两角和与差的正弦余弦正切公式练习题(含答案)

合集下载

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。

其中假命题是()A。

①②B。

②③C。

③④D。

②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。

1+2B。

2-1C。

2D。

2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。

最大值为1,最小值为-1B。

最大值为1,最小值为-1/2C。

最大值为2,最小值为-2D。

最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。

1/2B。

2/2C。

-2D。

±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。

56/65B。

-56/65C。

6565/56D。

-5/66.sin15°sin30°sin75°的值等于()A。

3/4B。

3/8C。

1/8D。

1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。

其中为相同函数的是()A。

f(x)与g(x)B。

g(x)与h(x)C。

h(x)与f(x)D。

f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。

π/3B。

π/4C。

π/5D。

两角和与差正弦余弦正切公式试题(含答案)

两角和与差正弦余弦正切公式试题(含答案)

两角和、差的正弦、余弦、正切测验题一、选择题(本大题共5小题,每小题5分,共25分。

)1、o o o o 54cos 66cos 36cos 24cos -的值等于( ) A.0 B.21 C.23D.21-2.在△ABC 中,若sin A =2sin C cos B .那么三角形是( ) A.锐角三角形 B.直角三角形 C.等腰三角形 D.等边三角形3. 已知()414tan ,53tan =⎪⎭⎫ ⎝⎛-=+πββα ,那么⎪⎭⎫ ⎝⎛+4tan πα=( )A .1813 B .2313 C .227 D .1834.()()()()o o o o 24tan 123tan 122tan 121tan 1++++ 的值是( )A.16B.8C.4D.2二、填空题(本大题共5小题,每小题8分,共40分)6.化简=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-x x x x 3sin 32sin 3cos 32cos ππππ______.7. 已知角α的终边经过点()()04,3≠-a a a P 则=α2sin .8. 52coslog 5coslog 44ππ+的值等于______.9.已知21tan -=α,则=-+αααα22cos sin cos sin 21 10.函数)2(22≥--=x x y 的反函数是 。

三、解答题(本大题共3小题,共35分.解答应写出文字说明、证明过程或演算步骤) 11.(本小题满分10分)已知()()⎪⎭⎫⎝⎛∈-⎪⎭⎫ ⎝⎛∈+-=-=+ππβαππβαβαβα,43,2,47,54c o s ,54co s ,求α2cos 的值。

.12. (本小题满分10分) 已知22tan -=θ,求)4sin(21sin 2cos 22θθθ+--的值.13. (本小题满分15分) 已知()πβα,0∈、,且βαtan tan 、是方程0652=+-x x 的两根.①求βα+的值. ②求()βα-cos 的值.参考答案:1.解析:原式=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=21. 答案:B2.解析:∵A +B +C =π,∴A =π-(B +C ).由已知可得:sin(B +C )=2sin C cos B ⇒sin B cos C +cos B sin C =2sin C cos B⇒sin B cos C -cos B sin C =0⇒sin(B -C )=0. ∴B =C ,故△ABC 为等腰三角形. 答案:C 3.解析:4.分析:本题中所涉及的角均为非特殊角,但两角之和为45°特殊角,为此,将因式重组来求. 解析:∵tan45°=tan(21°+24°)=︒︒-︒+︒24tan 21tan 124tan 21tan ∴1-tan21°tan24°=tan21°+tan24° 即1+tan21°+tan24°+tan21°tan24°=2即(1+tan21°)(1+tan24°)=2.(同理,由tan45°+tan(22°+23°)可得 (1+tan22°)(1+tan23°)=2.故(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)=4. 答案:C 5. B6.解析:原式=cos [(2x -3π)+(3π-x )]=cos x . 7. 18.解析:∵5sin 252cos 5cos 5sin252cos 5cos ππππππ=415sin454sin 5sin 252cos 52sin ===πππππ ∴原式=log 4141log )52cos 5(cos 4-==ππ 答案:-19. 0.5 10. y=2x 11.25/3612.分析:求三角函数的值,一般先要进行化简,至于化成哪一种函数,可由已知条件来确定.本题中由已知可求得tan θ的值,所以应将所求的式子化成正切函数式. 解:原式=)4sin(2)4sin(2)4sin(2sin cos θπθππθθθ+-=+- ∵2)4()4(πθπθπ=++-∴原式=θθθπθθπtan 1tan 1)4tan()4cos()4sin(+-=-=--. 由已知tan2θ=-22得22tan 1tan 22-=-θθ解得tan θ=-22或tan θ=2. ∴π<2θ<2π,∴2π<θ<π,故tan θ=-22. 故原式=223221221+=-+. 评注:以上所给解法,似乎有点复杂,但对于提高学生的三角变换能力大有好处.本题也可将所求式化成θθθθsin cos sin cos +-,注意到此时分子、分母均是关于si n θ、cos θ的齐次式.通过同时除以cos θ,即可化成θθtan 1tan 1+-.13. ①由根与系数的关系得:分分6.1615tan tan 1tan tan )tan(2)2(6tan tan )1(5tan tan -=-=-+=+∴⎩⎨⎧==+βαβαβαβαβα 分所以且又9.43),,0(),2,0(,),,0(,,0tan ,0tan πβαπβαπβαπβαβα=+∈+∈∴∈>>②由(1)得)3(22sin sin cos cos )cos( -=-=+βαβαβα 由(2)得⎪⎪⎩⎪⎪⎨⎧===102cos cos 523sin sin )4)(3()4(cos cos 6sin sin βαβαβαβα得联立 1027sin sin cos cos )cos(=+=-∴βαβαβα。

