2010年北京市中考数学试题及答案.doc

合集下载

2010年北京市高级中等学校招生考试数学试卷

2010年北京市高级中等学校招生考试数学试卷

2010年北京市高级中等学校招生考试数 学 试 卷学校___________________ 姓名___________________ 准考证号___________________一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1. 2-的倒数是A. 12-B. 12C. 2-D. 2 2. 2010年6月3日,人类首次模拟火星载人航天飞行试验“火星—500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12 480小时的“火星之旅”.将12 480用科学记数法表示应为A. 312.4810⨯B. 50.124810⨯C. 41.24810⨯D. 31.24810⨯3. 如图,在ABC △中,点D E 、分别在AB AC 、边上,DE BC ∥,若:3:4AD AB =,6AE =,则AC 等于A. 3B. 4C. 6D. 84. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为A. 20B. 16C. 12D. 10 5. 从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是A. 15B. 310C. 13D. 12 6. 将二次函数223y x x =-+化为()2y x h k =-+的形式,结果为 A. ()214y x =++ B. ()214y x =-+ C. ()212y x =++ D. ()212y x =-+设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为S 甲,S 乙,则下列关系中完全正确的是A. x x =乙甲,22S S >乙甲B. x x =乙甲,22S S <乙甲C. x x >乙甲,22S S >乙甲D. x x <乙甲,22S S <乙甲E D B AFE DA 8. 美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是二、填空题(本题共16分,每小题4分)9. 则x 的取值范围是___________. 10. 分解因式:34m m -=_____________________. 11. 如图,AB 为O ⊙的直径,弦CD AB ⊥,垂足为点E ,连结OC ,若5OC =,8CD =,则AE =___________. 12. 右图为手的示意图,在各个手指间标记字母A B C D ,,,.请你按图中箭头所指方向(即A B C D C B A B →→→→→→→C →→…的方式)从A 开始数连续的正整数1234,,,,…,当数到12时,对应的字母是________;当字母C 第201次出现时,恰好数到的数是_________;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是_____________(用含n 的代数式表示).三、解答题(本题共30分,每小题5分)13.计算:1012010tan 603-⎛⎫-+--︒ ⎪⎝⎭.14. 解分式方程312422x x x -=--. 15. 已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =.求证:ACE DBF ∠=∠.16. 已知关于x 的一元二次方程2410x x m -+-=有两个相等的实数根,求m 的值及方程的根.D BAC17. 列方程或方程组解应用题:2009年北京生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18. 如图,直线23y x =+与x 轴交于点A ,与y 轴交于点B . (1)求A B ,两点的坐标;(2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =, 求ABP △的面积.四、解答题(本题共20分,每小题5分)19. 已知:如图,在梯形ABCD 中,AD BC ∥,2AB DC AD ===,4BC =.求B ∠的度数及AC 的长.20. 已知:如图,在ABC △中,D 是AB 边上一点,O ⊙过D B C 、、三点,290DOC ACD ∠=∠=︒.(1)求证:直线AC 是O ⊙的切线; (2)如果75ACB ∠=︒,O ⊙的半径为2,求BD 的长.21. 根据北京市统计局公布的2006-2009年空气质量的相关数据,回执统计图如下:2006—2009年北京全年市区空气质量达到二级和好于二级的天数统计图2009200820072006年份(1)有统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_________年,增加了_______天;(2)表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);图112 表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表(3)根据表1中的数据将十个城市划分为三组,百分比不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市数量在这十个城市中所占的百分比为_____%;请你补全右边的扇形统计图.22. 阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,8cm AD =,6cm AB =.现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种方式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹角为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45︒的方向作直线运动,…,如图1所示.问P 点第一次与D 点重合前与边相碰几次,P 点第一次与D 点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A PE =.请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前与边相碰______次;P 点从A 点出发到第一次与D 点重合时所经过的路径地总长是_______________cm ;(2)进一步探究:改变矩形ABCD 中AD AB 、的长,且满足AD AB >.动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上.若P 点第一次与B 点重合前与边相碰7次,则:AB AD的值为_________.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)A 组20%2009 年十个城市空气质量达到二级和好于二级的天数占全年天数百分比分组统计图图211123. 已知反比例函数k y x=的图象经过点()1A . (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30︒得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由; (3)已知点()6P m +也在此反比例函数的图象上(其中0m <),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得OQM △的面积是12,设Q 点的纵坐标为n,求29n -+的值.24. 在平面直角坐标系xOy 中,抛物线22153244m m y x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点()2B n ,在这条抛物线上.(1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED PE =,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长; ② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM QF =,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.25. 问题:已知ABC △中,2BAC ACB ∠=∠,点D 是ABC △内的一点,且AD CD =,BD BA =.探究DBC ∠与ABC ∠度数的比值.请你完成下列探究过程: 先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当90BAC ∠=︒时,依问题中的条件补全右图.观察图形,AB 与AC 得数量关系为________;当退出15DAC ∠=︒时,可进一步推出DBC ∠的度数为_______; 可得到DBC ∠与ABC ∠度数的比值为_________.(2)当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC ∠度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.C BA卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。

北京市历年中考数学试题(含答案)

北京市历年中考数学试题(含答案)

