6.如图,小明想测量斜坡CD 旁一棵垂直于地面AE 的树AB 的高度,他们先在点C 处测得树顶B 的仰角为60︒,然后在坡顶D 测得树顶B 的仰角为30︒,已知斜坡CD 的长度为20m ,斜坡顶点D 到地面的垂直高度10DE m =,则树AB 的高度是( )mA .B .C .30D .407.最小的素数是( )A .1B .2C .3D .48.关于分式的约分或通分,下列哪个说法正确( ) A .211x x +-约分的结果是1xB .分式211x -与11x -的最简公分母是x ﹣1 C .22xx 约分的结果是1 D .化简221x x -﹣211x -的结果是19.下列分解因式正确的是( ) A .﹣x 2+4x =﹣x (x+4) B .x 2+xy+x =x (x+y )C .x 2﹣4x+4=(x+2)(x+2)D .x (x ﹣y )+y (y ﹣x )=(x ﹣y )210.如图,过点A 1(1,0)作x 轴的垂线,交直线y =2x 于点B ;点A 2与点O 关于直线A 1B 1对称;过点A 2(2,0)作x 轴的垂线,交直线y =2x 于点B 2;点A 3与点O 关于直线A 2B 2对称;过点A 3作x 轴的垂线,交直线y =2x 于点B 3;按B 3此规律作下去,则点B n 的坐标为( )A .(2n ,2n ﹣1)B .(2n ,2n+1)C .(2n+1,2n )D .(2n ﹣1,2n )二、填空题11.在△ABC 中,∠BAC =90°,AC =AB =4,E 为边AC 上一点,连接BE ,过A 作AF ⊥BE 于点F ,D 是BC 边上的中点,连接DF ,点H 是边AB 上一点,将△AFH 沿HF 翻折.点A 落在M 点,若MH ∥AF ,DF =,则MH 2=_____.12.将20190000用科学记数法表示为_____.13.将一次函数y=x﹣1的图象向下平移3个单位得到的函数关系式为_____.14.分解因式:ab4-4ab3+4ab2=______________。
北京市朝阳区2020届初三一模数学试题(图片版含答案)

北京市朝阳区九年级综合练习(一)化学试卷2020.5 学校班级姓名考号1.本试卷共6 页,共24 道小题,满分45 分。
考试时间:与生物合计90 分钟。
2.在试卷和答题卡上准确填写学校名称、班级、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考生须知可能用到的相对原子质量:H 1 C 12 O 16第一部分选择题(共12 分)(每小题只有一个选项符合题意。
每小题1 分)1.为了防止骨质疏松,人体需要补充的元素是A.钙B.铁C.锌D.碘2.废弃的易拉罐和塑料瓶属于A.厨余垃圾B.其他垃圾C.可回收物C.NO2D.有害垃圾D.P O3.下列含金属元素的物质是A.H SO4B.Al O32 2 2 54.下列属于纯净物的是A.铁矿石B.干冰C.矿泉水D.雪碧5.下列实验操作中,正确的是A.倾倒液体B.点燃酒精灯C.取用固体粉末C.食盐D.过滤6.下列物质常用于改良酸性土壤的是A.熟石灰B.烧碱D.大理石7.下列数据是相应物质的pH,其中呈碱性的是A.液体肥皂(9.5~10.5)B.菠萝汁(3.3~5.2)D.酱油(4.0~5.0)C.柠檬汁(2.0~3.0)8.根据右图所示实验,不能得到的结论是A.CO 密度比空气大B.CO 不能燃烧2 2C.蜡烛燃烧生成CO 和H O D.CO 不支持燃烧2 2 29.下列化学用语书写不正确的是A.2 个氢原子2H B.2 个氮分子2N2D.硝酸铜CuNO3C.2 个钠离子2Na+10. 下列关于2CO + O2 点燃2CO 的理解不正确的是2A.表示一氧化碳与氧气在点燃条件下反应生成二氧化碳B.参加反应的一氧化碳与氧气的质量比为5:4C.反应前后碳原子、氧原子的个数均不变D.参加反应的氧气与生成的二氧化碳的分子个数比为1:211.科学家发现,利用催化剂可有效消除室内装修材料释放的有害气体甲醛,其反应的微观示意图如下。
2020年北京市朝阳区中考数学零模试卷 含解析

2020年北京市朝阳区中考数学零模试卷一、选择题1.我国探月工程嫦娥四号任务“鹊桥”中继星是世界首颗运行在地月L2点Halo轨道的卫星,它的运行轨道距月球约65000公里,将65000用科学记数法表示应为()A.6.5×104B.65×103C.0.65×105D.6.5×1052.以下给出的几何体中,主视图和俯视图都是圆的是()A.B.C.D.3.如图,直线l l∥l2,直角三角板的直角顶点C在直线l1上,一锐角顶点B在直线l2上,若∠1=35°,则∠2的度数是()A.65°B.55°C.45°D.35°4.如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.65°B.60°C.55°D.50°5.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=39.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变6.如图是函数y=x2﹣2x﹣3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1B.m≤0C.0≤m≤1D.m≥1或m≤0二、填空题(本题共24分,每小题4分)7.分解因式:a2+2a=.8.若2在实数范围内有意义,则实数x的取值范围是.9.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).10.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为.11.如图,在▱ABCD中,E为DC边的中点,AE交BD于点O,如果S△AOB=8,那么S△DOE为,S△AOD为.12.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有种.三、解答题(本题共58分,第13-18题,每小题7分,第19-20题,每小题7分)解答应写出文字说明、演算步骤或证明过程.13.计算:tan60°﹣﹣(π﹣2)0+|﹣|.14.先化简,再求值:,其中.15.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,CD=,求DE的长.16.已知关于x的一元二次方程k2x2+(2k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)若此方程至少有一个有理数根,写出一个k的值,并求此时方程的根.17.如图,线段AB经过⊙O的圆心O,交⊙O于A,C两点,BC=1,AD为⊙O的弦,连接BD,∠BAD=∠ABD=30°,连接DO并延长交⊙O于点E,连接BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求线段EM的长.18.在平面直角坐标系xOy中,二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x=k,且k≠0,顶点为P.(1)求a的值;(2)求点P的坐标(用含k的式子表示);(3)已知点A(0,1),B(2,1),若函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,直接写出k的取值范围.19.已知线段AB,将AB绕点A逆时针旋转90°得到AC,将AC绕点C逆时针旋转90°+2α(0°<α<45°)得到CD,连接AD,点E在AD上,连接CE.(1)已知α=15°,∠DCE=15°.①依题意补全图1;②求∠D,∠AEC的度数;(2)连接BE,写出一个∠DCE的值(用含α的式子表示),使得对于任意的α都有∠AEC=∠AEB,并证明.20.