完整版)两角和与差的正弦、余弦、正切经典练习题

完整版)两角和与差的正弦、余弦、正切经典练习题

完整版)两角和与差的正弦、余弦、正切经典练习题两角和与差的正弦、余弦、正切cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ1、求值:1)cos15°2)cos80°cos20°+sin80°sin20°3)cos130°cos10°+sin130°sin10°5)sin75°7)cos(A+B)cosB+sin(A+B)sinB2.1)证明:cos(π/2-α)=sinα4)cos105°6)求cos75°cos105°+sin75°sin105°8)cos91°cos29°-sin91°sin29°2)已知sinθ=15π,且θ为第二象限角,求cos(θ-π)的值.3)已知sin(30°+α)=√3/2,60°<α<150°,求cosα.4)化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).5)已知sinα=-4/5,求cosα的值。

6)已知cosα=-3π/32,α∈(π/2,π),求sin(α+π/4)的值。

7)已知α,β都是锐角,cosα=32π/53,α∈(π/3,π/2),cosβ=-3π/52,β∈(π/6,π/4),求cos(α+β)的值。

8)已知cos(α+β)=-11/53,求cosβ的值。

9)在△ABC中,已知sinA=√3/5,cosB=1/4,求cosC的值.两角和与差的正弦sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ利用和差角公式计算下列各式的值:1)sin72°cos42°-cos72°sin42°2)3sinx+cosx3)cos2x-sin2x证明:1)sinα+cosα=sin(α+π/2)2)cosθ+sinθ=2sin(θ+π/4)3)2(sin x+cos x)=2cos(x-π/4)1)已知sinα=-3/5,α是第四象限角,求sin(-α)的值。