历年中考数学试题附参考答案(含答案)2010年北京市高级中等学校招生考试 数 学 试 卷一、选择题(本题共32分,每小题4分) 1、-2的倒数是 A. 21-B. 21C. -2D. 22、2010年6月3日,人类首次模拟火星载人航天飞行试验“火星―500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”.将12480用科学计数法表示应为A. 31048.12⨯ B. 5101248.0⨯ C. 410248.1⨯ D. 310248.1⨯ 3、如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若AD :AB=3:4,AE=6,则AC 等于A. 3B. 4C. 6D. 8 4、若菱形两条对角线长分别为6和8,则这个菱形的周长为 A. 20 B. 16 C. 12 D. 105、从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是 A.51 B. 103C. 31D. 21 6、将二次函数322+-=x x y 化成的k h x y +-=2)(形式,结果为A. 4)1(2++=x y B. 4)1(2+-=x y C. 2)1(2++=x y D. 2)1(2+-=x y 7、10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x 、乙x ,身高的方差依次为2甲S 、2乙S ,则下列关系中完全正确的是A. 甲x =乙x ,2甲S >2乙SB. 甲x =乙x ,2甲S <2乙SC. 甲x >乙x ,2甲S >2乙S D. 甲x <乙x ,2甲S <2乙S 8、美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个....符合上述要求,那么这个示意图是二、填空题(本题共16分,每小题4分)9、若二次根式12-x 有意义,则x 的取值范围是____________. 10、分解因式:m m 43-=________________.11、如图,AB 为⊙O 直径,弦CD ⊥AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE =______________.12、右图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_____________;当字母C 第201次出现时,恰好数到的数是____________;当字母C 第12+n 次出现时(n 为正整数),恰好数到的数是_______________(用含n 的代数式表示). 三、解答题(本题共30分,每小题5分) 13、计算:60tan 342010)31(01--+--14、解分式方程 212423=---x x xA BC DE15、已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC . 求证:∠ACE =∠DBF .16、已知关于x 的一元二次方程0142=-+-m x x 有两个相等的实数根,求m 的值及方程的根.17、列方程或方程组解应用题2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18、如图,直线32+=x y 与x 轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)过点B 作直线BP 与x 轴交于点P ,且使OP =2O A ,求△ABP 的面积.AD四、解答题(本题共20分,每小题5分)19、已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC =AD =2,BC =4.求∠B 的度数及AC 的长.20、已知:如图,在△ABC 中,D 是AB 边上一点,⊙O 过D 、B 、C 三点,∠DOC =2∠ACD =90°. (1)求证:直线AC 是⊙O 的切线;(2)如果∠ACB =75°,⊙O 的半径为2,求BD 的长.21、根据北京市统计局公布的2006―2009年空气质量的相关数据,绘制统计图如下:220230 240250290280270 260 2006―2009年北京全年市区空气质量达到二级和好于二级的天数统计图 . ... 241 246 274285(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_______年,增加了_____天;(2)表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计图(3)根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市数量在这十个城市中所占的百分比为_________%;请你补全右边的扇形统计图.22、阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,AD =8cm ,BA =6cm.现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹角为45°的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45°的方向作直线运动,…,如图1所示,问P 点第一次与D 点重合前...与边相碰几次,P 点第一次与D 点重合时...所经过的路径总长是多少. 小贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折叠,得到矩形CD B A 11.由轴对称的知识,发现E P P P 232=,E P A P 11=.请你参考小贝的思路解决下列问题:2009年十个城市空气质量达到二级和好于二级的天数占全年 天数百分比分组统计图A 组 20%(1)P 点第一次与D 点重合前...与边相碰_______次;P 点从A 点出发到第一次与D 点重合时...所经过的路径的总长是_______cm ;(2)进一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD >AB ,动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上,若P 点第一次与B 点重合前...与边相碰7次,则AB :AD 的值为______. 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23、已知反比例函数xky =的图象经过点A (3-,1). (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由;(3)已知点P (m ,63+m )也在此反比例函数的图象上(其中0<m ),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得△OQM 的面积是21,设Q 点的纵坐标为n ,求9322+-n n 的值.24、在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上. (1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.25、问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内一点,且AD =CD ,BD =BA .探究∠DBC 与∠ABC 度数的比值. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当∠BAC =90°时,依问题中的条件补全右图. 观察图形,AB 与AC 的数量关系为________________;当推出∠DAC =15°时,可进一步推出∠DBC 的度数为_________; 可得到∠DBC 与∠ABC 度数的比值为_______________.(2)当∠BAC ≠90°时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.2011年北京市高级中等学校招生考试 数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的1.34-的绝对值是A .43-B .43C .34-D .342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 565 306用科学记数法表示(保留三个有效数字)约为A .766.610⨯B .80.66610⨯C .86.6610⨯D .76.6610⨯ 3.下列图形中,既是中心对称图形又是轴对称图形的是 A .等边三角形 B .平行四边形 C .梯形D .矩形4.如图,在梯形ABCD 中,AD BC ∥,对角线AC 、BD 相交于点O ,若1AD =,3BC =,则AOCO 的值为A .12B .13C .14D .19则这10个区县该日气温的众数和中位数分别是 A .32,32 B .32,30 C .30,32 D .32,316.一个不透明的盒子中装有2个白球、5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A .815B .13C .215D .1157.抛物线265y x x =-+的顶点坐标为 A .(34)-,B .(34),C .(34)--,D .(34)-,8.如图,在Rt ABC △中,90ACB ∠=︒,30BAC ∠=︒,2AB =,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD x =,CE y =,则下列图象中,能表示y 与x 的函数关系的图象大致是ODCBACE DBADCBA二、填空题(本题共16分,每小题4分)9.若分式8x x -的值为0,则x 的值等于_____________.10.分解因式:321025a a a -+=____________.11.若右图是某几何体的表面展开图,则这个几何体是_________.12.在右表中,我们把第i 行第j 列的数记为i j a,(其中i ,j 都是不大于5的正整数),对于表中的每个数i ja ,规定如下:当i j ≥时,1i j a =,;当i j <时,0i j a =,.例如:当2i =, 1j =时,211i j a a ==,,.按此规定,13a =,_______;表中的25个数中,共有______个1;计算111122133144155i i i i i a a a a a a a a a a ⋅+⋅+⋅+⋅+⋅,,,,,,,,,,的值为__________.三、解答题(本题共30分,每小题5分)13.计算:()1012cos30272π2-⎛⎫-+- ⎪⎝⎭。

