高中数学 3.1.2概率的意义课件 新人教A版必修3

合集下载

人教版高中数学必修三3.随机事件的概率PPT课件(共30)

人教版高中数学必修三3.随机事件的概率PPT课件(共30)

八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布 PPT课件

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布  PPT课件
0.16
0.08 0.12 0.08 0.04 0.3 0.5 0.44
有数无形欠直观, 在频率直 有形无数难入微 方图中,
0.28
12%
3.5 4 4.5
0 .1
0
各小矩形 的面积的 总和等于1
0.5
1
1.5
2
2 .5
3
88%
月均用水量/t
探究:
同样一组数据,如果组距不同,横轴、纵轴的单位 不同,得到的图的形状也会不同。不同的形状给人以不 同的印象,这种印象有时会影响我们对总体的判断。观 察分别以1和0.1为组距的图象,谈谈你对图的印象。
0.036 0.032 0.028 0.024 0.020 0.016 0.012 0.008 0.004 o 90 100 110 120 130 140 150
次数
频率= 频数
第二小组频数 12 样本容量 150 样本容量 第二小组频率 0.08
频率分布折线图.
频率/组距 (取各小长方形上端中点, 并连线 )
0.6 0.5 0.4 0.3
0.3
0.16 0.12 0.08 0.04 0.28 0.5 0.44
0.2
0.1 0.08 0 0.5 1 1.5 2 2.5 3
3.5 4
4.5
月均用水量/t
利用样本频分布对总体分布进行相应估计 用样本分布直方图去估计相应的总体分布时, (1)样本容量越大,这种估计越精确。 一般样本容量越大,频率分布直方图就会越接 (2)当样本容量无限增大,组距无限缩小,那么相应的 近总体密度曲线,就越精确地反映了总体的分 频率折线图会无限接近于一条光滑曲线 ———总体密度曲线 布规律,即越精确地反映了总体在各个范围内 取值百分比。 (3)总体密度曲线反映了总体在各个范围内取值的百

人教a版必修3数学教学课件第3章概率第1节随机事件的概率

人教a版必修3数学教学课件第3章概率第1节随机事件的概率
品,2个次品”.
反思判断随机事件、必然事件、不可能事件时要注意看清条件,
在给定的条件下判断是一定发生(必然事件),还是不一定发生(随机
事件),还是一定不发生(不可能事件).
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
反思利用频率估计概率的步骤:
(1)依次计算各个频率值;(2)观察各个频率值的稳定值即为概率
的估计值,有时也可用各个频率的中位数来作为概率的估计值.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做1】 下列事件中,是随机事件的有(
)
①在一条公路上,交警记录某一小时通过的汽车超过300辆;
②若a为整数,则a+1为整数;
③买一张彩票中奖;
④检查流水线上一件产品是合格品还是次品.
A.1个 B.2个 C.3个 D.4个
题型三
反思1.把握住随机试验的实质,要明确一次试验就是将试验的条
件实现一次.
2.准确理解随机试验的条件、结果等有关定义,并能使用它们判
断一些事件,指出试验结果,这是求概率的基础.在写试验结果时,一
般采用列举法.根据日常生活经验,按一定次序列举,才能保证所列
结果没有重复,也没有遗漏.
目标导航

新课标人教A版数学必修3全部课件:3.1.1随机事件的概率1

新课标人教A版数学必修3全部课件:3.1.1随机事件的概率1
3、频率是概率的近似值,随着试 验次数的增加,频率会越来越接近 概率。
1、相关概念
随机事件 必定事件 不可能事件 确定事件
2、频率与概率的定义,它们之间的区别 与联系
关键是比较A发生的可能性和B发 生的可能性的大小。
频率与概率的区别与联系
思考:事件A发生的频率fn(A)是不 是不变的?事件A发生的 概率P(A) 是不是不变的?
频率与概率的区别与联系
1、频率本身是随机的,在试验前 不能确定。做同样次数的重复试验 得到事件的频率会不同。 2、概率是一个确定的数,与每次 试验无关。是用来度量事件发生可 能性大小的量。
思考:概率的取值范围是什么? [0,1]
我们现在能不能解决前面的问题了?
这个游戏是否公平?
这样的游戏公平吗?
小军和小民玩掷色子是游戏,他们约定:两颗色子掷 出去,如果朝上的两个数的和是5,那么小军获胜,如果朝 上的两个数的和是7,那么小民获胜。这样的游戏公平吗? 事件:掷双色子 A:朝上两个数的和是5 B:朝上两个数的和是7
这个游戏是否公平?
这样的游戏公平吗?
小军和小民玩掷色子是游戏,他们约定:两颗色子掷 出去,如果朝上的两个数的和是5,那么小军获胜,如果朝 上的两个数的和是7,那么小民获胜。这样的游戏公平吗? 事件:掷双色子 A:朝上两个数的和是5 B:朝上两个数的和是7
关键是比较A发生的可能性和B发 生的可能性的大小。
计算机模拟掷硬币试验
程序 框图:
开始 输入”次数”n
程序:
DO INPUT n i=1 s=0 DO d=INT(RND*2)+1 IF d=1 THEN s=s+1 END IF i=i+1 LOOP UNTIL i>n PRINT n,s,s/n INPUT “x/0”;p LOOP UNTIL p=0 END