两角和与差的正弦、余弦、正切公式

两角和与差的正弦、余弦、正切公式

两角和与差的正弦、余弦、正切公式一、选择题1.若α+β=π4,则(1+tan α)(1+tan β)等于( ) A .1 B .-1 C .2D .-2【解析】 (1+tan α)(1+tan β) =1+(tan α+tan β)+tan αtan β=1+tan(α+β)(1-tan αtan β)+tan αtan β =1+tan π4·(1-tan αtan β)+tan αtan β=2. 【答案】 C2.cos α-3sin α化简的结果可以是( ) A .12cos ⎝ ⎛⎭⎪⎫π6-αB .2cos ⎝ ⎛⎭⎪⎫π3+αC .12cos ⎝ ⎛⎭⎪⎫π3-αD .2cos ⎝ ⎛⎭⎪⎫π6-α【解析】 cos α-3sin α=2⎝ ⎛⎭⎪⎫12cos α-32sin α=2⎝ ⎛⎭⎪⎫cos αcos π3-sin αsin π3=2cos ⎝ ⎛⎭⎪⎫α+π3.【答案】 B3.(2016·北京高一检测)在△ABC 中,A =π4,cos B =1010,则sin C 等于( )A .255B .-255C .55D .-55【解析】 因为cos B =1010且0<B <π,所以sin B =31010又A =π4,所以sin C =sin(A +B )=sin π4cos B +cos π4sin B=22×1010+22×31010=255. 【答案】 A4.若sin α=35,α∈⎝ ⎛⎭⎪⎫-π2,π2,则cos ⎝ ⎛⎭⎪⎫5π4+α=( ) 【导学号:00680071】A .-210 B .210C .-7210D .7210【解析】 因为sin α=35,α∈⎝ ⎛⎭⎪⎫-π2,π2,所以cos α=45,故cos ⎝ ⎛⎭⎪⎫α+5π4=cos αcos 5π4-sin αsin 5π4=45×⎝ ⎛⎭⎪⎫-22-35×⎝ ⎛⎭⎪⎫-22=-210.【答案】 A5.若sin α=35,tan(α+β)=1,且α是第二象限角,则tan β的值为( )A .43B .-43C .7D .17【解析】 由sin α=35,且α是第二象限角,可得cos α=-45,则tan α=-34,所以tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=1-⎝ ⎛⎭⎪⎫-341+⎝ ⎛⎭⎪⎫-34=7.【答案】 C 二、填空题6.计算1-tan 15°3+tan 60°tan 15°=________.【解析】 原式=tan 45°-tan 15°3(1+tan 45°·tan 15°)=13tan(45°-15°)=13.【答案】 137.若sin(α+β)=15,sin(α-β)=35,则tan αtan β=________.【解析】 由题意得sin αcos β+cos αsin β=15,①sin αcos β-cos αsin β=35,② ①+②得sin αcos β=25,③ ①-②得cos αsin β=-15,④ ③÷④得tan αtan β=-2. 【答案】 -2 三、解答题8.设方程 12x 2-πx -12π=0的两根分别为α,β,求cos αcos β-3sin αcos β-3cos αsin β-sin αsin β的值.【解】 由题意知α+β=π12, 故原式=cos(α+β)-3sin(α+β) =2sin ⎣⎢⎡⎦⎥⎤π6-(α+β)=2sin π12=2sin ⎝ ⎛⎭⎪⎫π4-π6=2⎝ ⎛⎭⎪⎫sin π4cos π6-cos π4sin π6=2⎝ ⎛⎭⎪⎫22×32-22×12=6-22.9.如图3-1-1,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆交于A 、B 两点,已知A 、B 的横坐标分别为210、255.图3-1-1(1)求tan(α+β)的值; (2)求α+2β的值.【解】 由条件得cos α=210,cos β=255. ∵α,β为锐角,∴sin α=1-cos 2α=7210,sin β=1-cos 2β=55.因此tan α=7,tan β=12. (1)tan(α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2)∵tan(α+2β)=tan[(α+β)+β] =tan (α+β)+tan β1-tan (α+β)tan β=-3+121-(-3)×12=-1,又∵α,β为锐角,∴0<α+2β<3π2,∴α+2β=3π4.[能力提升]1.已知f (x )=sin ⎝ ⎛⎭⎪⎫π3x +π3-3cos ⎝ ⎛⎭⎪⎫π3x +π3,则f (1)+f (2)+…+f (2 016)的值为( )A .2 3B . 3C .1D .0【解析】 f (x )=sin ⎝ ⎛⎭⎪⎫π3x +π3-3cos ⎝ ⎛⎭⎪⎫π3x +π3=2sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π3x +π3-π3=2sinπ3x ,因为周期为6,且f (1)+f (2)+…+f (6)=0 ,所以f (1)+f (2)+…+f (2 016)=0.【答案】 D2.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin 2α的值.【解】 因为π2<β<α<3π4,所以π<α+β<3π2,0<α-β<π4.所以sin(α-β)=1-cos 2(α-β) =1-⎝ ⎛⎭⎪⎫12132=513. 所以cos(α+β)=-1-sin 2(α+β) =-1-⎝ ⎛⎭⎪⎫-352=-45. 则sin 2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β) =⎝ ⎛⎭⎪⎫-35×1213+⎝ ⎛⎭⎪⎫-45×513 =-5665.。