在△ABC中,点D在AB边上(不与点B重合),DE⊥BC,垂足为点E,如果以DE 为对角线的正方形上的所有点都在△ABC的内部或边上,则称该正方形为△ABC的内正方形.(1)如图,在△ABC中,AB=4,∠B=30°,点D是AB的中点,画出△ABC的内正方形,直接写出此时内正方形的面积;(2)在平面直角坐标系xOy中,点A(t,2),B(0,0),C(t,0).①若t=2,求△ABC的内正方形的顶点E的横坐标的取值范围;②若对于任意的点D,△ABC的内正方形总是存在,直接写出t的取值范围.参考答案一、选择题(本题共18分,每小题3分)第1-6题均有四个选项,符合题意的选项只有一个.1.我国探月工程嫦娥四号任务“鹊桥”中继星是世界首颗运行在地月L2点Halo轨道的卫星,它的运行轨道距月球约65000公里,将65000用科学记数法表示应为()A.6.5×104B.65×103C.0.65×105D.6.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将65000用科学记数法表示为:6.5×104.故选:A.2.以下给出的几何体中,主视图和俯视图都是圆的是()A.B.C.D.【分析】直接利用主视图以及俯视图的观察角度不同分别得出几何体的视图进而得出答案.解:A.球的主视图是圆,俯视图是圆,故A符合题意;B.立方体的主视图是正方形,俯视图是正方形,故B不合题意;C.圆锥的主视图是三角形,俯视图是圆,故C不符合题意;D.圆柱的主视图是矩形,俯视图是圆,故D不符合题意.故选:A.3.如图,直线l l∥l2,直角三角板的直角顶点C在直线l1上,一锐角顶点B在直线l2上,若∠1=35°,则∠2的度数是()A.65°B.55°C.45°D.35°【分析】根据余角的定义得到∠3,根据两直线平行,内错角相等可得∠3=∠2.解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°.又∵直线l l∥l2,∴∠2=∠3=55°.故选:B.4.如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.65°B.60°C.55°D.50°【分析】根据三角形内角和定理求出∠BOC,根据圆周角定理解答即可.解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,由圆周角定理得,∠A=∠BOC=50°,故选:D.5.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=39.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【分析】根据平均数,方差的定义计算即可.解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.6.如图是函数y=x2﹣2x﹣3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1B.m≤0C.0≤m≤1D.m≥1或m≤0【分析】找到最大值和最小值差刚好等于5的m的值,则m的范围可知.解:如图1所示,当m等于0时,∵y=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),当x=0时,y=﹣3,∴A(0,﹣3),当x=4时,y=5,∴C(4,5),∴当m=0时,D(4,﹣5),∴此时最大值为0,最小值为﹣5;如图2所示,当m=1时,此时最小值为﹣4,最大值为1,当1<m<5时,最大值与最小值之差大于5,不合题意;综上所述:0≤m≤1,故选:C.二、填空题(本题共24分,每小题4分)7.分解因式:a2+2a=a(a+2).【分析】直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.解:a2+2a=a(a+2).8.若2在实数范围内有意义,则实数x的取值范围是x≤2.【分析】直接利用二次根式的定义分析得出答案.解:若2在实数范围内有意义,则2﹣x≥0,解得:x≤2.故答案为:x≤2.9.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b10.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故答案是:.11.如图,在▱ABCD中,E为DC边的中点,AE交BD于点O,如果S△AOB=8,那么S△DOE为2,S△AOD为4.【分析】由AB∥CD,证得△AOB∽△EOD,又E为DC边的中点,AB=CD,故相似比为AB:ED=2:1,根据相似三角形的面积比等于相似比的平方,可求S△EOD.由OB:OD=2:1可求出S△AOD.解:在▭ABCD中,∵AB∥CD,∴△ABO∽△EDO,∴AB:DE=OB:OD=2:1,∴△ABO与△EDO的面积的比是4:1,△ABO与△ADO的面积的比是2:1.∵S△AOB=8,∴S△EOD=2,S△AOD=4.故答案为:2,4.12.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有4种.【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20﹣x.∵x,y均为正整数,∴x是5的倍数,∴,,,,∴共有4种购买方案.故答案为:4.三、解答题(本题共58分,第13-18题,每小题7分,第19-20题,每小题7分)解答应写出文字说明、演算步骤或证明过程.13.计算:tan60°﹣﹣(π﹣2)0+|﹣|.【分析】原式利用特殊角的三角函数值,立方根定义,零指数幂法则,以及绝对值的代数意义计算即可求出值.解:原式=×﹣2﹣1+=3﹣2﹣1+=.14.先化简,再求值:,其中.【分析】根据分式的混合运算法则把原式化简,代入计算,得到答案.解:原式=(﹣)•=•=,当x=+3时,原式==.15.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,CD=,求DE的长.【分析】(1)由线段垂直平分线的性质可得BE=DE,BF=DF,可得∠EBD=∠EDB,∠FBD=∠FDB,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF,可证BE ∥DF,DE∥BF,可得四边形DEBF是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求DF的长.【解答】证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵EF垂直平分BD,∴BE=DE,BF=DF,∵∠EBD=∠EDB,∠FBD=∠FDB,∴∠EBD=∠BDF,∠EDB=∠DBF,∴BE∥DF,DE∥BF,∴四边形DEBF是平行四边形,且BE=DE,∴四边形BEDF是菱形;(2)过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=DF,FH=DH,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=,∴FC=FH+CH=,∴DF=2,∴DE=2.16.已知关于x的一元二次方程k2x2+(2k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)若此方程至少有一个有理数根,写出一个k的值,并求此时方程的根.