北京市西城区2010年初中毕业考试数学试卷及答案

北京市西城区2010年初中毕业考试数学试卷及答案

北京市西城区2010年初中毕业考试数学试卷一、选择题(本题共40分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。

1. 6-的相反数是( )A.61 B. 61-C. 6D. 6-2. 9的算术平方根是( )A. 3±B. 3±C. 3D. 33. 下列运算正确的是( ) A. 32a 3a 2a =+B. 632a a a =⋅C. 523a )a (=D. 426a a a =÷4. 在下列图案中,不是中心对称图形的是( )5. 如图,直线AB 、CD 相交于点E ,DF//AB ,若∠AEC=108°,则∠D 的度数为( )A. 62°B. 72°C. 92°D. 108°6. 如图,在圆O 中,∠ABC=60°,则∠AOC 的度数为( )A. 60°B. 80°C. 110°D. 120°7. 如图,在Rt △ABC 中,∠C=90°,若BC=3,AB=5,则tanA 的值为( )A.53 B.54 C.43D.35 8. 在函数1x 2y -=中,自变量x 的取值范围是( )A. 2x ≥B. 21x ≥C. 21x >D. 2x ≤9. 分式方程01x 22x 1=++-的解是( ) A. 1B. 2C. 3D. 3-10. 如图,表示抛物线c bx ax y 2++=的一部分图象,它与x 轴的一个交点为A ,与y 轴交于点B ,则b 的取值范围是( )A. 0b 2<<-B. 0b 1<<-C. 0b 21<<-D. 1b 0<<二、填空题(本题共16分,每小题4分)11. 关于x 的一元二次方程0m x 2x 2=+-有两个相等的实数根,则m 的值是_____。

12. 在菱形ABCD 中,对角线AC 、BD 交于点O ,E 是AB 边的中点,且OE=a ,则这个菱形的周长等于______。

北京市历年中考数学试题(含答案)

北京市历年中考数学试题(含答案)