两角和与差的正弦余弦正切公式练习附答案

两角和与差的正弦余弦正切公式练习附答案
=- × + × =- .
1. - =()
A.4B.2
C.-2D.-4
解析:选D. - = - = = = =-4,故选D.
2.若α,β都是锐角,且cosα= ,sin(α-β)= ,
则cosβ=()
A. B.
C. 或- D. 或
解析:选A.因为α,β都是锐角,且cosα= ,sin(α-β)= ,所以sinα= ,cos(α-β)= ,从而cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)= ,故选A.
6.已知cosθ=- ,θ∈ ,则sin 的值为________.
解析:由cosθ=- ,θ∈ 得sinθ=- =- ,故sin =sinθcos -cosθsin =- × - × = .
答案:
7.已知cos =- ,则cosx+cos =________.
解析:cosx+cos =cosx+ cosx+ sinx
1. 的值为()
A. B.
C.- D.-
解析:选B.原式= = =tan(45°+15°)= .
2.(1+tan 18°)·(1+tan 27°)的值是()
A. B.1+
C.2D.2(tan 18°+tan 27°)
解析:选C.原式=1+tan 18°+tan 27°+tan 18°tan 27°=1+tan 18°tan 27°+tan 45°(1-tan 18°tan 27°)=2,故选C.
解:因为0<α< <β< π.
所以 π< π+α<π,- < -β<0.
Hale Waihona Puke 又sin = ,cos = ,
所以cos =- ,sin =- ,