【分析】(1)根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围;(2)先求出方程的解,再根据有理数根的定义得到根的判别式是完全平方数,进一步确定一个k的值,进一步求出此时方程的根.解:(1)∵关于x的一元二次方程(k2x2+(2k+1)x+1=0有实数根,∴,解得:k≥﹣且k≠0.(2)关于x的一元二次方程k2x2+(2k+1)x+1=0的解为x=,∵此方程至少有一个有理数根,∴4k+1是完全平方数,当k=2(不唯一)时,方程的根为x=,∴x1=﹣1,x2=﹣.17.如图,线段AB经过⊙O的圆心O,交⊙O于A,C两点,BC=1,AD为⊙O的弦,连接BD,∠BAD=∠ABD=30°,连接DO并延长交⊙O于点E,连接BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求线段EM的长.【分析】(1)求出∠BDO=90°,再根据切线的判定得出即可;(2)解直角三角形求出OD、根据勾股定理求出BD,连接DM,根据相似三角形的判定得出△BMD∽△BDE,得出比例式,再代入求出即可.【解答】(1)证明:∵∠BAD=∠ABD=30°,∴∠DOB=2∠BAD=60°,∴∠ODB=180°﹣30°﹣60°=90°,即OD⊥BD,∵OD过O,∴直线BD是⊙O的切线;(2)解:设OD=OC=r,在Rt△BDO中,sin30°==,解得:r=1,即OD=1,OB=1+1=2,由勾股定理得:BD==,∴BE==,连接DM,∵DE是⊙O的直径,∴∠DME=90°,即∠DMB=∠BDE=90°,∵∠DBM=∠DBE,∴△BMD∽△BDE,∴=,∴=,解得:BM=,∴EM=BE﹣BM﹣.18.在平面直角坐标系xOy中,二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x=k,且k≠0,顶点为P.(1)求a的值;(2)求点P的坐标(用含k的式子表示);(3)已知点A(0,1),B(2,1),若函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,直接写出k的取值范围.【分析】(1)由对称轴公式列出a的方程解出a便可;(2)把x=k代入抛物线的解析式,便可求得顶点的纵坐标,进而得顶点P的坐标;(3)根据二次函数的图象与线段AB只有一个公共点,分三种情况说明:当抛物线顶点落在AB上时;当抛物线经过点B时;当抛物线经过点A时;分别求得k的值,进而结合图象的位置即可求此k的取值范围.解:(1)∵二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x=k,∴﹣,∴a=1;(2)把a=1代入y=ax2﹣2kx+k2+k得,y=x2﹣2kx+k2+k,当x=k时,y=k2﹣2k2+k2+k=k,∴顶点P(k,k);(3)∵函数y=x2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,点A(0,1),B(2,1),∴当抛物线顶点落在AB上时,k=1,则当k=1时,函数y=ax2﹣2kx+k2+k(k﹣1≤x ≤k+1)的图象与线段AB恰有一个公共点;当抛物线经过点B时,4﹣4k+k2+k=1,无解,当抛物线经过点A时,k2+k=1,解得,k=,则当﹣≤k<时,函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点;综上所述:﹣≤k<或k=1;19.已知线段AB,将AB绕点A逆时针旋转90°得到AC,将AC绕点C逆时针旋转90°+2α(0°<α<45°)得到CD,连接AD,点E在AD上,连接CE.(1)已知α=15°,∠DCE=15°.①依题意补全图1;②求∠D,∠AEC的度数;(2)连接BE,写出一个∠DCE的值(用含α的式子表示),使得对于任意的α都有∠AEC=∠AEB,并证明.【分析】(1)①根据要求画出图形即可.①利用三角形内角和定理,等腰三角形的性质求解即可.(2)当∠DCE=α时,∠AEC=∠AEB.如图1中,连接BC,BE.证明∠AEC=45°,∠AEB=45°即可判断.解:(1)①如图1所示.②∵∠ACD=90°+2α,α=15°,∴∠ACD=120°,∵CA=CD,∴∠D=∠CAD=30°,∵∠AEC=∠D+∠DCE=30°+15°=45°.(2)当∠DCE=α时,∠AEC=∠AEB.理由:如图1中,连接BC,BE.∵CA=CD,∠ACD=90°+2α,∴∠D=∠CAD=(180°﹣90°﹣2α)=45°﹣α,∴∠AEC=∠DCE+∠D=α+45°﹣α=45°,∵AC=AB,∠CAB=90°,∴∠ABC=∠ACB=45°,∴∠AEC=∠ABC,∴A,B,E,C四点共圆,∴∠AEB=∠ACB=45°,∴∠AEC=∠AEB.20.在△ABC中,点D在AB边上(不与点B重合),DE⊥BC,垂足为点E,如果以DE 为对角线的正方形上的所有点都在△ABC的内部或边上,则称该正方形为△ABC的内正方形.(1)如图,在△ABC中,AB=4,∠B=30°,点D是AB的中点,画出△ABC的内正方形,直接写出此时内正方形的面积;(2)在平面直角坐标系xOy中,点A(t,2),B(0,0),C(t,0).①若t=2,求△ABC的内正方形的顶点E的横坐标的取值范围;②若对于任意的点D,△ABC的内正方形总是存在,直接写出t的取值范围.【分析】(1)根据要求作出正方形DGEH即可,求出DE,根据正方形的面积等于对角线乘积的一半计算即可.(2)①如图2中,设E(m,0).用m表示出点G的坐标,求出直线AC的解析式,当点G落在AC上时,利用待定系数法求出m即可解决问题.②观察图2可知,当t=4或﹣4时,点G落在AC上,由此可以得出结论.解:(1)如图1中,正方形DGEH是△ABC的内正方形.∵AB=4,BD=AD,∴BD=AB=2,∵DE⊥BC,∴∠DEB=90°,∵∠B=30°,∴DE=BD=1,∴S正方形DGEH=•DE2=.(2)①如图2中,设E(m,0).∵A(2,2),C(3,0),∴∠AOC=45°,直线AC的解析式为y=﹣2x+6,∵DE⊥BC,∠DBE=45°,∴∠DEB=90°,∠EDB=∠EBD=45°,∴BE=DE=m,∵四边形DGEH是正方形,∴∠EDH=45°,∴点H在AB上,可得H(m,m),G(m,m),当点G落在AC上时,把点G(m,m)代入直线AC的解析式得到:m=﹣2×m+6,解得m=,观察图象可知满足条件的点E的横坐标m的取值范围为0<m≤.②观察图2可知,当t=4时,点G落在AC上,故t≥4时,△ABC的内正方形总是存在,根据对称性,t≤﹣4时,也满足条件.综上所述,满足条件的t的值为t≤﹣4或t≥4.。
2020年北京市朝阳区中考一模数学试题及答案

