学案3.1.3 二倍角的正弦、余弦、正切公式
【数学】3.1.3 二倍角的正弦、余弦、正切公式1

超级记忆法--身 体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆 方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一 些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正 常在我们常识中不可能发生的事情,会让我们印象更深。
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招
费曼学习法
费曼学习法-简介
理查德·菲利普斯·费曼 (Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解, 这也是这个学习法命名的由来!
例9 (1) 若cos 1,则sin
3
2
若 (3 ,2),则sin
2
2
3 3
,
cos
2
3 3
,
cos
2
6 3 6 3
. .
(2) 化简 1 cos 4等于 2
(A )
(A)cos(2 - ) (B) cos2 (C) sin(2 - ) (D) sin2
【学习力-学习方法】
2020最新高中数学 第三章 3.1.3 二倍角的正弦、余弦、正切公式学案 新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式学习目标:1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.(重点)2.能利用两角和与差的正切公式进行化简、求值、证明.(难点)3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.(易错点)[自 主 预 习·探 新 知]1.二倍角的正弦、余弦、正切公式记法 公式S 2α sin 2α=2sin_αcos_α C 2α cos 2α=cos 2α-sin 2α T 2αtan 2α=2tan α1-tan 2α23.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=sin 2α2sin α.(2)1±sin 2α=(sin_α±cos _α)2.[基础自测]1.思考辨析(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( )[解析] (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误.(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-32时,cos 2α=2cos α.[答案] (1)× (2)√ (3)× 2.sin 15°cos 15°=________.14 [sin 15°cos 15°=12×2sin 15°cos 15°=12sin 30°=14.] 3.12-cos 2π8=________.-24 [12-cos 2π8=12-1+cosπ42=12-12-12×22=-24.] 4.若tan θ=2则tan 2θ=________. -43 [tan 2θ=2tan θ1-tan 2θ=2×21-22=-43.] [合 作 探 究·攻 重 难]给角求值(1)cos π7cos 7cos 7的值为( )A .14 B .-14C .18D .-18(2)求下列各式的值:①cos 415°-sin 415°;②1-2sin 275°;③1-tan 275°tan 75°;④1sin 10°-3cos 10°.【导学号:84352329】(1)D [(1)∵cos 3π7=-cos 4π7,cos 5π7=-cos 2π7,∴cos π7cos 3π7cos 5π7=cos π7cos 2π7cos 4π7=8sin π7cos π7cos 2π7cos4π78sinπ7=4sin 2π7cos 2π7cos 4π78sin π7=2sin 4π7cos 4π78sin π7=sin8π78sinπ7=-18.(2)①cos 415°-sin 415°=(cos 215°-sin 215°)(cos 215°+sin 215°)=cos 215°-sin 215°=cos 30°=32. ②1-2sin 275°=1-(1-cos 150°)=cos 150°=-cos 30°=-32. ③1-tan 275°tan 75°=2×1-tan 275°2tan 75°=2×1tan 150°=-2 3.④1si n 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4.][规律方法] 对于给角求值问题,一般有两类: 1直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.2若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.[跟踪训练] 1.求下列各式的值 (1)cos 72°cos 36°; (2)1sin 50°+3cos 50°. [解] (1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14.(2)原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝ ⎛⎭⎪⎫12cos 50°+32sin 50°12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.给值求值、求角问题(1)已知cos ⎝ ⎛⎭⎪⎫α+4=5,2≤α<2,求cos ⎝ ⎛⎭⎪⎫2α+4的值;(2)已知α∈⎝ ⎛⎭⎪⎫-π2,π2,且sin 2α=sin ⎝⎛⎭⎪⎫α-π4,求α.[思路探究] 依据以下角的关系设计解题思路求解:(1)α+π4与2α+π2,α-π4与2α-π2具有2倍关系,用二倍角公式联系;(2)2α+π2与2α差π2,用诱导公式联系.[解] (1)∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝ ⎛⎭⎪⎫α+π4>0,∴3π2<α+π4<7π4, ∴sin ⎝⎛⎭⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45,∴cos 2α=sin ⎝ ⎛⎭⎪⎫2α+π2=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2×⎝ ⎛⎭⎪⎫-45×35=-2425,sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=1-2cos 2⎝ ⎛⎭⎪⎫α+π4=1-2×⎝ ⎛⎭⎪⎫352=725, ∴cos ⎝ ⎛⎭⎪⎫2α+π4=22cos 2α-22sin 2α=22×⎝ ⎛⎭⎪⎫-2425-22×725=-31250.(2)∵sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π4-1=1-2cos 2⎝ ⎛⎭⎪⎫α+π4,sin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫π4-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=-cos ⎝ ⎛⎭⎪⎫π4+α,∴原式可化为1-2cos 2⎝ ⎛⎭⎪⎫α+π4=-cos ⎝⎛⎭⎪⎫α+π4,解得cos ⎝ ⎛⎭⎪⎫α+π4=1或cos ⎝⎛⎭⎪⎫α+π4=-12. ∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α+π4∈⎝ ⎛⎭⎪⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12.母题探究:1.在例2(1)的条件下,求sin 4α的值.[解] 由例2(1)解析知sin 4α=2sin 2αcos 2α=2×725×⎝ ⎛⎭⎪⎫-2425=-336625.2.将例2(1)的条件改为sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.[解] ∵0<x <π4,∴π4-x ∈⎝ ⎛⎭⎪⎫0,π4.又sin ⎝⎛⎭⎪⎫π4-x =513,∴cos ⎝ ⎛⎭⎪⎫π4-x =1213.又cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x=2sin ⎝⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =2×513×1213=120169,cos ⎝ ⎛⎭⎪⎫π4+x =sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+x=sin ⎝ ⎛⎭⎪⎫π4-x =513,∴原式=120169513=2413.[规律方法] 解决条件求值问题的方法 1有方向地将已知式或未知式化简,使关系明朗化;寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.2当遇到\f(π,4)±x 这样的角时可利用互余角的关系和诱导公式,将条件与结论沟通.cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x . 类似的变换还有:cos 2x =sin ⎝ ⎛⎭⎪⎫π2+2x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x , sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =2cos 2⎝ ⎛⎭⎪⎫π4-x -1,sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x 等.化简证明问题[探究问题]1.