两角和与差的正、余弦公式、正切公式、二倍角公式

两角和与差的正、余弦公式、正切公式、二倍角公式

1.已知tan 2α=,则tan 2α的值为 . 【答案】43-【分析】222tan 224tan 21tan 123ααα⨯===---. 2.已知P (-3,4)为角α终边上的一点,则cos (π+α)= .【考点】任意角的三角函数的定义.【答案】35【分析】∵P (-3,4)为角α终边上的一点,∴x =-3,y =4,r =|OP |=5,∴cos (π+α)=-cos α=x r -=35--=35,故答案为35. 3.已知cos(α-β)=35,sin β=513-且α∈(0,π2),β∈(π2-,0),则sin α= .【考点】两角和与差的余弦函数;同角三角函数间的基本关系.【答案】3365【分析】∵α∈(0,π2),β∈(π2-,0),∴α-β∈(0,π), 又cos (α-β)=35,sin β=513-,∴sin (α-β)=21cos ()αβ--=45,cos β=21sin β-=1213,则sin α=sin[(α-β)+β]= sin (α-β)cos β+cos (α-β)sin β=45×1213+35×(513-)=3365.故答案为3365. 4.若0≤x ≤π2,则函数y =cos (x -π2)sin (x +π6)的最大值是 .【考点】两角和与差的正余弦公式的应用.【答案】234+ 【分析】y =sin x (sin x 32⋅+12cos x )=322sin x +12sin x cos x =()31cos 24x -+14sin2x =12sin (2x -π3)+34, ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴max y =12+34=234+. 5.已知过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),则tan (α+β)=________.【考点】平面的法向量. 【答案】1【分析】∵过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),∴-1-3tan β=0,12-tan α=-1.∴1tan 3β=-,tan α=2. ∴tan (α+β)=12tan tan 3111tan tan 123αβαβ-+==-+⨯,故答案为1. 6.在ABC △中,已知BC =8,AC =5,三角形面积为12,则cos2C = .【考点】三角形面积公式,二倍角公式的应用. 【答案】725【分析】∵已知BC =8,AC =5,三角形面积为12, ∴12⋅BC ⋅AC sin C =12,∴sin C =35,∴cos2C =122sin C -=1-2×925=725. 7.某种波的传播是由曲线()()()sin 0f x A x A ωϕ=+>来实现的,我们把函数解析式()()sin f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波()()11sin f x x ϕ=+与()()22sin f x x ϕ=+叠加后仍是“1类波”,求21ϕϕ-的值;(2)在“A 类波“中有一个是()1sin f x A x =,从 A 类波中再找出两个不同的波()()23,f x f x ,使得这三个不同的波叠加之后是平波,即叠加后()()()1230f x f x f x ++=,并说明理由.(3)在()2n n n ∈N,≥个“A 类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明. 【考点】两角和与差的正弦函数;归纳推理.【解】(1)()()()()1212sin sin f x f x x x ϕϕ+=+++ =1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ+++,振幅是221212(cos cos )(sin sin )ϕϕϕϕ+++=()1222cos ϕϕ+-,则()1222cos ϕϕ+-=1,即()121cos 2ϕϕ-=-,所以122π2π,3k k ϕϕ-=±∈Z . (2)设()()21sin f x A x ϕ=+,()()32sin f x A x ϕ=+, 则()()()()()12312sin sin sin f x f x f x A x A x A x ϕϕ++=++++=()()1212sin 1cos cos cos sin sin 0A x A x ϕϕϕϕ++++=恒成立, 则121cos cos 0ϕϕ++=且12sin sin 0ϕϕ+=, 即有:21cos cos 1ϕϕ=--且21sin sin ϕϕ=-,消去2ϕ可解得11cos 2ϕ=-, 若取12π3ϕ=,可取24π3ϕ=(或22π3ϕ=-等),此时,()22πsin 3f x A x ⎛⎫=+ ⎪⎝⎭,()34πsin 3f x A x ⎛⎫=+ ⎪⎝⎭(或()32πsin 3f x A x ⎛⎫=- ⎪⎝⎭等), 则()()()1231313sin sin cos sin cos 02222f x f x f x A x x x x x ⎡⎤⎛⎫⎛⎫++=+-++--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以是平波.(3)()1sin f x A x =,()22πsin f x A x n ⎛⎫=+⎪⎝⎭,()34πsin f x A x n ⎛⎫=+ ⎪⎝⎭,…, ()()21πsin n n f x A x n -⎛⎫=+ ⎪⎝⎭,这n 个波叠加后是平波.8. (4分)已知sin α=3cos α,则cos 21sin 2αα=+ ________.【参考答案】 12-【测量目标】 运算能力/能根据法则准确的进行运算和变形. 【考点】二倍角的余弦;二倍角的正弦.【试题分析】 由已知先求tan α,因为sin α=3cos α,所以tan α=3,把所求的式子中的三角函数利用二倍角公式进行化简,然后化为正切形式,即可求值:222222cos 2cos sin 1tan 1911sin 2cos 2sin cos +sin 12tan tan 1692ααααααααααα---====-++++++.9.若tan (α-π4)=14,则tan α=______. 【参考答案】 53【测量目标】 数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【考点】 两角和与差的正切函数.【试题分析】 ∵tan (α-π4)=14, ∴πtan tan4π1tan tan4αα-+=tan 11tan αα-+=14,解得tan α=53.故答案为53. 10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且3cos 4B =. (1)求2sin 2cos2A CB ++的值; (2)若3b =,求ABC △面积的最大值. 【考点】余弦定理,二倍角的正弦、余弦. 