北京市历年中考数学试题(含答案)北京市历年中考数学试题(含答案)2010年北京市⾼级中等学校招⽣考试数学试卷⼀、选择题(本题共32分,每⼩题4分)1、-2的倒数是 A. 21- B. 21 C. -2 D. 2 2、2010年6⽉3⽇,⼈类⾸次模拟⽕星载⼈航天飞⾏试验“⽕星―500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12480⼩时的“⽕星之旅”.将12480⽤科学计数法表⽰应为A. 31048.12?B. 5101248.0?C. 410248.1?D. 310248.1?3、如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若AD :AB=3:4,AE=6,则AC 等于A. 3B. 4C. 6D. 84、若菱形两条对⾓线长分别为6和8,则这个菱形的周长为A. 20B. 16C. 12D. 105、从1,2,3,4,5,6,7,8,9,10这⼗个数中随机取出⼀个数,取出的数是3的倍数的概率是 A. 51 B. 103 C. 31 D. 21 6、将⼆次函数322+-=x x y 化成的k h x y +-=2)(形式,结果为A. 4)1(2++=x yB. 4)1(2+-=x yC. 2)1(2++=x yD. 2)1(2+-=x y 7、10名同学分成甲、⼄两队进⾏篮球⽐赛,他们的⾝⾼(单位:cm )如下表所⽰:设两队队员⾝⾼的平均数依次为甲x 、⼄x ,⾝⾼的⽅差依次为2甲S 、2⼄S ,则下列关系中完全正确的是A. 甲x =⼄x ,2甲S >2⼄SB. 甲x =⼄x ,2甲S <2⼄SC. 甲x >⼄x ,2甲S >2⼄SD. 甲x <⼄x ,2甲S <2⼄S 8、美术课上,⽼师要求同学们将右图所⽰的⽩纸只沿虚线裁开,⽤裁开的纸⽚和⽩纸上的阴影部分围成⼀个⽴体模型,然后放在桌⾯上,下列四个⽰意图中,只有⼀个....符合上述要求,那么这个⽰意图是⼆、填空题(本题共16分,每⼩题4分)9、若⼆次根式12-x 有意义,则x 的取值范围是____________.10、分解因式:m m 43-=________________. 11、如图,AB 为⊙O 直径,弦CD ⊥AB ,垂⾜为点E ,连结OC ,若OC=5,CD =8,则AE =______________.12、右图为⼿的⽰意图,在各个⼿指间标记字母A ,B ,C ,D .请你按图中箭头所指⽅向(即A →B →C →D →C →B →A →B →C →…的⽅式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_____________;当字母C 第201次出现时,恰好数到的数是____________;当字母C 第12+n 次出现时(n 为正整数),恰好数到的数是_______________(⽤含n 的代数式表⽰).三、解答题(本题共30分,每⼩题5分)13、计算: 60tan 342010)31(01--+--14、解分式⽅程212423=---x x xA BC DE15、已知:如图,点A 、B 、C 、D 在同⼀条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC . 求证:∠ACE =∠DBF .16、已知关于x 的⼀元⼆次⽅程0142=-+-m x x 有两个相等的实数根,求m 的值及⽅程的根.17、列⽅程或⽅程组解应⽤题2009年北京市⽣产运营⽤⽔和居民家庭⽤⽔的总和为5.8亿⽴⽅⽶,其中居民家庭⽤⽔⽐⽣产运营⽤⽔的3倍还多0.6亿⽴⽅⽶,问⽣产运营⽤⽔和居民家庭⽤⽔各多少亿⽴⽅⽶.18、如图,直线32+=x y 与x 轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)过点B 作直线BP 与x 轴交于点P ,且使OP =2O A ,求△ABP 的⾯积.A D四、解答题(本题共20分,每⼩题5分)19、已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC =AD =2,BC =4.求∠B 的度数及AC 的长.20、已知:如图,在△ABC 中,D 是AB 边上⼀点,⊙O 过D 、B 、C 三点,∠DOC =2∠ACD =90°.(1)求证:直线AC 是⊙O 的切线;(2)如果∠ACB =75°,⊙O 的半径为2,求BD 的长.21、根据北京市统计局公布的2006―2009年空⽓质量的相关数据,绘制统计图如下:0 220230 240 250 290 280 270 260 2006 2007 2008 2009 2006―2009年北京全年市区空⽓质量达到⼆级和好于⼆级的天数统计图 . .. . 241 246 274 285(1)由统计图中的信息可知,北京全年市区空⽓质量达到⼆级和好于⼆级的天数与上⼀年相⽐,增加最多的是_______年,增加了_____天;(2)表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年⼗个城市空⽓质量达到⼆级和好于⼆级的天数占全年天数百分⽐的统计表,请将表1中的空缺部分补充完整(精确到1%);表1 2009年⼗个城市空⽓质量达到⼆级和好于⼆级的天数占全年天数百分⽐统计图(3)根据表1中的数据将⼗个城市划分为三个组,百分⽐不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市数量在这⼗个城市中所占的百分⽐为_________%;请你补全右边的扇形统计图.22、阅读下列材料:⼩贝遇到⼀个有趣的问题:在矩形ABCD 中,AD =8cm ,BA =6cm.现有⼀动点P 按下列⽅式在矩形内运动:它从A 点出发,沿着与AB 边夹⾓为45°的⽅向作直线运动,每次碰到矩形的⼀边,就会改变运动⽅向,沿着与这条边夹⾓为45°的⽅向作直线运动,并且它⼀直按照这种⽅式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹⾓为45°的⽅向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹⾓为45°的⽅向作直线运动,…,如图1所⽰,问P点第⼀次与D 点重合前...