解答化简证明问题时,如果遇到既有“切”,又有“弦”的情况,通常要如何处理? 提示:通常要切化弦后再进行变形.2.证明三角恒等式时,通常的证明方向是什么? 提示:由复杂一侧向简单一侧推导.(1)化简:1tan θ+1+1tan θ-1=________.(2)证明:3tan 12°-3sin 12°4cos 212°-2=-4 3. [思路探究] (1)通分变形.(2)切化弦通分,构造二倍角的余弦→二倍角的正弦→约分求值 (1)-tan 2θ [(1)原式=tan θ-1+tan θ+1tan θ+1tan θ-1=2tan θtan 2θ-1=-2tan θ1-tan 2θ=-tan 2θ.(2)左边=3sin 12°-3cos 12°cos 12°2sin 12°2cos 212°-1 =23⎝ ⎛⎭⎪⎫12sin 12°-32cos 12°2sin 12°cos 12°cos 24° =23sin 12°-60°sin 24°cos 24°=-23sin 48°12sin 48°=-43=右边,所以原等式成立.] [规律方法] 证明三角恒等式的原则与步骤1观察恒等式两端的结构形式,处理原则是从复杂到简单,高次降低,复角化单角,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.2证明恒等式的一般步骤:①先观察,找出角、函数名称、式子结构等方面的差异;②本着“复角化单角”“异名化同名”“变换式子结构”“变量集中”等原则,设法消除差异,达到证明的目的.[跟踪训练]2.求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ; (2)cos 2θ(1-tan 2θ)=cos 2θ.[证明] (1)左边=1+cos 2A +2B 2-1-cos 2A -2B2=cos2A +2B +cos 2A -2B2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边, ∴等式成立.(2)法一:左边=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.[当 堂 达 标·固 双 基]1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215°D .sin 215°+cos 215°B [2sin 15°cos 15°=sin 30°=12;cos 215°-sin 215°=cos 30°=32;2sin 215°=1-cos 30°=1-32;sin 215°+cos 215°=1,故选B.] 2.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4B [易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.]3.若sin α=3cos α,则sin 2αcos 2α=________.6 [sin 2αcos 2α=2sin αcos αcos 2α=2sin αcos α=6cos αcos α=6.] 4.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________.3 [∵sin 2α=-sin α, ∴2sin αcos α=-sin α.由α∈⎝ ⎛⎭⎪⎫π2,π知sin α≠0,∴cos α=-12,∴α=2π3,∴tan 2α=tan 4π3=tan π3= 3.]5.已知π2<α<π,cos α=-45.(1)求tan α的值;(2)求sin 2α+cos 2α的值.[解] (1)因为cos α=-45,π2<α<π,所以sin α=35,所以tan α=sin αcos α=-34.(2)因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=725,所以sin 2α+cos 2α=-2425+725=-1725.。
学案3:3.1.3 二倍角的正弦、余弦、正切公式

3.1.3 二倍角的正弦、余弦、正切公式学习目标1.会推导二倍角的正弦、余弦、正切公式.(重点)2.掌握二倍角公式及其变形公式的应用.(难点)3.二倍角公式与两角和与差的正弦、余弦、正切公式的区别与联系.(易混点)基础·初探教材整理 二倍角的正弦、余弦、正切公式阅读教材内容,完成下列问题.1.二倍角的正弦、余弦、正切公式3.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=__________. (2)1±sin 2α=________________________.1.判断(正确的打“√”,错误的打“×”) (1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( )(3)对于任意的角α,cos 2α=2cos α都不成立.( ) 2.已知cos α=13,则cos 2α等于________. 合作探究类型1 利用二倍角公式化简三角函数式例1 化简求值.(1)cos 4 α2-sin 4 α2;(2)sin π24·cos π24·cos π12; (3)1-2sin 2 750°;(4)tan 150°+1-3tan 2 150°2tan 150°. 名师指导二倍角公式的灵活运用:(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有:2sin αcos α=sin 2α,sin αcos α=12sin 2α, cos α=sin 2α2sin α,cos 2 α-sin 2 α=cos 2α,2tan α1-tan 2 α=tan 2α. (2)公式的变形:公式间有着密切的联系,这就要求思考时要融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2 α+cos 2 α±2sin αcos α=(sin α±cos α)2,1+cos 2α=2cos 2 α,cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2. 跟踪训练1.求下列各式的值:(1)sin π12cos π12; (2)2tan 150°1-tan 2150°; (3)1sin 10°-3cos 10°; (4)cos 20°cos 40°cos 80°.类型2 利用二倍角公式解决求值问题例2 (1)已知sin α=3cos α,那么tan 2α的值为( )A .2B .-2C .34D .-34(2)已知sin ⎝⎛⎭⎫π6+α=13,则cos ⎝⎛⎭⎫2π3-2α的值等于( ) A .79 B .13C .-79D .-13(3)已知cos α=-34,sin β=23,α是第三象限角,β∈⎝⎛⎭⎫π2,π. ①求sin 2α的值;②求cos(2α+β)的值.名师指导直接应用二倍角公式求值的三种类型(1)sin α(或cos α)――――――――――→同角三角函数的关系cos α(或sin α)――――――→二倍角公式sin 2α(或cos 2α).(2)sin α(或cos α)――――――→二倍角公式cos 2α=1-2sin 2 α(或2cos 2 α-1).(3)sin α(或cos α)――――――――――――→同角三角函数的关系⎩⎪⎨⎪⎧cos α(或sin α),tan α――――――――→二倍角公式tan 2α.跟踪训练2.(1)已知α∈⎝⎛⎭⎫π2,π,sin α=55,则sin 2α=______,cos 2α=________,tan 2α=________.(2)已知sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=16,且α∈⎝⎛⎭⎫π2,π,求tan 4α的值.类型3 利用二倍角公式证明例3 求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ;(2)cos 2θ(1-tan 2θ)=cos 2θ.名师指导证明问题的原则及一般步骤:(1)观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.(2)证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、“变量集中”等原则,设法消除差异,达到证明的目的. 跟踪训练3.证明:1+sin 2α2cos 2 α+sin 2α=12tan α+12.探究点 倍角公式的灵活运用探究1 在化简1+sin α-cos α1+sin α+cos α+1+cos α+sin α1-cos α+sin α时,如何灵活使用倍角公式?探究2 如何求函数f (x )=2cos 2x -1-23·sin x cos x (x ∈R )的最小正周期?例4 求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎡⎦⎤π4,7π24的最小值,并求其单调减区间.名师指导本题考查二倍角公式,辅助角公式及三角函数的性质.解决这类问题经常是先利用公式将函数表达式化成形如y =A sin(ωx +φ)的形式,再利用函数图象解决问题.跟踪训练4.求函数y =sin 4x +23sin x cos x -cos 4 x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递减区间.课堂检测1.sin 22°30′·cos 22°30′的值为( )A .22B .24C .-22 D .12 2.已知sin x =14,则cos 2x 的值为( ) A .78 B .18C .12D .223.⎝⎛⎭⎫cos π12-sin π12⎝⎛⎭⎫cos π12+sin π12的值为( ) A .-32 B .-12C .12D .324.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________. 5.求下列各式的值:(1)cos π5cos 2π5; (2)12-cos 2π8.