北京市朝阳区九年级综合练习(一)数学试卷 2016.5考生须知1.本试卷共8页,共三道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题卡一并交回. 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人, 将264000用科学计数法表示应为A .326410⨯B .42.6410⨯C .52.6410⨯D .60.26410⨯ 2.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是A .a 与bB .b 与cC .c 与dD .a 与d 3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是 A .21 B .13 C .29D .19 4.下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D5.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A = 50º,则∠BCE 的度数为A .40ºB .50ºC .60ºD .130ºE OC BAOACB图16.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示, 在地面上取一点C ,使C 到A 、B 两点均可直接到达,测量找到AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为A .3300mB .2200mC .1100mD .550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 甲组 176 177 175 176 乙组178175177174设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是 A .甲x =乙x ,2甲s <2乙sB .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s8.如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则»BC的长为 A .2π B .4π C .6π D .12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为 A .(–2,–4) B .(–1,–4) C .(–2,4) D .(–4,–1)10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且30=∠AGH °.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A . 线段CGB . 线段AGC . 线段AHD . 线段CHyx1–1–112O图2三、填空题(本题共18分,每小题3分)11.若二次根式2x-有意义,则x的取值范围是____________.12.分解因式:22369a b ab b-+=____________.13.关于x的方程04222=-++kxx有两个不相等实数根,写出一个满足条件的k的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB和AB上一点C.求作:AB的垂线,使它经过点C.如图,(1)在直线AB上取一点D,使点D与点C不重合,以点C为圆心,CD长为半径作弧,交AB于D,E两点;(2)分别以点D和点E为圆心,大于12DE长为半径作弧,两弧相交于点F;(3)作直线CF.所以直线CF就是所求作的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:1(2)1)4cos 45---+︒. 18.已知11m m-=,求(21)(21)(5)m m m m +-+-的值. 19.解不等式组3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩并写出它的所有整数解. 20.如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:BAC ∠= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入, 2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形 ; (2)若DF =3,DE =4,AD =5,求CD 的长度.FEDCB A1FECBA23.在平面直角坐标xOy 中,直线y x b =+与双曲线my x=的一个交点为A (2,4),与y 轴交于点B .(1) 求m 的值和点B 的坐标; (2) 点P 在双曲线my x=上,△OBP 的面积为8,直接写出点P 的坐标.24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ; (2) 若DC =6,3tan 4P ∠= ,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测 本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.观察下列各等式:P222=233-⨯,( 1.2)6( 1.2)6--=-⨯,11()(1)()(1)22---=-⨯-, ……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的 ; (2)请你写一个实数,使它具有上述等式的特征:-3= ⨯3;(3)请你再写两个实数,使它们具有上述等式的特征:- = ⨯ ;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线c bx x y ++=2经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将c bx x y ++=2(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.28.在等腰三角形ABC 中, AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接P A ,以P为旋转中心,将线段P A顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.(1)当∠C=90º时,请你在图1中补全图形,并直接写出∠DBA的度数;(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C =30º,AC=2,∠APC=135º,请写出求AD长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy中,A(t,0),B(t+0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=-32C⎛⎫⎪⎝⎭,,2D⎛⎫⎪⎪⎝⎭,3,22E⎛⎫-⎪⎪⎝⎭中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥P A,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案图1PCB APCB A图2一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17─26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=11422--+⨯……………………………………………… …4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=Q,21m m∴-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分19.解:3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩解不等式①,得x>-1.……………………………………………………………2分解不等式②,得x≤1.………………………………………………………… 3分∴不等式组的解集是1-<x≤1.………………………………………………… 4分∴原不等式组的所有整数解为0,1.……………………………………………5分20.证明:∵EF∥AB,∴∠1=∠FAB.