与边相碰⼏次,P 点第⼀次与D 点重合时...所经过的路径总长是多少. ⼩贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折叠,得到矩形CD B A 11.由轴对称的知识,发现E P P P 232=,E P A P 11=.请你参考⼩贝的思路解决下列问题:2009年⼗个城市空⽓质量达到⼆级和好于⼆级的天数占全年天数百分⽐分组统计图 A 组 20%(1)P 点第⼀次与D 点重合前...与边相碰_______次;P 点从A 点出发到第⼀次与D 点重合时...所经过的路径的总长是_______cm ;(2)进⼀步探究:改变矩形ABCD 中AD 、AB 的长,且满⾜AD >AB ,动点P 从A 点出发,按照阅读材料中动点的运动⽅式,并满⾜前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上,若P 点第⼀次与B 点重合前...与边相碰7次,则AB :AD 的值为______. 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23、已知反⽐例函数xk y =的图象经过点A (3-,1). (1)试确定此反⽐例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反⽐例函数的图象上,并说明理由;(3)已知点P (m ,63+m )也在此反⽐例函数的图象上(其中021,设Q 点的纵坐标为n ,求9322+-n n 的值.24、在平⾯直⾓坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直⾓三⾓形PCD (当P 点运动时,C 点、D 点也随之运动).①当等腰直⾓三⾓形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另⼀点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停⽌运动,P 点也同时停⽌运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直⾓三⾓形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到t 秒时,两个等腰直⾓三⾓形分别有⼀条边恰好落在同⼀条直线上,求此刻t 的值.25、问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内⼀点,且AD =CD ,BD =BA .探究∠DBC 与∠ABC 度数的⽐值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对⼀般情况进⾏分析并加以证明.(1)当∠BAC =90°时,依问题中的条件补全右图.观察图形,AB 与AC 的数量关系为________________;当推出∠DAC =15°时,可进⼀步推出∠DBC 的度数为_________;可得到∠DBC 与∠ABC 度数的⽐值为_______________.(2)当∠BAC ≠90°时,请你画出图形,研究∠DBC 与∠ABC 度数的⽐值是否与(1)中的结论相同,写出你的猜想并加以证明.2011年北京市⾼级中等学校招⽣考试数学试卷⼀、选择题(本题共32分,每⼩题4分)下⾯各题均有四个选项,其中只有⼀个是符合题意的1.34-的绝对值是A .43-B .43C .34-D .342.我国第六次全国⼈⼝普查数据显⽰,居住在城镇的⼈⼝总数达到665 575 306⼈,将665 565 306⽤科学记数法表⽰(保留三个有效数字)约为 A .766.610? B .80.66610? C .86.6610?D .76.6610? 3.下列图形中,既是中⼼对称图形⼜是轴对称图形的是 A .等边三⾓形 B .平⾏四边形 C .梯形D .矩形 4.如图,在梯形ABCD 中,AD BC ∥,对⾓线AC 、BD 相交于点O ,若1AD =,3BC =,则AOCO 的值为A .12B .13C .14D .19则这10个区县该⽇⽓温的众数和中位数分别是A .32,32B .32,30C .30,32D .32,316.⼀个不透明的盒⼦中装有2个⽩球、5个红球和8个黄球,这些球除颜⾊外,没有任何其他区别,现从这个盒⼦中随机摸出⼀个球,摸到红球的概率为A .815B .13C .215D .1157.抛物线265y x x =-+的顶点坐标为 A .(34)-, B .(34), C .(34)--, D .(34)-,8.如图,在Rt ABC △中,90ACB ∠=?,30BAC ∠=?,2AB =,D 是AB 边上的⼀个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD x =,CE y =,则下列图象中,能表⽰y 与x 的函数关系的图象⼤致是O D C B A CED B AD C B A⼆、填空题(本题共16分,每⼩题4分)9.若分式8x x -的值为0,则x 的值等于_____________.10.分解因式:321025a a a -+=____________.11.若右图是某⼏何体的表⾯展开图,则这个⼏何体是_________.12.在右表中,我们把第i ⾏第j 列的数记为i j a ,(其中i ,j 都是不⼤于5的正整数),对于表中的每个数i j a ,规定如下:当i j ≥时,1i j a =,;当i j <时,0i j a =,.例如:当2i =, 1j =时,211i j a a ==,,.按此规定,13a =,_______;表中的25个数中,共有______个1;计算111122133144155i i i i i a a a a a a a a a a ?+?+++,,,,,,,,,,的值为__________.三、解答题(本题共30分,每⼩题5分)13.计算:()1012cos302π2-??-- 。