参考答案基础·初探教材整理 二倍角的正弦、余弦、正切公式阅读教材内容,完成下列问题.1.2sin αcos α cos 2α-sin 2α 2tan α1-tan 2α2.1-2sin 2α1-cos2α22cos 2α-1 3.(1) sin 2α2sin α (2)(sin α±cos α)2预习自测1.【答案】 (1)× (2)√ (3)×【解析】 (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误. (2)√.当α=k π(k ∈Z )时,sin 2α=2sin α.(3)×.当cos α=1-32时,cos 2α=2cos α. 2.【答案】 -79【解析】 由cos α=13,得cos 2α=2cos 2α-1=2×⎝⎛⎭⎫132-1=-79. 合作探究类型1 利用二倍角公式化简三角函数式例1 解:(1)cos 4 α2-sin 4 α2=⎝⎛⎭⎫cos 2 α2-sin 2 α2⎝⎛⎭⎫cos 2 α2+sin 2 α2=cos α. (2)原式=12⎝⎛⎭⎫2sin π24cos π24·cos π12=12sin π12·cos π12=14⎝⎛⎭⎫2sin π12·cos π12=14sin π6=18. ∴原式=18. (3)原式=cos(2×750°)=cos 1 500°=cos(4×360°+60°)=cos 60°=12. ∴原式=12. (4)原式=2tan 2150°+1-3tan 2 150°2tan 150°=1-tan 2 150°2tan 150°=1tan (2×150°)=1tan 300°=1tan (360°-60°)=-1tan 60°=-33.∴原式=-33. 跟踪训练 1.解:(1)原式=2sin π12cos π122=sin π62=14. (2)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=- 3.(3)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°=4sin 20°sin 20°=4. (4)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18. 类型2 利用二倍角公式解决求值问题例2 (1)【答案】D【解析】因为sin α=3cos α,所以tan α=3,所以tan 2α=2tan α1-tan 2 α=2×31-32=-34. (2) 【答案】C【解析】因为cos ⎝⎛⎭⎫π3-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π6+α=13, 所以cos ⎝⎛⎭⎫2π3-2α=2cos 2⎝⎛⎭⎫π3-α-1=2×⎝⎛⎭⎫132-1=-79. (3)解:①因为α是第三象限角,cos α=-34, 所以sin α=-1-cos 2 α=-74, 所以sin 2α=2sin αcos α=2×⎝⎛⎭⎫-74×⎝⎛⎭⎫-34=378. ②因为β∈⎝⎛⎭⎫π2,π,sin β=23, 所以cos β=-1-sin 2 β=-53,cos 2α=2cos 2 α-1=2×916-1=18, 所以cos(2α+β)=cos 2αcos β-sin 2αsin β=18×⎝⎛⎭⎫-53-378×23=-5+6724. 跟踪训练2. (1)【答案】 -45 35 -43【解析】因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-255,所以sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45,cos 2α=1-2sin 2 α=1-2×⎝⎛⎭⎫552=35,tan 2α=sin 2αcos 2α=-43. (2)解:因为sin ⎝⎛⎭⎫π4-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=cos ⎝⎛⎭⎫π4+α, 则已知条件可化为sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=16, 即12sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4+α=16, 所以sin ⎝⎛⎭⎫π2+2α=13, 所以cos 2α=13.因为α∈⎝⎛⎭⎫π2,π,所以2α∈(π,2π), 从而sin 2α=-1-cos 22α=-223, 所以tan 2α=sin 2αcos 2α=-22, 故tan 4α=2tan 2α1-tan 22α=-421-(-22)2=427. 类型3 利用二倍角公式证明例3 证明:(1)左边=1+cos (2A +2B )2-1-cos (2A -2B )2=cos (2A +2B )+cos (2A -2B )2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边,∴等式成立.(2)法一:左边=cos 2θ⎝⎛⎭⎫1-sin2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边.法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝⎛⎭⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边. 跟踪训练3.证明:左边=sin 2 α+cos 2 α+2sin αcos α2cos 2 α+2sin αcos α=(sin α+cos α)22cos α(sin α+cos α)=sin α+cos α2cos α =12tan α+12=右边. 所以1+sin 2α2cos 2 α+sin 2α=12tan α+12成立. 探究点 倍角公式的灵活运用探究1 【提示】原式=2sin α2⎝⎛⎭⎫cos α2+sin α22cos α2⎝⎛⎭⎫cos α2+sin α2+ 2cos α2⎝⎛⎭⎫cos α2+sin α22sin α2⎝⎛⎭⎫sin α2+cos α2=sin α2cos α2+cos α2sin α2 =1sin α2cos α2=2sin α. 探究2 【提示】 求函数f (x )的最小正周期,可由f (x )=(2cos 2x -1)-3×(2sin x cos x )=cos 2x -3sin 2x =2sin ⎝⎛⎭⎫π6-2x ,知其最小正周期为π. 例4 解:f (x )=53·1+cos 2x 2+3·1-cos 2x 2-2sin 2x =33+23cos 2x -2sin 2x=33+4⎝⎛⎭⎫32cos 2x -12sin 2x =33+4⎝⎛⎭⎫sin π3cos 2x -cos π3sin 2x =33+4sin ⎝⎛⎭⎫π3-2x =33-4sin ⎝⎛⎭⎫2x -π3, ∵π4≤x ≤7π24,∴π6≤2x -π3≤π4, ∴sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤12,22, 所以当2x -π3=π4,即x =7π24时,f (x )取最小值为33-2 2.因为y =sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤π4,7π24上单调递增, 所以f (x )在⎣⎡⎦⎤π4,7π24上单调递减.跟踪训练4.解:y =sin 4x +23sin x cos x -cos 4x=(sin 2x +cos 2x )(sin 2x -cos 2x )+23sin x cos x=-cos 2x +3sin 2x=2⎝⎛⎭⎫32sin 2x -12cos 2x =2sin ⎝⎛⎭⎫2x -π6, 所以T =2π2=π,y min =-2. 由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z , 得k π+π3≤x ≤k π+5π6,k ∈Z , 又x ∈[0,π],所以令k =0,得函数的单调递减区间为⎣⎡⎦⎤π3,5π6.课堂检测1.【答案】 B【解析】 原式=12sin 45°=24. 2.【答案】 A 【解析】 因为sin x =14, 所以cos 2x =1-2sin 2 x =1-2×⎝⎛⎭⎫142=78.3. 【答案】 D【解析】 原式=cos 2π12-sin 2π12=cos π6=32. 4.【答案】 -56【解析】 sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.5.解:(1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sin π54sin π5=14. (2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.。
3.1.3二倍角的正弦,余弦,正切公式

2
k ,
2
k
注意:二倍角公式不仅限于 2α 是 α 的二倍的形式,其它如 4α 是
a a
a a
2α 的二倍, 是 的二倍, 是 的二倍等。
2 4
3 6
五.课堂小结
1.我们是如何得出倍角公式的。
2. cos的三种形式及其如何用 cos表示 sin2, .
cos 2 cos 2 sin 2 cos 2 (1 cos 2 ) 2 cos 2 1
(3) tan 2 tan
tan tan
2 tan
.
1 tan tan
1 tan 2
(二)例题讲解
α-β);
sin(α+β)=______________________(S
sinαcosβ+cosαsinβ
α+β);
sinαcosβ-cosαsinβ
sin(α-β)=_____________________(S
α-β);
tanα+tanβ
1-tanαtanβ α+β);
tan(α+β)=________________(T
tanα-tanβ
1+tanαtanβ
tan(α-β)=________________(T
).
α-β
你能根据两角和的正弦、余弦
、正切公式推出二倍角的正弦
、余弦、正切公式吗?