…………………… 2分①②C∵AE =EF ,∴∠EAF =∠EFA . ……………… 3分∵∠1=∠EFA ,∴∠EAF =∠1.…………………… 4分∴∠BAC =2∠1. …………………5分21.解:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.. …… 1分 依题意,列方程组得 245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩, ………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 22.(1)证明:∵四边形ABCD 是矩形, ∴DC AB =,DCF B ∠=∠=90º. ∵BAE CDF ∠=∠,∴△ABE ≌△DCF .………………1分 ∴CF BE =. ∴EF BC =. ∵AD BC =,∴AD EF =.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF =AD = 5.在△EFD 中,DF =3,DE =4,EF =5,∴222DE DF EF +=.∴∠EDF =90º.……………………………………………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. ……………………………………………………………………5分23.解:(1)∵双曲线xmy =经过点,A (2,4),FEDCB A∴8=m .………………………………………………………………………1分 ∵直线y x b =+经过点A (2,4),∴2b =.…………………………………………………………………………2分∴此直线与y 轴交点B 的坐标为(0,2). …………………………………3分(2)(8,1),(-8,-1). .…………………………………………………… 5分 24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP .∴90ODP ∠=︒. ………………………………………………………1分 ∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD =OB ,∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴DB 平分∠PDC .……………………………………………………………2分 (2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC , ∴BC =BE . ……………………………………3分 ∵DC =6,3tan 4P ∠=, ∴DP =10,PC =8.……………………………… 4分 设CB=x , 则BE=x ,BP=8- x .∵△PEB ∽△PCD ,∴8610x x-= .∴3=x .∴.3=BC ……………………………………………………………………… 5分 25.(1)296.7. ………………………………………………………………………………1分AA(2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表老年人口数量 (单位:万人)老年人口占 户籍总人口的比例2013年 279.3 21.2% 2014年 296.7 22.3% 2015年32023%……………………………………………………………………………………3分 (3)14; ……………………………………………………………………………………4分能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到 老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到 北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求. ……………….…………….…………….…………………………………………5分 26.解:(1)差,积;…………………………………………………………………………1分(2)23-,23-;……………………………………………………………………2分 (3)1,12,1,12(答案不唯一); …………………………………………3分(4)存在. 设这两个实数分别为x ,y .可以得到 .xy y x =- ……………………………………………………4分 ∴1+=x xy .∴111y x =-+.∵ 要满足这两个实数x ,y 都是整数,∴ x +1的值只能是1±.∴当0=x 时,0=y ;当2-=x 时,2=y .∴满足两个实数都是整数的等式为0000⨯=-,222)2(⨯-=--.…5分 27.解:(1)把(0,–3)代入c bx x y ++=2,∴.3-=c把(2,–3)代入,32-+=bx x y项目年份∴.2-=b322--=xxy.………………2分(2)由(1)得2(1)4y x=--.∴顶点坐标为(1,–4).……………3分由2230x x--=解得123,1x x==-.∴抛物线与x轴交点的坐标为(–1,0),(3,0).…………………………5分(3)6±..……………………………………………………………………7分28.解:(1)如图,补全图1.…………….………………………………………………1分∠DBA=︒90.……………….………………………………………………2分(2)过点P作PE∥AC交AB于点E.………………………………………………3分∴PEB CAB∠=∠.∵AC=BC,∴CABCBA∠=∠.∴PEB PBE∠=∠.∴PEPB=.又∵BPD DPE EPA DPEα∠+∠=∠+∠=,∴BPD EPA∠=∠.∵PDPA=,∴△PDB≌△PAE.…………………………………………………………4分∵11(180)9022PBA PEBαα∠=∠=︒-=︒-,∴180PBD PEA PEB∠=∠=︒-∠=α2190+︒.∴DBA PBD PBAα∠=∠-∠=. …………………………………………5分(3)求解思路如下:a.作AH⊥BC于H;PEDCB ACPb .由∠C =30º,AC =2,可得AH =1,CH,BH=2-, 勾股定理可求AB ; ………………………………………6分 c .由∠APC =135 º,可得∠APH =45 º,AP; d .由∠APD =∠C =30º,AC =BC ,AP =DP ,可得△PAD ∽△CAB ,由相似比可求AD 的长. ……………7分 29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,∵∠APB=60°,∠ABP =90°, ∴∠PAB =30°,又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分∵,3=AB∴BM =∴.1=PB∴P(6-1). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB =60º,∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB .∴△ABQ 是等边三角形.∴∠AQB =60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB =90º. ………7分③14t <<-…………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.NMNM。
2020年北京朝阳区九年级中考数学一模试卷带讲解

∴S1=1080°-720°=360°,
∴ =360°,
故答案为:360.