【解】(1)因为3cos 4B =,所以7sin 4B =, 又22π1sin 2cos2sin cos cos 2sin cos (1cos )222A CB B B B B B B +-+=+=+- =73113724488+⨯⨯+=. (2)由已知可得:2223cos 24a cb B ac +-==, 又因为3b =,所以22332a c ac +-=, 又因为223322a c ac ac +=+≥, 所以6ac ≤,当且仅当6a c ==时,ac 取得最大值.此时11737sin 62244ABC S ac B ==⨯⨯=△. 所以△ABC 的面积的最大值为374. 11.已知1sin 4θ=,则sin 2()4θπ⎡⎤-=⎢⎥⎣⎦__________. 【答案】78-【分析】27sin 2()cos 212sin 48θθθπ⎡⎤-=-=-+=-⎢⎥⎣⎦.12. 已知α为第二象限的角,sin α=35,则tan2α=_______________. 【答案】247-【分析】因为α为第二象限的角,又sin α=35,所以cos α=45-,tan α=sin cos αα=34-,tan2α=22tan 1tan αα-=247-.【考点】两角和与差的三角函数、二倍角公式. 13.若△ABC 的内角A 满足sin2A =23,则sin A +cos A 等于( ) A.153 B.153- C.53 D.53-【答案】A 【分析】∵0<A <π,0<2A <2π,又sin2A =23,即2sin A cos A =23,∴0<A <π2, 2(sin cos )A A +=53,sin A +cos A =153,故选A. 【考点】两角和与差的三角函数、二倍角公式. 14.已知sin θ+cos θ=15,且π2≤θ≤3π4,则cos2θ的值是___________. 【答案】725-【分析】由已知sin θ+cos θ=15①,2sin θcos θ= 2425-,又π2≤θ≤3π4,∴cos θ<0,sin θ>0. 2(cos sin )θθ-=4925,则sin θ-cos θ=75②,由①②知cos2θ=22cossin θθ-=725-. 【考点】两角和与差的三角函数、二倍角公式.15.已知0<α<π2,sin α=45.(1)求22sin sin 2cos cos 2αααα++的值;(2)求tan(α-5π4)的值.【解】∵0<α<π2,sin α=45,∴cos α=35,tan α=43.(1)22sin sin2cos cos2αααα++=222sin2sin cos2cos sinααααα+-=22tan2tan2tanααα+-=2244()23342()3+⨯-=20;(2)tan(α-5π4)=tan11tanαα-+=413413-+=17.【考点】两角和与差的三角函数、二倍角公式.16.已知x∈(π2-,0),cos x=45,tan2x=()A.724B.724- C.247D.247-【答案】D【分析】sin x=35-,tan x=34-,tan2x=22tan1tanxx-=247-,故选D.【考点】两角和与差的三角函数、二倍角公式.17.cos20cos351sin20︒︒-︒=()A.1B. 2C.2D.3【答案】C【分析】cos20cos351sin20︒︒-︒=22cos10sin10cos35(cos10sin10)︒-︒︒︒-︒=cos10sin10cos35︒+︒︒=2sin55cos35︒︒=2,故选C.【考点】两角和与差的三角函数、二倍角公式.18.设a=sin14°+cos14°,b=sin16°+cos16°,c =62,则a、b、c大小关系是()A.a<b<cB.b<a<cC. c<b<aD. a<c<b【答案】D【分析】由题意知,a =2sin59°,b =2sin61°,c =2sin60°,所以a<c<b,故选D.【考点】两角和与差的三角函数、二倍角公式.19.tan20°+tan40°+ 3tan20°tan40°=_____________.【答案】3【分析】tan60°= tan(20°+40°)=tan20+tan401tan20tan40︒︒-︒︒=3,∴3-3tan20°tan40°=tan20°+tan40°,移向即可得结果为3. 【考点】两角和与差的三角函数、二倍角公式. 20.已知sin2θ+cos 2θ=233,那么sin θ =______,cos2θ =___________. 【答案】13,79【分析】2(sin cos )22θθ+=1+ sin θ=43,sin θ=13,cos2θ=1-22sin θ=79. 【考点】两角和与差的三角函数、二倍角公式. 21.若1tan 1tan αα+-=2008,则1cos 2α+tan2α=_______________.【答案】2008【分析】1cos 2α+tan2α=1sin 2cos 2cos 2ααα+=1sin 2cos 2αα+=222(cos +sin )cos sin αααα-= cos +sin cos sin αααα-=1+tan 1tan αα-=2008.【考点】两角和与差的三角函数、二倍角公式. 22.计算:sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=________.【答案】2+3【分析】sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=sin80cos15sin15cos10︒︒︒︒=cos15sin15︒︒=2+3.【考点】两角和与差的三角函数、二倍角公式.23.求值:(1)sin6°sin42°sin66°sin78°;(2)22sin 20cos 50︒+︒+sin20°cos50°.【解】原式=sin6°cos12°cos24°cos48°=sin 6cos 6cos12cos 24cos 48cos 6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=1sin 24cos 24cos 484cos6︒︒︒︒=1sin 48cos 488cos6︒︒︒=1sin 9616cos6︒︒=1cos616cos6︒︒=116; (2)原式=1cos 401cos1001(sin 70sin 30)222-︒+︒++︒-︒ =1+111(cos100cos 40)sin 70224︒-︒+︒-=31sin 70sin 30sin 7042-︒⋅︒+︒=34.【考点】两角和与差的三角函数、二倍角公式. 24.已知tan α、tan β是方程2x -5x +6=0的两个实根,求22sin ()αβ+-3sin ()αβ+cos ()αβ++2cos ()αβ+的值. 【解】由韦达定理得tan α+tan β=5,tan α·tan β=6,所以tan(α+β)=tan tan 1tan tan αβαβ+-⋅=-1.原式=[22sin ()αβ+-3sin(α+β)cos(α+β)+2cos ()αβ+]/[22sin ()cos ()αβαβ+++]=222tan ()3tan()1tan ()1αβαβαβ+-++++=213(1)111⨯-⨯-++=3.【考点】两角和与差的三角函数、二倍角公式.。