(二)公式推导
•
(三)得出结论
二倍角的三角函数
cos 2 cos sin 1 sin sin 1 2sin
2
2
2
2
2
人教版高中数学必修4学案 3.1.3二倍角的正弦、余弦、正切公式

第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.1.3 二倍角的正弦、余弦、正切公式1.理解并掌握二倍角的正弦、余弦、正切公式及其推导过程.2.灵活运用二倍角公式及其不同变形,能正用、逆用公式,进一步学习化归思想方法.基础梳理一、二倍角的正弦、余弦、正切公式α+β=sin αcos β+cos αsin β中,令β=α,在公式sin()得到sin 2α=2sin_αcos_α,这就是二倍角的正弦公式;α+β=cos αcos β-sin αsin β中,令β=α,在公式cos()得到cos 2α=cos2α-sin2α,这就是二倍角的余弦公式,其变形形式有:cos 2α=2cos 2α-1=1-2sin 2α; 在公式tan ()α+β=tan α+tan β1-tan αtan β中,令β=α,得到tan 2α=2tan α1-tan α,这就是二倍角的正切公式.练习1:2sin 15°cos 15°=12.练习2:cos 2α2-sin 2α2=cos_α.练习3:2tan 2α1-tan 22α=tan_4α. 思考应用1. 二倍角的正弦、余弦、正切公式中的角是否为任意角?解析:注意 tan 2α=2tan α1-tan 2α这个公式,因为要使tan 2α,tan α有意义,即2α≠π2+k π且α≠π2+k π(k ∈Z)还有1-tan 2α≠0即tan α≠±1从而推出α≠π4+k π(k ∈Z)综上所述α≠π4+k π2且α≠π2+k π(k ∈Z)而公式S 2α、C 2α中,角α可以是任意角.二、二倍角公式中应注意的问题(1)对“二倍角”公式应该有广泛的理解.如8α是4α的二倍角,α是α2的二倍角,α3是α6的二倍角等等.又如α=2×α2,α2=2×α4,…,α2n =2×α2n +1等等.(2)当α=k π+π2()k ∈Z 时,tan α的值不存在,这时求tan 2α的值可用诱导公式求得.(3)一般情况下,sin 2α≠2sin α,例如sin π3≠2sin π6.(4)公式的逆用变形. 升幂公式: 1+cos α=2cos 2α2,1-cos α=2sin2α2,1±sin 2α=()sin α±cos α2.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.思考应用2.试应用二倍角的正弦、余弦公式化简并讨论函数y =2cos 2⎝⎛⎭⎪⎫x -π4-1的奇偶性与周期性.解析:∵y =2cos 2⎝ ⎛⎭⎪⎪⎫x -π4-1=cos ⎝⎛⎭⎪⎪⎫2x -π2 =cos ⎝⎛⎭⎪⎪⎫π2-2x =sin 2x ,∴函数y =2cos 2⎝⎛⎭⎪⎪⎫x -π4-1为奇函数, 且其最小正周期T =2π2=π.自测自评1.若sin α2=45,cos α2=-35,则角α是(C )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角 解析:∵sin α=2sin α2cos α2=2×45×⎝ ⎛⎭⎪⎫-35=-2425<0,cos α=cos 2α2-sin 2α2=⎝ ⎛⎭⎪⎫-352-⎝ ⎛⎭⎪⎫452=-725<0,∴角α是第三象限角.故选C.2.设sin 2α=-sin α,α∈⎝⎛⎭⎪⎪⎫π2,π,则tan 2α分析:由sin 2α=2sin αcos α及sin 2α=-sin α,α∈⎝⎛⎭⎪⎪⎫π2,π解出α,进而求得tan 2α的值.解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈⎝⎛⎭⎪⎪⎫π2,π,sin α≠0,∴cos α=-12,∴α=23π, ∴tan 2α=tan 43π=tan ⎝⎛⎭⎪⎪⎫π+π3=tan π3= 3.3.sin 20°cos 20°cos 2155°-sin 2155°的值是(A ) A.12 B .-12 C.32 D .-32解析:原式=12sin 40°cos 310°=sin 40°2cos ⎝⎛⎭⎫270°+40° =sin 40°2sin 40°=12.故选A. 4.已知x ∈⎝⎛⎭⎪⎪⎫-π2,0,cos x =45,则tan 2x =-247. 解析:∵x ∈⎝⎛⎭⎪⎪⎫-π2,0,cos x =45, ∴sin x =-35,tan x =-34,∴tan 2x =2tan x 1-tan 2 x=-247.基础提升1.函数y =cos 2x -sin 2x 的最小正周期是(A ) A .π B.π2 C.π4D .2π解析:∵y =cos 2x ,∴函数的最小正周期T =π.故选A. 2.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果是(B )A .tan αB .tan 2αC .1 D.12解析:原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.故选B. 3.化简sin ⎝ ⎛⎭⎪⎫π4+x sin ⎝ ⎛⎭⎪⎫π4-x 的结果是(B ) A.12sin 2x B.12cos 2x C .-12cos 2x D .-12sin 2x解析:原式=⎝ ⎛⎭⎪⎪⎫sin π4cos x +cos π4sin x ⎝ ⎛⎭⎪⎪⎫sin π4cos x -cos π4sin x =⎝ ⎛⎭⎪⎫22cos x +22sin x ⎝ ⎛⎭⎪⎫22cos x -22sin x=12(cos 2x -sin 2x )=12cos 2x .故选B. 4.已知cos α=-35,且π<α<3π2,则cos α2= (B )A.55 B .-55 C.255 D .-255解析:∵cos α=2cos2α2-1,∴cos2α2=1+cos α2=15. ∵π<α<3π2,∴π2<α2<3π4,∴cos α2=-15=-55.故选B. 5.当3π<α<4π时,化简1+cos α2- 1-cos α2(A ) A.2sin ⎝ ⎛⎭⎪⎫α2+π4 B .-2sin ⎝ ⎛⎭⎪⎫α2+π4C.2sin ⎝ ⎛⎭⎪⎫α2-π4 D .-2sin ⎝ ⎛⎭⎪⎫α2-π4解析:1+cos α2-1-cos α2=cos2α2-sin 2α2=⎪⎪⎪⎪⎪⎪⎪⎪cos α2-⎪⎪⎪⎪⎪⎪⎪⎪sin α2,∵3π<α<4π, ∴3π2<α2<2π, ∴sin α2<0,cos α2>0.∴原式=sin α2+cos α2=2sin ⎝ ⎛⎭⎪⎪⎫α2+π4.故选A. 巩固提高6.已知三角形的一个内角α满足sin α+cos α=34,则三角形的形状是(B )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 解析:∵sin α+cos α=34,且sin 2α+cos 2α=1, ∴1+sin 2α=916,∴sin 2α=-716<0,又α是三角形的一个内角,故α是钝角. 故选B.7.已知cos ⎝ ⎛⎭⎪⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎪⎫2α+π4的值.解析:∵π2≤α<3π2,∴3π4≤α+π4<7π4, 又cos ⎝⎛⎭⎪⎪⎫α+π4=35 ∴sin ⎝⎛⎭⎪⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45.∴cos 2α=sin ⎝ ⎛⎭⎪⎪⎫2α+π2=2sin ⎝⎛⎭⎪⎪⎫α+π4cos ⎝ ⎛⎭⎪⎪⎫α+π4=2⎝ ⎛⎭⎪⎫-45×35=-2425.又由cos ⎝ ⎛⎭⎪⎪⎫α+π4=35,得2cos 2⎝⎛⎭⎪⎪⎫α+π4-1=-725,即cos 2⎝⎛⎭⎪⎪⎫α+π4=-725,∴sin 2α=725. ∴cos ⎝⎛⎭⎪⎪⎫2α+π4=cos 2αcos π4-sin 2αsin π4=-2425×22-725×22=-31250. 8.已知sin α+cos α=33(0<α<π),求cos 2α的值.解析:∵sin α+cos α=33,∴(sin α+cos α)2=13, 2sin αcos α=-23,又0<α<π,∴sin α>0,cos α<0.∵(sin α-cos α)2=1-2sin αcos α=53,∴sin α-cos α=153.∴cos 2α=(cos α+sin α)(cos α-sin α)=-153×33=-53. 9.已知函数y =12cos 2x +32sin x cos x +1()x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x ()x ∈R 的图象经过怎样的平移和伸缩变换得到?解析:(1)y =12cos 2x +32sin x cos x +1=14⎝⎛⎭⎫2cos 2x -1+14+34·()2sin x cos x +1 =14cos 2x +34sin 2x +54 =12⎝ ⎛⎭⎪⎪⎫cos 2x sin π6+sin 2x cos π6+54 =12sin ⎝⎛⎭⎪⎪⎫2x +π6+54. 所以y 取最大值时,只需2x +π6=π2+2k π⎝⎛⎭⎫k ∈Z , 即x =π6+k π⎝⎛⎭⎫k ∈Z . 所以当函数y 取最大值时,自变量x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =π6+k π,k ∈Z.(2)将函数y =sin x 依次进行如下变换:①把函数y =sin x 的图象向左平移π6个单位长度,得到函数y =sin ⎝⎛⎭⎪⎪⎫x +π6的图象; ②把得到的图象上各点横坐标缩短到原来的12倍(纵坐标不变),得到函数y =sin ⎝⎛⎭⎪⎪⎫2x +π6的图象; ③把得到的图象上各点纵坐标缩短到原来的12倍(横坐标不变),得到函数y =12sin ⎝ ⎛⎭⎪⎪⎫2x +π6的图象; ④把得到的图象向上平移54个单位长度,得到函数 y =12sin ⎝ ⎛⎭⎪⎪⎫2x +π6+54的图象. 综上得到y =12cos 2x +32sin x cos x +1⎝⎛⎭⎫x ∈R 的图象.1.利用同角三角函数基本关系式求值常有两类题:一类是已知角α的某个三角函数值,求其他三角函数值.解法是直接利用三角函数基本关系式求解.另一类是已知tan α的值,求关于sin α,cos α的齐次分式的值的问题,比如求sin α+cos αsin α-cos α的值,因为cos α≠0,所以用cos α除之,将待求式化为关于tan α的表达式,可整体代入tan α=m 的值,从而完成待求式的求值.2.关于化简与证明:(1)sin 2α+cos 2α=1及()sin α+cos α2=1+2sin αcos α是常用的技巧;同时应注意正切化两弦.(2)利用同角三角函数关系式证明时,要熟悉公式,方法有从左至右或从右至左或从两侧同时证明.。