【点睛】本题考查了多边形的内角与外角,掌握知识点是解题关键.
14.用一个 的值说明命题“若 为实数,则 ”是错误的,这个值可以是 _________.
【14题答案】
【分析】举出一个反例:a=0,说明命题“若 为实数,则 ”是错误的即可.
【详解】解:由题意,得 ,所以这四个数中,相反数最大的是a.
故选:A.
【点睛】本题考查了数轴的知识、相反数的定义和实数的大小比较,属于基础题型,明确哪个数越大则其相反数就越小是解本题的关键.
4.一个不透明的袋中装有8个黄球, 个红球, 个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列 与 的关系一定正确的是()
【详解】原式
,
当 时,原式 .
故选:B.
【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键;
6.如图, 的直径 垂直于弦 ,垂足为 , , ,则 的长为()
A.2.5B.4C.5D.10
【6题答案】
C
【分析】先根据垂径定理得出CE=DE=2,易得∠B=∠C,然后在Rt△ACE和Rt△BDE中分别利用∠C和∠B的正切求出AE与BE的长,进而可得答案.
乙返回办公室用了14-10=4(分钟),故③正确;
故答案为:①②③.
【点睛】本题考查了一次函数的应用,根据图象获取条件是解题关键.
16.某兴趣小组外出登山,乘坐缆车的费用如下表所示:
乘坐缆车方式
乘坐缆车费用(单位:元/人)
往返
180
单程
100
2020年朝阳市中考数学第一次模拟试卷含答案

A.4个B.3个C.2个D.1个
解得:k≤ 且k≠1.
故选:D.
【点睛】
此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键
7.C
解析:C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
8.C
解析:C
【解析】
分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.
17.已知 ,那么 的值是_____.
18.如图,在Rt△AOB中,OA=OB= ,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.
19.如图①,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,则矩形MNPQ的面积是________.
15.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△AnBnAn+1的边长为______.
16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y= 的图象上,则k的值为________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷题号一二总分得分一、填空题(本大题共6小题,共30.0分)1.如图,矩形ABCD中,AB=4,BC=6,E是边BC的中点,点P在边AD上,设DP=x,若以点D为圆心,DP为半径的⊙D与线段AE只有一个公共点,则所有满足条件的x的取值范围是______.2.如图,在矩形ABCD中,点E是边AD上一点,EF⊥AC于点F.若tan∠BAC=2,EF=1,则AE的长为______.3.如图,曲线AB是抛物线y=-4x2+8x+1的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线y=(k≠0)的一部分.曲线AB与BC组成图形W.由点C开始不断重复图形W形成一组“波浪线”.若点P(2020,m),Q(x,n)在该“波浪线”上,则m的值为______,n的最大值为______.4.将矩形纸片ABCD按如下步骤进行操作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是______.5.已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2-4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作正方形ABCD.则正方形的边长AB的最小值是______.6.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于______.二、解答题(本大题共9小题,共70.0分)7.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=______°(______)(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.8.计算:.9.如图,在平面直角坐标系xOy中,曲线y=经过点A.(1)求曲线y=的表达式;(2)直线y=ax+3(a≠0)与曲线y=围成的封闭区域为图象G.①当a=-1时,直接写出图象G上的整数点个数是______;(注:横,纵坐标均为整数的点称为整点,图象G包含边界.)②当图象G内只有3个整数点时,直接写出a的取值范围.10.如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若cos C=,AC=8,求BF的长.11.如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:(1)求证:EF是△ABC外接圆的切线;(2)若BC=5,sin∠ABC=,求EF的长.12.如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.下面是小元的探究过程,请补充完整:(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如表:AP/cm0 1.00 2.00 3.00 4.00 5.00 6.00PC/cm0 1.21 2.09 2.69m 2.820AC/cm00.87 1.57 2.20 2.83 3.61 6.00①经测量的值是(保留一位小数).②在AP,PC,AC的长度这三个量中,确定______的长度是自变量,______的长度和的______长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为cm(保留一位小数).13.函数y=x2-(m-1)x+1的图象的对称轴为直线x=1.