2010年北京市密云县中考数学试题及答案.

2010年北京市密云县中考数学试题及答案.

密云县2010年初中毕业考试数 学 试 题一、选择题(本题共32分,每小题4分)1.-3的绝对值等于( )A .3B . 1 3C .- 13D .-32.国家体育场“鸟巢”的座席数是91000个,这个数用科学记数法表示应为( )A .0.91×103B .9.1×103C .91×103D .9.1×104 3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( ) 4.若两圆的半径分别是1cm 和5cm,圆心距为6cm,则这两圆的位置关系是()A .内切B .相交C .外切D .外离5.众志成城,抗旱救灾.某小组7名同学积极捐水支援贵州旱区某中学,他们捐水的数额分别是(单位:瓶):50,20,50,30,50,25,35.这组数据的众数和中位数分别是( ) A .50,20 B .50,30 C .50,35 D .35,506.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2A C 7A 8)A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本题共16分,每小题4分)9.使1-x 有意义的x 的取值范围是 .10.分解因式:a 3-ab 2= .11.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE =2cm ,则BC = cm . 12.如图,已知正六边形的边长为1cm ,分别以它的三个不相邻的CA E D BA .B . C. D .顶点为圆心,1cm 长为半径画弧,则所得到的三条弧的长度之 和为 cm (结果保留π).三、解答题(本题共35分,每小题5分)13.计算:1031)2(45sin 28-⎪⎭⎫⎝⎛--+-π .14.解不等式5x -12≤2(4x -3),并把它的解集在数轴上表示出来.15.化简:2211xx x x -÷+.16.如图:在正方形ABCD 中,E 、F 分别是AB 、AD 上的点,且AE =AF .求证:CE =CF .17.已知一次函数y =kx -3的图象经过点M (-2,1),求此图象与x 、y 轴的交点坐标.18.如图,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AB =21,AD =9.求AC 的长. C19.如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.四、解答题(本题共11分,第20题5分,第21题6分)20.列方程或方程组解应用题:某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?21.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):图①A图②F EE D AE DA'A DE(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你用哪种电子钟?为什么?22.点的直线折叠,使得AC落在AB边上,折痕和点D重合,折痕为EF,展平纸片后得到△(2)实践与运用将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E 的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图④);再展平纸片(如图⑤).试问:图⑤中∠α的大小是多少?(直接回答,不用说明理由).25题8分)23A(3,2).M作直线MB∥x轴,交y轴于点B;过点AOADM的面积为6时,请判断线段BM与24.如图,将腰长为5的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点A在y轴上,点B在抛物线y=ax2+ax-2上,点C的坐标为(-1,0).(1)点A的坐标为,点B的坐标为;(2)抛物线的关系式为,其顶点坐标为;△的位置.请判断点B'、C'是否在(2)中的(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达AB C''抛物线上,并说明理由.25.如图,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).(1)当MN∥AB时,求t的值;(2)试探究:t为何值时,△CMN为等腰三角形.2010年密云县初中毕业考试数学试卷答案参考及评分标准一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8 答案 A D D C C B C A 二、填空题(本题共16分,每小题4分)题号9 10 11 12答 案 x ≥1()()a a b a b +-4 2π三、解答题(本题共35分,每小题5分) 13.(本小题满分5分)112sin 45(2π)3-⎛⎫+--⎪⎝⎭2132=+- ········································································································· 4分 2=. ···························································································································· 5分 14.(本小题满分5分)解:去括号,得51286x x --≤. ····················································································· 1分 移项,得58612x x --+≤. ······························································································ 2分 合并,得36x -≤. ·············································································································· 3分 系数化为1,得2x -≥. ······································································································ 4分 不等式的解集在数轴上表示如图:················································································································································ 5分15.········································· 3分 ········································· 5分 16.知分 ∵ ∴ 即 ········································· 3分 在△⎪⎩⎪⎨⎧=∠DC.BC B BE ∴ △BCE ≌△DCF . ·········································································································· 4分 ∴ CE =CF . ······················································································································· 5分 17.(本小题满分5分)解:∵ 一次函数3y kx =-的图象经过点(21)M -,, ∴ 231k --=. ··················································································································· 1分解得 2k =-. ······················································································································ 2分 ∴ 此一次函数的解析式为23y x =--. ············································································ 3分 令0y =,可得32x =-. ∴ 一次函数的图象与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. ··························································· 4分 令0x =,可得3y =-.∴ 一次函数的图象与y 轴的交点坐标为(03)-,. ···························································· 5分 18.(本小题满分5分)解:如图,∵ AC 平分∠BAD , ∴ 把△ADC 沿AC 翻折得△AEC ,∴ AE =AD =9,CE=CD =10=BC .------------------------------------------------------2分 作CF ⊥AB 于点F .∴ EF =FB =21BE =21(AB -AE )=6.------------------------3分 在Rt △BFC (或Rt △EFC )中,由勾股定理得 CF =8.----------------------------4分在Rt △AFC 中,由勾股定理得 AC =17.∴ AC 的长为17. -------------------------------------------------------------------------5分 19. (本小题满分5分)(1)证明:如图,连结OD ,则 OD OB =.∴ CBA ODB ∠=∠.∵ AC =BC , ∴ CBA A ∠=∠. ∴ ODB A ∠=∠.∵ OD ∥AC ,∴ ODE CFE ∠=∠.∵ DF AC ⊥于F ,∴ 90CFE ∠=.∴90ODE ∠=.∴ OD EF ⊥.∴ EF 是⊙O 的切线. ------------------------------------------------------------3分 ( 2 ) 连结BG ,∵BC 是直径, ∴∠BGC =90=∠CFE . ∴ BG ∥EF .∴ GBC E ∠=∠.设 CG x =,则 6AG AC CG x =-=-.在R t △BGA 中,222228(6)BG AB AG x =-=--. 在R t △BGC 中, 222226BG BC CG x =-=-.∴ 22228(6)6x x --=-.解得 23x =.即 23CG =.在R t △BGC 中,1sin 9GC GBC BC ∠== . ∴ sin ∠E 19=. --------------------------------------------- --------------------------------5分 四、解答题(本题共11分,第20题5分,第21题6分) 20.(本小题满分5分)解:设商场第一次购进x 套运动服,由题意得:6800032000102x x -=. ··················································································· 3分 解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.答:商场两次共购进这种运动服600套. ············································································ 5分 21.(本小题满分6分)解:(1)甲种电子钟走时误差的平均数是: 1(1344222112)010--++-+--+=; 乙种电子钟走时误差的平均数是:1(4312212221)010--+-+-+-+=. ∴ 两种电子钟走时误差的平均数都是0秒. ---------------------------------2分 (2)2)S s ; 2S =乙.∴ 分(3)22.解:∠ ∠ ········································· 3分 (2)········································· 4分六、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分) 解:(1)将()32A ,分别代入ky y ax x==,中, 得2323k a ==,,∴ 263k a ==,. ∴ 反比例函数的表达式为:6y x =; 正比例函数的表达式为23y x =. ······································································· 2分 (2)观察图象得,在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值.--------------------------------------------4分(3)BM DM =.理由:∵ 132OMB OAC S S k ==⨯=△△, ∴ 63312OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形.即 12OC OB =. ∵ 3OC =,∴ 4OB =.即 4n =.∴ 632m n ==. ∴ 3333222MB MD ==-=,. ∴············································ 7分 24.解:········································· 2分(2)········································· 3分 ········································· 4分 (3)N ,过点C '作C P '在Rt ∵ ∴ Rt ∴ B ′将点B ′、C ′的坐标代入211222y x x =+-, 可知点B ′、C ′在抛物线上.··································································································· 7分 (事实上,点P 与点N 重合)25.(本小题满分8分)解:(1)如图①,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形.∵ MN AB ∥,∴ MN DG ∥.∴ 3BG AD ==.∴ 1037GC =-=.由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.∵ DG MN ∥,∴ MNC GDC △∽△.∴CN CM CD CG =.即 10257t t -=. 解得,5017t =. ····················································································································· 5分 (3)分三种情况讨论:① 当NC MC =时,如图②,即102t t =-.∴ 103t =. ··························································································································· 6分MN NC =时,如② 当过N 作图③,则 ∴ ∵ .∴ ∴ ········································· 7分 ③ 则 ∵∴ ∴ ∴6017t =. --------------------------------------------------------------------------8分 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形.。