3.1.3 二倍角的正弦、余弦、正切公式 教案+习题

3.1.3 二倍角的正弦、余弦、正切公式学习目标 1.会从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式(重点).2.能熟练运用二倍角的公式进行简单的恒等变换,并能灵活地将公式变形运用(重点、难点).预习教材P132-134完成下面问题: 知识点 二倍角的正弦、余弦、正切公式【预习评价】 (正确的打“√”,错误的打“×”) (1)sin α=2sin α2cos α2.( )(2)cos 2α=12(1+cos 2α),cos 3α=1-2sin 232α.( )(3)2tanπ41-tan 2π4=tan π2.( ) 提示 (1)√,在公式sin 2α=2sin αcos α中,以α代换2α可得sin α=2sin α2cos α2.(2)√,由cos 2α=2cos 2α-1和cos 2α=1-2sin 2α可知其正确. (3)×,公式中所含各角要使三角函数有意义,而tan π2无意义.题型一 二倍角公式的正用、逆用 【例1】 求下列各式的值: (1)cos 2π12-sin 2π12;(2)tan 22.5°1-tan 222.5°;(3)cos 20°cos 40°cos 80°. 解 (1)原式=cos π6=32.(2)原式=12tan 45°=12.(3)原式=12sin 20°·2sin 20°cos 20°cos 40°cos 80°=12sin 20°·sin 40°·cos 40°cos 80°=122sin 20°sin 80°cos 80°=123sin 20°·sin 160°=sin 20°23sin 20°=18.规律方法 二倍角公式的关注点(1)对“二倍角”应该有广义的理解,如:4α是2α的二倍角;α是α2的二倍角,3α是3α2的二倍角等.(2)公式逆用:主要形式有2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α. (3)化简求值关注四个方向:分别从“角”“函数名”“幂”“形”着手分析,消除差异.【训练1】 (1)12-cos 2π8=________;解析 原式=12(1-2cos 2π8)=-12cos π4=-24.答案 -24(2)若sin(π4-α)=12,则sin 2α=________.解析 ∵sin(π4-α)=22cos α-22sin α=12,∴cos α-sin α=22,平方得1-sin 2α=12,即sin 2α=12.答案 12【例2】 (1)若tan α=34,则cos 2α+2sin 2α=( )A .6425B .4825C .1D .1625解析 原式=cos 2α+4sin αcos α=1+4tan α1+tan 2α=6425.答案 A(2)已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,则cos ⎝⎛⎭⎫2α+π4的值为________. 解析 cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=22(cos 2α-sin 2α),∵cos(α+π4)=35,π2≤α<3π2,∴sin(α+π4)=-45,从而cos 2α=sin(2α+π2)=2sin(α+π4)cos(α+π4)=-2425,sin 2α=-cos(2α+π2)=1-2cos 2(α+π4)=725.∴cos(2α+π4)=22(-2425-725)=-31250.答案 -31250(3)已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos 2x cos ⎝⎛⎭⎫π4+x 的值. 解 ∵0<x <π4,sin(π4-x )=513,∴π4-x ∈(0,π4),cos(π4-x )=1213,cos 2x cos (π4+x )=cos 2x -sin 2x 22(cos x -sin x ) =2(cos x +sin x )=2cos (π4-x )=2413.【迁移1】 若例2(3)的条件不变,则sin 2xsin (π4+x )的值是什么?解 sin(π4-x )=22cos x -22sin x =513,平方得sin 2x =119169,sin(π4+x )=cos[π2-(π4+x )]=cos(π4-x )=1213, 所以sin 2x sin (π4+x )=119169×1312=119156.【迁移2】 若例2(3)的条件变为tan(π4-x )=512,其他条件不变,结果如何?解 因为tan(π4-x )=512,所以sin(π4-x )=512cos(π4-x ),又sin 2(π4-x )+cos 2(π4-x )=1,故可解得cos(π4-x )=1213,原式=2cos(π4-x )=2413.规律方法 解决条件求值问题的方法(1)有方向地将已知式或未知式化简,使关系明朗化;寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.(2)当遇到π4±x 这样的角时可利用互余角的关系和诱导公式,将条件与结论沟通.题型三 三角函数式的化简与证明【例3】 求证:3-4cos 2A +cos 4A3+4cos 2A +cos 4A=tan 4 A .证明 ∵左边=3-4cos 2A +2cos 22A -13+4cos 2A +2cos 22A -1=⎝ ⎛⎭⎪⎫1-cos 2A 1+cos 2A 2=⎝⎛⎭⎫2sin 2A 2cos 2A 2=(tan 2A )2 =tan 4 A =右边,∴3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A . 规律方法 三角函数式化简、证明的常用技巧 (1)特殊角的三角函数与特殊值的互化;(2)对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分;(3)对于二次根式,注意倍角公式的逆用; (4)利用角与角之间的隐含关系,如互余、互补等; (5)利用“1”的恒等变形,如tan45°=1,sin 2α+cos 2α=1等. 【训练2】 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.证明 原式变形为1+sin 4θ-cos 4θ=tan 2θ(1+sin 4θ+cos 4θ),* 而*式右边=tan 2θ(1+cos 4θ+sin 4θ) =sin 2θcos 2θ(2cos 22θ+2sin 2θcos 2θ)=2sin 2θcos 2θ+2sin 22θ=sin 4θ+1-cos 4θ=左边, ∴*式成立,即原式得证.课堂达标1.sin 15°sin 75°的值是( ) A .12B .32C .14D .34解析 sin 15°sin 75°=sin 15°cos 15°=12sin 30°=14.答案 C2.1+cos 36°等于( ) A .2sin 18° B .2cos 18° C .cos 18°-sin 18° D .sin 18°-cos 18°解析 1+cos 36°=2cos 218°=2cos 18°.答案 B3.2sin 2α1+cos 2α·cos 2αcos 2α等于( ) A .tan 2α B .tan α C .1D .12解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.答案 A 4.tan 150°1-tan 2150°=________.解析 原式=12×2tan 150°1-tan 2150°=12tan 300°=12tan(300°-360°)=12tan(-60°)=-12tan 60°=-32. 答案 -325.化简:1+sin 2θ-cos 2θ1+sin 2θ+cos 2θ.解 方法一 原式=(1-cos 2θ)+sin 2θ(1+cos 2θ)+sin 2θ=2sin 2θ+2sin θcos θ2cos 2θ+2sin θcos θ=2sin θ(sin θ+cos θ)2cos θ(cos θ+sin θ) =tan θ.方法二 原式=(sin θ+cos θ)2-(cos 2θ-sin 2θ)(sin θ+cos θ)2+(cos 2θ-sin 2θ) =(sin θ+cos θ)[(sin θ+cos θ)-(cos θ-sin θ)](sin θ+cos θ)[(sin θ+cos θ)+(cos θ-sin θ)] =2sin θ2cos θ=tan θ. 课堂小结1.对“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n =2·α2n +1(n ∈N *). 2.二倍角的余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛,二倍角的常用形式:①1+cos 2α=2cos 2α,②cos 2α=1+cos 2α2,③1-cos 2α=2sin 2α,④sin 2α=1-cos 2α2.基础过关1.sin 4π12-cos 4π12的值等于( ) A .-12B .-32C .12D .32解析 原式=(cos 2π12+sin 2π12)(cos 2π12-sin 2π12)=cos π6=32.