(1)求m的值;(2)将函数y=x2-(m-1)x+1的图象向右平移2个单位,得到新的函数图象G.①直接写出函数图象G的表达式;②设直线y=-2x+2t(t>m)与x轴交于点A,与y轴交于点B,当线段AB与图象G只有一个公共点时,直接写出t的取值范围.14.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.15.对于平面直角坐标系xOy中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=______,d(B,⊙O)=______;②如果直线y=x+b与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在x轴上,半径为1,直线y=-x+5与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.答案和解析1.【答案】x=或5≤x<6【解析】解:如图,当⊙D与AE相切时,设切点为G,连接DG,∵PD=DG=x,∴AP=6-x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴=,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或5≤x<6;故答案为:x=或5≤x<6.首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围.本题考查了矩形的性质、相似三角形的判定和性质.特别注意和线段有一个公共点,不一定必须相切,也可以相交,但其中一个交点在线段外.2.【答案】【解析】解:∵在矩形ABCD中,∠B=90°,tan∠BAC=2∴=2,∵AD=BC,CD=AB,∴=,∴tan∠EAF=,∵EF=1,∴AF=2,∴AE===,故答案为:.根据矩形的性质和解直角三角形即可得到结论.本题考查了矩形的性质,解直角三角形,正确的识别图形是解题的关键.3.【答案】1 5【解析】解:∵y=-4x2+8x+1=-4(x-1)2+5,∴当x=0时,y=1,∴点A的坐标为(0,1),点B的坐标为(1,5),∵点B(1,5)在y=(k≠0)的图象上,∴k=5,∵点C在y=的图象上,点C的横坐标为5,∴点C的纵坐标是1,∴点C的坐标为(5,1),∵2020÷5=404,∴P(2020,m)在抛物线y=-4x2+8x+1的图象上,m=-4×0+8×0+1=1,∵点Q(x,n)在该“波浪线”上,∴n的最大值是5,故答案为:1,5.根据题意可以求得点A、点B、点C的坐标和k的值,然后根据图象可知每5个单位长度为一个循环,从而可以求得m的值和n的最大值.本题考查反比例函数图象上点的坐标特征、二次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.4.【答案】【解析】解:由折叠的性质得到BE=AB,∵四边形ABCD是矩形,∴AB=CD,△BOE∽△DOC,∴△BOE与△DOC的相似比是,∴点O到边AB的距离与点O到边CD的距离的比值是.故答案为:.根据折叠的性质得到BE=AB,根据矩形的性质得到AB=CD,△BOE∽△DOC,再根据相似三角形的性质即可求解.本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题.5.【答案】【解析】解:∵四边形ABCD是正方形,∴AB=AC,∵y=x2-4x+6=(x-2)2+2,∴当x=2时,AC有最小值2,即正方形的边长AB的最小值是.故答案为:.根据正方形的性质得到AB=AC,再将抛物线解析式整理成顶点式形式,当正方形的边长AB的最小时,即AC的值最小.本题考查了二次函数图象上点的坐标特征,正方形的性质,将抛物线解析式整理成顶点式形式求解更简便.6.【答案】或【解析】【分析】本题考查等腰三角形的性质、锐角三角函数,解答本题的关键是明确题意,求出相应的角的三角函数值.根据题意,可以求得底边的长,然后利用分类讨论的方法和锐角三角函数可以求得相应的角的三角函数值.【解答】解:设等腰三角形的底边长为a,|5-a|=3,解得,a=2或a=8,当a=2时,这个等腰三角形底角的余弦值是:,当a=8时,这个等腰三角形底角的余弦值是:,故答案为或.7.【答案】90 直径所对的圆周角是直角【解析】解:(1)补全图形如图.(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角),∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.故答案为90,直径所对的圆周角是直角.(1)根据要求画出图形即可.(2)利用圆周角定理证明∠OAP=∠OBP=90°即可.本题考查作图-复杂作图,线段的垂直平分线,圆周角定理,切线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】解:==-+1+1=【解析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.9.【答案】3【解析】解:(1)∵A(1,1),∴k=1.1∴.2(2)①当a=-1时,直线解析式为y=-x+3,如图所示,图象G上的整点有(1,1),(2,1),(1,2)有3个;故答案为3;②当直线经过(3,1)时,则-3a+3=1,解得a=-,观察图象可知:当图象G内只有3个整数点时,a的取值范围是.(1)根据待定系数法求得即可;(2)①画出直线y=-x+3,根据图象可得整点的个数;②画图计算边界时点a的值,可得a的取值.本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,本题理解整点的定义是关键,并利用数形结合的思想.10.【答案】(1)证明:如图①,连接AD.图①∵E是E是的中点,∴∴∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直径,∴∠ADB=∠ADC=90°∴∠C+∠CAD=90°∴∠BAD+∠CAD=90°即BA⊥AC.∴AC是⊙O的切线.(2)解:如图②,过点F做FH⊥AB于点H.图②∵AD⊥BD,∠DAE=∠EAB,∴FH=FD,且FH∥AC.在Rt△ADC中,∵cos C=,AC=8,∴CD=6.同理,在Rt△BAC中,可求得BC=∴BD=设DF=x,则FH=x,BF=-x∵FH∥AC,∴∠BFH=∠C.∴cos∠BFH==即=解得x=2.∴BF=.【解析】(1)如图①,连接AD.