高中数学人教A版必修33.古典概率PPT全文课件

高中数学人教A版必修33.古典概率PPT全文课件
解法1:可以看作不放回抽样2次,顺序不同,基本事件不同.依 次不放回从箱中取出2听饮料,得到的两个标记分别记为x和y, 则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽 取,所以抽到的任何基本事件的概率相等.用A表示“抽出的2听 饮料中有不合格产品”, 表示“仅第一次抽出的是不合格产品”, 表示“仅第二次抽出的是不合格产品”,表示“两次抽出的都是不 合格产品”,则,和是互不相容的事件,且
A=A1∪A2∪A12
从而P(A)= P(A1)+P(A2)+ P(A12)
基本概念 方法探究 典型例题 课堂训练 课堂小结
全部基本事件的总数为30,因为A1中的基本事件的个数为8,
1
1
2
a
3
2
b
3
4
4
A2中的基本事件的个数为8,
a
a
a
a
1
b2
b3
b4
b
A12中的基本事件的个数为2,
a
bb
a
所以P(A)=
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
古典概型的概率计算公式:
P(A)
A包含的基本事件的个数m
基本事件的总数 n
在使用古典概型的概率公式时,应该注意: 要判断所用概率模型是不是古典概型(前提)
高中数学【人教A版必修】33.古典概 率PPT全 文课件 【完美 课件】

(人教a版)必修三同步课件:3.1.1随机事件的概率

(人教a版)必修三同步课件:3.1.1随机事件的概率

0.89,0.91. (2)由于频率稳定在常数0.89附近,所以这个射手射击一次, 击中靶心的概率约是0.89.
规律方法
1.频率是事件A发生的次数m与试验总次数n的比
值,利用此公式可求出它们的频率.频率本身是随机变量, 当n很大时,频率总是在一个稳定值附近左右摆动,这个稳定 值就是概率. 2.解此类题目的步骤是:先利用频率的计算公式依次计算频 率,然后用频率估计概率.
跟踪演练 3
下列说法:①频率反映事件发生的频繁程度,概
率反映事件发生的可能性大小;②做 n 次随机试验,事件 A 发 m 生 m 次,则事件 A 发生的频率 就是事件的概率;③百分率是 n 频率, 不是概率;④频率是不能脱离具体的 n 次试验的实验值, 而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是 概率的近似值,概率是频率的稳定值.其中正确的是________.
例3 某射手在同一条件下进行射击,结果如下表所示:
射击次数n 击中靶心次数m m 击中靶心的频率 n
10 8
20 19
50 44
100 92
200 178
500 455
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是多少?

(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,
(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水分,种子能发芽”;
(10)“在常温下,焊锡熔化”.

事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;
事件(3)(5)(7)(8)是随机事件.
规律方法

高一数学必修3课件:3-1-2概率的意义

高一数学必修3课件:3-1-2概率的意义

30%,指随着试验次数增加,即治疗的病人数的增加,大约 有30%的人能够治愈.对于一次试验来说,其结果是随机 的,因此前7个病人没治愈是可能的,对后3个人来说其结果 仍然是随机的,即有可能治愈,也可能没有治愈.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[规律]
治愈的概率是0.3,是指如果患病的人有1
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
(2)某种病的治愈概率是0.3,那么,前7个人没有治愈, 后3个人一定能治愈吗?如何理解治愈的概率是0.3? [分析] 概率反映了事件发生可能性的大小.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[解析]
如果把治疗一个病人作为一次试验,治愈率是
公元1053年,大元帅狄青奉旨,率兵征讨侬智高.出征 前,狄青拿出一百枚“宋元通宝”铜币,向众将士殷殷许 愿:“如果钱币扔在地上,有字的一面会全部向上,那么这 次出兵可以打败敌人!”在千军万马的注目之下,狄青将铜 币用力向空中抛去,奇迹发生了:一百枚铜币,枚枚向 上.顿时,全军欢呼雀跃,将士个个认定是神灵保佑,战争 必胜无疑.事实上,铜币正反面都是一样的!同学样想一 下,如果铜币正反面不一样,那么这一百枚铜币正面全部向 上的可能性大吗?
成才之路· 数学
人教A版 ·必修3
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修3
第三章
概 率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3
第三章
3.1 随机事件的概率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。

本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。

二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。

2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。

3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。

三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。

作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。

教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。

四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。

五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。

3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。

你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档