答案 D2.cos 275°+cos 215°+cos 75°cos 15°的值等于( ) A .62B .32C .54D .1+34解析 原式=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=54.答案 C3.已知x ∈(-π2,0),cos x =45,则tan 2x 等于( )A .724B .-724C .247D .-247解析 cos x =45,x ∈(-π2,0),得sin x =-35,所以tan x =-34,所以tan 2x =2tan x 1-tan 2x =2×(-34)1-(-34)2=-247,故选D . 答案 D4.若2±3是方程x 2-5x sin θ+1=0的两根,则cos 2θ等于________.解析 由题意得5sin θ=4,即sin θ=45,所以cos 2θ=1-2sin 2θ=1-2×1625=-725.答案 -7255.sin 6°sin 42°sin 66°sin 78°=________. 解析 原式=sin 6°cos 48°cos 24°cos 12° =sin 6°cos 6°cos 12°cos 24°cos 48°cos 6°=sin 96°16cos 6°=cos 6°16cos 6°=116.答案1166.化简下列各式: (1)11-tan θ-11+tan θ; (2)2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.解 (1)原式=(1+tan θ)-(1-tan θ)(1-tan θ)(1+tan θ)=2tan θ1-tan 2θ=tan 2θ.(2)原式=cos 2α2tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π2-π4-α=cos 2α2tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α =cos 2αsin ⎝⎛⎭⎫2×π4-2α=cos 2αcos 2α=1.7.已知角α在第一象限且cos α=35,求1+2cos (2α-π4)sin (α+π2)的值.解 ∵cos α=35且α在第一象限,∴sin α=45.∴cos 2α=cos 2α-sin 2α=-725,sin 2α=2sin αcos α=2425,原式=1+2(cos 2αcos π4+sin 2αsin π4)cos α=1+cos 2α+sin 2αcos α=145.能力提升8.已知等腰三角形底角的正弦值为53,则顶角的正弦值是( ) A .459B .259C .-459D .-259解析 设底角为θ,则θ∈⎝⎛⎭⎫0,π2,顶角为π-2θ. ∵sin θ=53,∴cos θ=1-sin 2θ=23.∴sin(π-2θ)=sin 2θ=2sin θcos θ=2×53×23=459. 答案 A9.函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( ) A .4 B .5 C .6D .7解析 f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112,所以当sin x =1时,f (x )的最大值为5.答案 B10.已知tan θ2=3,则1-cos θ+sin θ1+cos θ+sin θ=______ .解析 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2=2sin θ2⎝⎛⎭⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎫cos θ2+sin θ2=tan θ2=3.答案 311.如果tan ⎝⎛⎭⎫π4+α=2 016,那么1cos 2α+tan 2α=________. 解析 tan(π4+α)=1+tan α1-tan α=2 016,1cos 2α+tan 2α=1+sin 2αcos 2α=(sin α+cos α)2cos 2α-sin 2α=sin α+cos αcos α-sin α=1+tan α1-tan α=2 016. 答案 2 01612.已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间. 解 (1)f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π4. 又f (x )的最小正周期为π,ω>0, ∴T =2π2ω=π,∴ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π4, 函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2,k ∈Z , 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z 得k π-3π8≤x ≤k π+π8,k ∈Z ,∴f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z ). 13.(选做题)已知函数f (x )=cos(2x +π3)+sin 2x -cos 2x +23sin x cos x . (1)化简f (x );(2)若f (α)=17,2α是第一象限角,求sin 2α. 解 (1)f (x )=12cos 2x -32sin 2x -cos 2x +3sin 2x =32sin 2x -12cos 2x =sin(2x -π6). (2)f (α)=sin ⎝⎛⎭⎫2α-π6=17,2α是第一象限角,即2k π<2α<π2+2k π(k ∈Z ),∴2k π-π6<2α-π6<π3+2k π,k ∈Z ,∴cos ⎝⎛⎭⎫2α-π6=437,∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α-π6+π6=sin ⎝⎛⎭⎫2α-π6·cos π6+cos ⎝⎛⎭⎫2α-π6·sin π6=17×32+437×12=5314.。
高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式3.1.3二倍角的正弦余弦正切公式学案

3.1.3 二倍角的正弦、余弦、正切公式学习目标 1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式. 2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一 二倍角公式的推导思考1 二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?答案 sin2α=sin(α+α)=sin αcos α+cos αsin α =2sin αcos α;cos2α=cos(α+α)=cos αcos α-sin αsin α =cos 2α-sin 2α; tan2α=tan(α+α)=2tan α1-tan 2α(α≠π2+k π,2α≠π2+k π,k ∈Z ). 思考2 根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos2α?答案 cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1; 或cos2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二 二倍角公式的变形 1.公式的逆用2sin αcos α=sin2α,sin αcos α=12sin2α,cos 2α-sin 2α=cos_2α,2tan α1-tan 2α=tan2α. 2.二倍角公式的重要变形——升幂公式和降幂公式 升幂公式1+cos2α=2cos 2α,1-cos2α=2sin 2α, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.降幂公式cos 2α=1+cos2α2,sin 2α=1-cos2α2.1.sin α=2sin α2cos α2.( √ )2.cos4α=cos 22α-sin 22α.( √ ) 3.对任意角α,tan2α=2tan α1-tan 2α.( × ) 提示 公式中所含各角应使三角函数有意义.如α=π4及α=π2,上式均无意义.类型一 给角求值 例1 (1)计算:cos2π12-sin 2π12; 考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值 解 原式=cos π6=32.(2)计算:1-tan 275°tan75°;考点 应用二倍角公式化简求值 题点 利用正切的二倍角公式化简求值解 1-tan 275°tan75°=2·1-tan 275°2tan75°=2·1tan150°=-2 3.(3)计算:cos20°cos40°cos80°. 考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值解 原式=12sin 20°·2sin 20°cos 20°cos 40°cos 80°=12sin 20°·sin 40°·cos 40°cos 80°=122sin 20°sin 80°cos 80° =123sin 20°·sin 160°=sin 20°23sin 20°=18. 反思与感悟 对于给角求值问题,一般有两类(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1 (1)cos π7cos 3π7cos 5π7的值为( )A.14B .-14C.18D .-18考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值 答案 D解析 cos π7cos 3π7cos 5π7=cos π7·⎝ ⎛⎭⎪⎫-cos 4π7·⎝ ⎛⎭⎪⎫-cos 2π7=2sin π7cos π7cos 2π7cos4π72sinπ7=sin 2π7cos 2π7cos 4π72sin π7=sin 4π7cos4π74sinπ7=sin8π78sinπ7=-18.