根据直径所对的圆周角为直角及同圆中等弧所对的圆周角相等,及∠ACB=2∠EAB.求得∠BAD+∠CAD=90°,则BA⊥AC,根据切线的判定定理可得证;(2)如图②,过点F做FH⊥AB于点H,先在Rt△ADC和Rt△BAC中,分别求得CD、BC、BD.再在Rt△BFH中,由三角函数可求得FH及DF,则可用BD的值减去DF的值,求得BF.本题考查了圆的切线的判定定理及三角函数在线段求值中的应用,熟练掌握相关定理及相似或三角函数的计算技巧,是解题的关键.11.【答案】(1)证明:补全图形如图所示,∵△ABC是直角三角形,∴△ABC的外接圆圆心O是斜边AB的中点.连接OE,∴OE=OB.∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠3.∴OE∥BF.∵EF⊥BF,∴EF⊥OE,∴EF是△ABC外接圆的切线;(2)解:在Rt△ABC中,BC=5,sin∠ABC=,∴=.∵AC2+BC2=AB2,∴AC=12.∵∠ACF=∠CFE=∠FEH=90°,∴四边形CFEH是矩形.∴EF=HC,∠EHC=90°.∴EF=HC=AC=6.【解析】(1)根据已知条件得到△ABC的外接圆圆心O是斜边AB的中点.连接OE,根据等腰三角形的性质和角平分线的定义得到∠1=∠3.求得OE∥BF.于是得到结论;(2)根据三角函数的定义得到=.根据勾股定理得到AC=12.根据矩形的性质即可得到结论.本题考查了三角形的外接圆与外心,圆周角定理,勾股定理,矩形的判定和性质,切线的判定,正确的画出图形是解题的关键.12.【答案】AP PC AC【解析】解:(1)①经测量:m=3.0;②在AP,PC,AC的长度这三个量中,可以确定AP的长度是自变量,PC的长度和的AC长度都是这个自变量的函数;故答案为:AP,PC,AC;(答案不唯一)(2)设AP为x,AC为y1,PC为y2,通过描点,画出图象如图1所示:(答案不唯一,和(1)问相对应);(3)①当AC=PC时,即:y1=y2,从图象可以看出:x=4.2cm;②当AP=PC时,画出函数:y=x的图象,如图2所示:y=x的图象与y1的交点处x的为2.3cm;∴当△ACP为等腰三角形时,AP的长度约为4.2cm或2.3cm.(1)测量即可;(2)通过描点,画出如下图象;(3)分AC=PC、AP=PC两种情况,分别求解即可.本题为圆的综合题,主要是研究函数y随自变量x的变化而变化的规律,此类题目,主要通过画出函数图象,根据题设条件,找出图象对应的点的值即可.13.【答案】解:(1)∵函数y=x2-(m-1)x+1的图象的对称轴为直线x=1.∴=1,∴m=3∴函数的表达式为y=x2-2x+1;(2)①将函数y=x2-(m-1)x+1的图象向右平移2个单位,得到新的函数图象G为y=(x-3)2;②∵直线y=-2x+2t(t>m)与x轴交于点A,与y轴交于点B,∴A(t,0),B(0,2t),∵新的函数图象G的顶点为(3,0),与y的交点为(0,9),∴当线段AB与图象G只有一个公共点时,2t>9,解得t>,由(x-3)2=-2x+2t整理得x2-4x+9-2t=0,则△=16-4(9-2t)=0,解得t=故t的取值范围是t>或t=.【解析】(1)根据对称轴方程即可求得;(2)①根据平移的规律即可求得;②根据二次函数的性质以及一次函数的性质,结合图象即可求得.本题考查二次函数的图象及性质;熟练掌握二次函数的图象性质,数形结合求抛物线与线段的交点问题是解题关键.14.【答案】(1)补全图形图1,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE.∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°;(2)补全图形图2,,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE,∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.∵AF是由AD绕点A逆时针旋转120°得到,∴AF=AD,∠DAF=120°.∵∠APE=60°,∴∠APE+∠DAP=180°.∴AF∥BE,∴∠1=∠2,∵△ABD≌△BEC,∴AD=BE.∴AF=BE.在△AQF和△EQB中,△AQF≌△EQB(AAS),∴AQ=QE,∴,∵AE=AC-CE,CD=BC-BD,且AE=BC,CD=BD.∴AE=CD,∴.【解析】(1)根据全等三角形性质和三角形外角的性质即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠CBE,根据三角形的外角的性质得到∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.根据旋转的性质得到AF=AD,∠DAF=120°.根据全等三角形的性质得到AQ=QE,于是得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.15.【答案】1 3【解析】解:(1)①如图1中,设⊙O交y轴于E,连接OB交⊙于F.由题意d(A,⊙O)=AE=1,d(B,⊙O)=BF=OB-OF=5-2=3.故答案为1,3.②如图2中,作OH⊥EF于H,交⊙O于G.当GH=1时,OF=OG+GH=3,∵直线EF的解析式为y=x+b,∴E(0,b),F(-b,0),∴OE=OF=b,∵OH⊥EF,∴HE=HF,∵EF=2OH=6,∴b=3,根据对称性可知当-3≤b≤3时,直线y=x+b与⊙O互为“可及图形”.(2)如图3中,当⊙G在y轴的左侧,OG=2时,GG(-2,0),当⊙G′在y轴的右侧,作G′H⊥CD于H,当HG′=2时,∵直线y=x-5交x轴于C,交y轴于D,∴C(5,0),D(0,5),∴OC=OD=5,∠OCD=45°,∵∠CHG′=90°,∴CH=HG′=2,∴CG′=2,∴G′(5-2,0),当点G″在直线CD的右侧时,同法可得G″(5+2,0),观察图象可知满足条件的m的值为:-2≤m≤2或5-2≤m≤5+2.(1)①如图1中,设⊙O交y轴于E,连接OB交⊙于F.根据图形M,N的“近距离”的定义计算即可.②如图2中,作OH⊥EF于H,交⊙O于G.求出两种特殊位置b的值即可判断.(2)分三种情形求出经过特殊位置的G的坐标即可判断.本题属于圆综合题,考查了直线与圆的位置关系,点与圆的位置关系,解直角三角形等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,学会用分类讨论的思想思考问题,属于中考压轴题.。