2010北京中考数学

2010北京中考数学

2010北京中考数学2010年,北京地区的中考数学考试依然是考察学生对数学基础知识的掌握和应用能力。

本次考试共分为三个部分:选择题、填空题和解答题。

接下来我们对这三个部分进行详细分析。

选择题是考试的第一部分,共有20个小题,每题4分,总分80分。

选择题考察学生对基础知识的理解和运用能力。

其中,有一些题目是直接根据概念和定义进行计算,例如计算两个数的平均值、判断正负数的大小等。

还有一些题目是考察学生的逻辑思维能力,例如选择一个不同类的图形等。

选择题是考试的起始部分,通过这部分的答题情况,可以初步了解学生对基础知识的把握情况。

填空题是考试的第二部分,共有14个小题,每题2分,总分28分。

填空题主要考察学生对问题的分析和解决能力。

其中一些题目是计算题,要求学生根据已知条件进行推算,得出结果。

还有一些题目是运用公式和定理进行计算,例如计算三角形的面积、计算速度等。

填空题是考察学生应用基础知识进行推理和解决问题的能力。

解答题是考试的最后一部分,共有6个小题,每题10分,总分60分。

解答题主要考察学生的综合应用能力和解决问题的能力。

这部分题目通常是较难的,需要学生运用多个知识点进行综合分析和解决问题。

例如,有一道题目要求学生计算一个复杂函数的值,还有一道题目要求学生解方程组,找出其解的个数等。

解答题是考察学生综合运用知识进行解决问题的能力。

总的来说,2010年北京中考数学试卷主要考察学生对基础知识的理解和应用能力,以及综合运用多个知识点进行解决问题的能力。

通过这次考试,学生可以全面了解自己在数学方面的知识水平和能力,并为将来的学习提供指导和参考。

这次考试对学生的数学学习起到了推动作用,帮助学生更好地掌握数学知识,提高解决问题的能力。

2010年中考数学压轴题(一)及解答

2010年中考数学压轴题(一)及解答

2010年中考数学压轴题(一)及解答1、(2010年北京市)24. 在平面直角坐标系xOy 中,抛物线y = -41-m x 2+45m x +m 2-3m +2与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。

(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。

延长PE 到点D 。

使得ED =PE 。

以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。

过Q 点作x 轴的垂线,与直线AB 交于点F 。

延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。

若P 点运动到t 秒时,两个等腰直角三角形分 别有一条直角边恰好落在同一条直线上,求此刻t 的值。

【解答】24. 解:(1) ∵拋物线y = -41-m x 2+45m x +m 2-3m +2经过原点,∴m 2-3m +2=0,解得m 1=1,m 2=2,由题意知m ≠1,∴m =2,∴拋物线的解析式为y = -41x 2+25x ,∵点B (2,n )在拋物线y = -41x 2+25x 上,∴n =4,∴B 点的坐标为(2,4)。

(2) 设直线OB 的解析式为y =k 1x ,求得直线OB 的解析式为 y =2x ,∵A 点是拋物线与x 轴的一个交点,可求得A 点的 坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为 (a ,2a ),根据题意作等腰直角三角形PCD ,如图1。

2010年中考数学试题及答案

2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年北京市高级中等学校招生考试(题WORD 答扫描)数学试卷学校姓名 准考证号考生须知1. 本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的1. -2的倒数是 (A) -21 (B) 21(C) -2 (D) 2。

2. 2010年6月3日,人类首次模拟火星载人航天飞行试验 “火星-500”正式启动。

包括中国志愿 者王跃在内的6名志愿者踏上了为期12480小时的 “火星之旅”。

将12480用科学记数法表示 应为 (A) 12.48⨯103 (B) 0.1248⨯105 (C) 1.248⨯104 (D) 1.248⨯103。

3. 如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于 (A) 3 (B) 4 (C) 6 (D) 8。

4. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为 (A) 20 (B) 16 (C) 12 (D) 10。