(2)12-cos 2π8=________; 考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值答案 -24解析 原式=12⎝ ⎛⎭⎪⎫1-2cos 2π8=-12cos π4=-24.类型二 给值求值例2 (1)若sin α-cos α=13,则sin2α=________.考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案 89解析 (sin α-cos α)2=sin 2α+cos 2α-2sin αcos α=1-sin2α=⎝ ⎛⎭⎪⎫132,即sin2α=1-⎝ ⎛⎭⎪⎫132=89.(2)若tan α=34,则cos 2α+2sin2α等于( )A.6425B.4825C .1D.1625考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案 A解析 cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α. 把tan α=34代入,得cos 2α+2sin 2α=1+4×341+⎝ ⎛⎭⎪⎫342=42516=6425.故选A.引申探究在本例(1)中,若改为sin α+cos α=13,求sin2α.解 由题意,得(sin α+cos α)2=19,∴1+2sin αcos α=19,即1+sin 2α=19,∴sin 2α=-89.反思与感悟 (1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论. (2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2 (1)(2017·石家庄高一检测)若sin(π-α)=13,且π2≤α≤π,则sin2α的值为( ) A .-429B .-229C.229D.429考点 二倍角的正弦、余弦、正切公式 题点 利有二倍角公式求二倍角的正弦值 答案 A解析 因为sin(π-α)=13,所以sin α=13,又因为π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin2α=2sin αcos α=2×13×⎝ ⎛⎭⎪⎫-223=-429. (2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝ ⎛⎭⎪⎫2α-π6=________.考点 应用二倍角公式化简求值 题点 综合应用二倍角公式化简求值 答案2425解析 因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0, 所以α+π6为锐角,sin ⎝ ⎛⎭⎪⎫α+π6=45, 则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425.又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,所以cos ⎝ ⎛⎭⎪⎫2α-π6=2425. 类型三 利用二倍角公式化简证明 例3 (1)化简:1+sin2θ-cos2θ1+sin2θ+cos2θ.考点 应用二倍角公式化简求值 题点 利用二倍角公式化简三角函数式 解 方法一 原式=-cos 2θ+sin 2θ+cos 2θ+sin 2θ=2sin 2θ+2sin θcos θ2cos 2θ+2sin θcos θ=2sin θθ+cos θ2cos θθ+sin θ=tan θ.方法二 原式=θ+cos θ2-2θ-sin 2θθ+cos θ2+2θ-sin 2θ=θ+cos θθ+cos θ-θ-sin θθ+cos θθ+cos θ+θ-sin θ=2sin θ2cos θ=tan θ.(2)求证:4sin αcos α1+cos2α·cos 2αcos 2α-sin 2α=tan2α. 考点 三角恒等式的证明 题点 三角恒等式的证明证明 左边=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α=右边. 反思与感悟 三角函数式化简、证明的常用技巧 (1)特殊角的三角函数与特殊值的互化.(2)对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分. (3)对于二次根式,注意二倍角公式的逆用. (4)利用角与角之间的隐含关系,如互余、互补等.(5)利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等. 跟踪训练3 α为第三象限角,则1+cos2αcos α-1-cos2αsin α=________.考点 应用二倍角公式化简求值 题点 利用二倍角公式化简三角函数式 答案 0解析∵α为第三象限角,∴cosα<0,sinα<0,∴1+cos2αcosα-1-cos2αsinα=2cos2αcosα-2sin2αsinα=-2cosαcosα--2sinαsinα=0.1.(2017·山东)已知cos x =34,则cos2x 等于( )A .-14B.14C .-18D.18考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角的余弦值 答案 D解析 cos2x =2cos 2x -1=2×⎝ ⎛⎭⎪⎫342-1=18.故选D.2.sin15°sin75°的值是( ) A.12B.32C.14D.34考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角的正弦值 答案 C解析 sin15°sin75°=sin15°cos15°=12sin30°=14.3.sin4π12-cos 4π12等于( ) A .-12B .-32C.12D.32考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值 答案 B 解析 原式=⎝⎛⎭⎪⎫sin 2π12+cos 2π12·⎝ ⎛⎭⎪⎫sin 2π12-cos 2π12 =-⎝⎛⎭⎪⎫cos2π12-sin 2π12=-cos π6=-32. 4.3tanπ81-tan2π8=________.考点 应用二倍角公式化简求值题点 利用正切的二倍角公式化简求值 答案 32解析 原式=32×2tanπ81-tan2π8=32tan ⎝ ⎛⎭⎪⎫2×π8=32tan π4=32. 5.证明:sin α+11+sin α+cos α=12tan α2+12.考点 三角恒等式的证明 题点 三角恒等式的证明证明 ∵左边=2tanα21+tan2α2+11+2tan α21+tan 2 α2+1-tan2α21+tan2α2=tan2α2+2tan α2+11+tan 2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n 是α2n +1的二倍(n ∈N *).2.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.常用形式:①1+cos2α=2cos 2α;②cos 2α=1+cos2α2;③1-cos2α=2sin 2α;④sin 2α=1-cos2α2.一、选择题1.已知α是第三象限角,cos α=-513,则sin2α等于( )A .-1213B.1213C .-120169D.120169考点 二倍角的正弦、余弦、正切公式 题点 利用二倍角公式求二倍角的正弦值 答案 D解析 由α是第三象限角,且cos α=-513,得sin α=-1213,所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-1213×⎝ ⎛⎭⎪⎫-513=120169,故选D.2.(2017·全国Ⅲ)已知sin α-cos α=43,则sin2α等于( )A .-79B .-29C.29D.79考点 应用二倍角公式化简求值 题点 利用正弦的二倍角公式化简求值 答案 A解析 ∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin2α=169,∴sin2α=-79.故选A.3.已知α为锐角,且满足cos2α=sin α,则α等于( ) A .30°或60° B .45° C .60°D .30°考点 应用二倍角公式化简求值 题点 利用余弦的二倍角公式化简求值答案 D解析 因为cos2α=1-2sin 2α,故由题意,知2sin 2α+sin α-1=0,即(sin α+1)(2sin α-1)=0.因为α为锐角,所以sin α=12, 所以α=30°.故选D.4.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan2x 等于( ) A.724B .-724C.247D .-247考点 二倍角的正弦、余弦、正切公式题点 利用二倍角公式求二倍角的正切值答案 D解析 由cos x =45,x ∈⎝ ⎛⎭⎪⎫-π2,0,得sin x =-35, 所以tan x =-34, 所以tan2x =2tan x 1-tan 2x =2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247,故选D. 5.2-sin 22+cos4的值是( )A .sin2B .-cos2 C.3cos2D .-3cos2考点 应用二倍角公式化简求值题点 利用余弦的二倍角公式化简求值答案 D解析 原式=1+cos 22+2cos 22-1=3cos 22=-3cos2. 6.函数f (x )=cos2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A .4B .5C .6D .7考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 B解析 f (x )=1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,所以当sin x =1时,f (x )的最大值为5.7.