5. 从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是 (A) 51 (B) 103(C ) 31 (D) 21。

6. 将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为 (A) y =(x +1)2+4 (B) y =(x -1)2+4 (C) y =(x +1)2+2 (D) y =(x -1)2+2。

7. 10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,身高的方差依次为2甲S ,2乙S ,则下列关系中完全正确的是 (A) 甲x =乙x ,2甲S >2乙S (B) 甲x =乙x ,2甲S <2乙S (C) 甲x >乙x ,2甲S >2乙S (D) 甲x <乙x , 2甲S >2乙S 。

8. 美术课上,老师要求同学们将右图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是队员1 队员2 队员3 队员4 队员5 甲队 177 176 175 172 175乙对 170 175 173 174 183二、填空题 (本题共16分,每小题4分)9. 若二次根式12-x 有意义,则x 的取值范围是 。

10. 分解因式:m 2-4m = 。

11. 如图,AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E ,连结OC ,若OC =5, CD =8,则AE = 。

12. 右图为手的示意图,在各个手指间标记字母A 、B 、C 、D 。

请你按图中箭头 所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的 正整数1,2,3,4…,当数到12时,对应的字母是 ;当字母C 第201 次出现时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数), 恰好数到的数是 (用含n 的代数式表示)。

三、解答题 (本题共30分,每小题5分)13. 计算:⎪⎭⎫⎝⎛31-1-20100+|-43|-tan60︒。

14. 解分式方程423-x -2-x x=21。

15. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF , AB =DC 。

求证:∠ACE =∠DBF 。

16. 已知关于x 的一元二次方程x 2-4x +m -1=0有两个相等的实数根,求m 的值及方程的根。

17. 列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生 产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米。

18. 如图,直线y =2x +3与x 轴交于点A ,与y 轴交于点B 。

(1) 求A 、B 两点的坐标;(2) 过B 点作直线BP 与x 轴交于点P ,且使OP =2OA ,求△ABP 的 面积。

四、解答题 (本题共20分,每小题5分)19. 已知:如图,在梯形ABCD 中,AD //BC ,AB =DC =AD =2,BC =4。

求∠B 的度数及AC 的长。

20. 已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90︒。

(1) 求证:直线AC是圆O的切线;(2) 如果∠ACB=75︒,圆O的半径为2,求BD的长。

21. 根据北京市统计局的2006-2009年空气质量的相关数据,绘制统计图如下:2006-2009年北京全年市区空气质量达到二级和好于二级的天数统计图(1) 由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是年,增加了天;(2) 表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计图城市北京上海天津昆明杭州广州南京成都沈阳西宁百分比91% 84% 100% 89% 95% 86% 86% 90% 77%(3) 根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A组,不低于85%且低于95%的为B组,低于85%的为C组。

按此标准,C组城市数量在这十个城市中所占的百分比为%;请你补全右边的扇形统计图。

22. 阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,AD =8cm ,AB =6cm 。

现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着AB 边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变 运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一 直按照这种方式不停地运动,即当P 点碰到BC 边,沿着BC 边夹 角为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边 夹角为45︒的方向作直线运动,…,如图1所示,问P 点第一次与D 点重合前与边相碰几次,P 点 第一次与D 点重合时所经过的路线的总长是多少。

小贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折迭,得到矩形A 1B 1CD ,由轴对称的 知识,发现P 2P 3=P 2E ,P 1A =P 1E 。

请你参考小贝的思路解决下列问题:(1) P 点第一次与D 点重合前与边相碰 次;P 点从A 点出发到第一次与D 点重合时所经过的路径的总长是 cm ;(2) 近一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD >AB ,动点P 从A 点出发, 按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相 邻的两边上。

若P 点第一次与B 点重合前与边相碰7次,则AB :AD 的值为 。

五、解答题 (本题共22分,第23题7分,第24题8分,第25题7分)23. 已知反比例函数y =xk的图像经过点A (-3,1)。

(1) 试确定此反比例函数的解析式;(2) 点O 是坐标原点,将线段OA 绕O 点顺时针旋转30︒得到线段OB 。

判断点B 是否在此 反比例函数的图像上,并说明理由;(3) 已知点P (m ,3m +6)也在此反比例函数的图像上(其中m <0),过P 点作x 轴的垂线,交x 轴于点M 。

若线段PM 上存在一点Q ,使得△OQM 的面积是21,设Q 点的纵坐标为n ,求n 2-23n +9的值。

24. 在平面直角坐标系xOy 中,拋物线y = -41-m x 2+45mx +m 2-3m +2与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条拋物线上。

(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。

延长PE 到点D 。

使得ED =PE 。

以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)当等腰直角三角形PCD的顶点C落在此拋物线上时,求OP的长;若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。

过Q点作x轴的垂线,与直线AB交于点F。

延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)。

若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。

25. 问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA。

探究∠DBC与∠ABC度数的比值。

请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。

(1) 当∠BAC=90︒时,依问题中的条件补全右图。

观察图形,AB与AC的数量关系为;当推出∠DAC=15︒时,可进一步推出∠DBC的度数为;可得到∠DBC与∠ABC度数的比值为;(2) 当∠BAC≠90︒时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。

相关文档
最新文档