已知α为第二象限角,sin α+cos α=33,则cos2α等于( ) A .-53B .-59C.59D.53 考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 A解析 由题意得(sin α+cos α)2=13, ∴1+sin 2α=13,sin 2α=-23. ∵α为第二象限角,∴cos α-sin α<0.又∵sin α+cos α>0,∴cos α<0,sin α>0,且|cos α|<|sin α|,∴cos 2α=cos 2α-sin 2α<0,∴cos 2α=-1-sin 22α =-1-⎝ ⎛⎭⎪⎫-232=-1-49=-53,故选A. 二、填空题8.sin6°sin42°sin66°sin78°=________. 考点 应用二倍角公式化简求值题点 利用正弦的二倍角公式化简求值答案 116解析 原式=sin6°cos48°cos24°cos12° =sin6°cos6°cos12°cos24°cos48°cos6° =sin96°16cos6°=cos6°16cos6°=116. 9.已知θ∈(0,π),且sin ⎝⎛⎭⎪⎫θ-π4=210,则tan2θ=________. 考点 二倍角的正弦、余弦、正切公式题点 利用二倍角公式求二倍角的正切值答案 -247解析 由sin ⎝ ⎛⎭⎪⎫θ-π4=210, 得22(sin θ-cos θ)=210,即sin θ-cos θ=15.解方程组⎩⎪⎨⎪⎧sin θ-cos θ=15,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45,cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35,cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247.10.若1+tan α1-tan α=2018,则1cos2α+tan2α=________.考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 2018解析 1cos2α+tan2α=1cos2α+sin2αcos2α=1+sin2αcos2α=α+sin α2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2018.11.已知tan θ2=3,则1-cos θ+sin θ1+cos θ+sin θ=________.考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 3解析 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2 =2sin θ2⎝ ⎛⎭⎪⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎪⎫cos θ2+sin θ2=tan θ2=3. 三、解答题12.(2017·山东青岛城阳一中期中考试)已知3sin β=sin(2α+β),且α≠k π2,α+β≠π2+k π(k ∈Z ),求证:tan(α+β)=2tan α. 考点 三角恒等式的证明题点 三角恒等式的证明证明 因为sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α; sin(2α+β)=sin[(α+β)+α]=sin(α+β)cos α+cos(α+β)·sin α,所以3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, 即sin(α+β)cos α=2cos(α+β)sin α.又α≠k π2,α+β≠π2+k π(k ∈Z ), 所以cos α≠0,cos(α+β)≠0.于是等式两边同除以cos(α+β)·cos α,得tan(α+β)=2tan α.13.化简:+sin α+cos α⎝⎛⎭⎪⎫sin α2-cos α22+2cos α(180°<α<360°).考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值解 原式=⎝ ⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos 2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2⎝ ⎛⎭⎪⎫sin 2α2-cos 2α2⎪⎪⎪⎪⎪⎪cos α2=-cos α2cos α⎪⎪⎪⎪⎪⎪cos α2. 因为180°<α<360°,所以90°<α2<180°, 所以cos α2<0,所以原式=cos α. 四、探究与拓展14.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________. 考点 应用二倍角公式化简求值题点 利用正弦的二倍角公式化简求值答案 459解析 设A 是等腰△ABC 的顶角,则cos B =23, sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫232=53. 所以sin A =sin(180°-2B )=sin2B=2sin B cos B =2×53×23=459. 15.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3+sin 2x -cos 2x +23sin x cos x . (1)化简f (x );(2)若f (α)=17,2α是第一象限角,求sin2α. 考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值解 (1)f (x )=12cos2x -32sin2x -cos2x +3sin2x =32sin2x -12cos2x =sin ⎝⎛⎭⎪⎫2x -π6. (2)f (α)=sin ⎝⎛⎭⎪⎫2α-π6=17,2α是第一象限角, 即2k π<2α<π2+2k π(k ∈Z ),∴2k π-π6<2α-π6<π3+2k π(k ∈Z ), ∴cos ⎝⎛⎭⎪⎫2α-π6=437, ∴sin2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α-π6+π6 =sin ⎝ ⎛⎭⎪⎫2α-π6·cos π6+cos ⎝⎛⎭⎪⎫2α-π6·sin π6 =17×32+437×12=5314.。
3.1.3二倍角的正弦、余弦、正切公式

正正
cos( α + β ) = cos α cos β − sin α sin β ⇒ cos(α + α ) = cos α cos α − sin α sin α 2 2 ⇒cos 2α = cos α − sin α sin( α + β )= sin α cos β + cos α sin β ⇒ sin( α + α ) = sin α cos α + cos α sin α
,4 < α < 2 的值. 求 sin 4α, 4α, tan 4α 的值. cos 例1 已知
4 ABC中 例2 在△ABC中, cos A = , tan B = 2. 5
5 sin 2α = 13
π
π
求 tan(2A+2B) 的值 的值.
变式:把例2中求tan(2A+2B)的值改为求tan2C 的值.
总 结 归 纳
sin2α = 2sinα cosα 2 2 cos 2α = cos α − sin α
= 2 cos α − 1
2 2
= 1 − 2 sin α 2tanα tan 2α = 1− 1 − tan2 α
1、二倍角公式是和角公式的特例,体现将一般化归为特 殊的基本数学思想方法。 2、二倍角公式与和角、差角公式一样,反映的都是如何 用单角的三角函数值表示复角(和、差、倍)的三角函 数值,结合前面学习到的同角三角函数关系式和诱导公 式可以解决三角函数中有关的求值、化简和证明问题。
= 2 cos2 α − 1 = 1 − 2 sin2 α 2tanα kπ π α ≠ kπ + π (k ∈Z) , α ≠ + ,且 tan 2α = 2 2 2 4 1 − tan α
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 二倍角的正弦、余弦、正切公式
阳谷三中 高一数学组 2013.4.23
学习目标:1、通过倍角公式的推导,体会由一般到特殊的数学思想;
2、掌握倍角公式,并能灵活应用;
教学重点:倍角公式及其推导;
教学难点:倍角公式的应用;
教学过程:
一、 回顾:
两角和与差的正弦、余弦、正切公式
二、 新授课
1、倍角公式推导:(自主完成公式推导)
思考:(回答)
(1)观察公式结构特点回答角α的范围分别是什么?
(2)在二倍角的余弦公式(C α2)中,如果要求表示式仅含α的正弦(余弦),又
可得到什么?
2.倍角公式的应用
应用1、公式的初步应用(要求:独立思考,小组交流并展示)
例1.
(1)已知α∈(0,4π
),sin α=53
,求sin2α; (2)sin150cos150; (3)cos 28π
—sin 28π;
(4)0205.22tan -15
.22tan ; (5)2cos 222.50 - 1
小结:
例2.已知sin2α=135,4π<α<2π
,求sin4α,cos4α,tan4α;
小结:
应用2、公式的综合应用(要求:独立思考,小组交流并展示) 例3.在∆ABC 中,cosA=
54,tanB=2,求tan (2A+2B )的值。
小结:
三、当堂检测:
1. 已知cos 8α
= —54,8π<α<12π,求sin
4α,cos 4α,tan 4α的值; 2. 已知sin (α—π)=5
3,求cos2α的值; 3. 已知sin2α= —sin α,α∈(
2π,π),求tan α的值; 4. 已知tan2α=31
,求tan α的值。
四、
课堂小结:
五、
作业:课本P 13815、16。