两角和与差的正弦余弦正切公式练习题(答案)

两角和与差的正弦余弦正切公式练习题(答案)

两角和差的正弦余弦正切公式练习题知 识 梳 理1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(α∓β)=cos_αcos_β±sin_αsin_β. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 23.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的 ( )A .最大值为1,最小值为-1B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( ) A .3πB .4π C .π65 D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a 11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 .14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:y x y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α, 22cos ,2243cos cos cos 1cos 12=-=-=+ααα即C A故222cos =-C A .。

两角和与差的正弦、余弦和正切公式专题及答案

两角和与差的正弦、余弦和正切公式专题及答案

两角和与差的正弦、余弦和正切公式专题一、选择题1.已知f (x )=sin x -cos x ,则f ⎝ ⎛⎭⎪⎫π12的值是( ) A .-62 B.12 C .-22 D.222.已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235 B.235 C.45 D .-453.sin47°-sin17°cos30°cos17°=( ) A .-32 B .-12 C.12 D.324.当0<x <π4时,函数y =cos 2x cos x sin x -sin 2x的最小值是( ) A.14 B.12 C .2 D .45.已知sin α=1213,cos β=45,且α是第二象限角,β是第四象限角,那么sin(α-β)等于( )A.3365B.6365 C .-1665 D .-56656.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.35B.45 C .±35 D .±457.在△ABC 中,tan A +tan B +3=3tan A tan B ,则C 等于( )A.π3B.2π3C.π6D.π48.若1+cos2αsin2α=12, 则tan2α等于( )A.54 B .-54 C.43 D .-439.已知cos α=13,cos(α+β)=-13,且α、β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于( ) A .-12 B.12 C .-13 D.232710.如图所示,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( ) A.31010 B.1010 C.510 D.515二、填空题11.3-sin70°2-cos 210°=________.12.若α∈(0,π2),且sin 2α+cos2α=14,则tan α的值等于________.13.已知tan α,tan β是lg(6x 2-5x +2)=0的两个实根,则tan(α+β)=________.14.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=________.三、解答题15.已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2).(1)求sin2α和tan2α的值;(2)求cos(α+2β)的值.16.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.两角和与差的正弦、余弦和正切公式一、选择题1.已知f (x )=sin x -cos x ,则f ⎝ ⎛⎭⎪⎫π12的值是( ) A .-62 B.12 C .-22 D.22解析:因为f (x )=sin x -cos x =2sin(x -π4), 所以f ⎝ ⎛⎭⎪⎫π 12=2sin ⎝ ⎛⎭⎪⎫π12-π4=2sin ⎝ ⎛⎭⎪⎫-π6=-22.答案:C2.已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235 B.235 C.45 D .-45解析:sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α =-45.答案:D3.sin47°-sin17°cos30°cos17°=( ) A .-32 B .-12 C.12 D.32解析:sin47°=sin(30°+17°)=sin30°cos17°+cos30°sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.答案:C4.当0<x<π4时,函数y=cos2xcos x sin x-sin2x的最小值是( )A.14 B.12C.2 D.4解析:y=cos2xcos x sin x-sin2x=1tan x-tan2x,当0<x<π4时,0<tan x<1,设t=tan x,则0<t<1,y=1t-t2=1t(1-t)≥4,当且仅当t=1-t,即t=12时,等号成立.答案:D5.已知sinα=1213,cosβ=45,且α是第二象限角,β是第四象限角,那么sin(α-β)等于( )A.3365 B.6365C.-1665D.-5665解析:因为α是第二象限角,且sinα=12 13,所以cosα=-1-144169=-513.又因为β是第四象限角,cosβ=4 5,所以sinβ=-1-1625=-35.sin(α-β)=sinαcosβ-cosαsinβ=1213×45-(-513)×(-35)=48-1565=3365.答案:A6.已知θ为第二象限角,sin(π-θ)=2425,则cosθ2的值为( )A.35 B.45C.±35D.±45解析:由θ为第二象限角,可知θ2为第一或第三象限角.由sin(π-θ)=2425,可知sin θ=2425,∴cos θ=-725.∴2cos 2θ2=cos θ+1=1825,∴cos θ2=±35.答案:C7.在△ABC 中,tan A +tan B +3=3tan A tan B ,则C 等于( )A.π3B.2π3C.π6D.π4解析:由已知得tan A +tan B =-3(1-tan A tan B ),∴tan A +tan B1-tan A tan B =-3,即tan(A +B )=- 3.又tan C =tan[π-(A +B )]=-tan(A +B )=3,0<C <π,∴C =π3.答案:A8.若1+cos2αsin2α=12, 则tan2α等于( )A.54 B .-54 C.43 D .-43解析:1+cos2αsin2α=2cos 2α2sin αcos α=cos αsin α=12,∴tan α=2,∴tan2α=2tan α1-tan 2α=41-4=-43,故选D.答案:D9.已知cos α=13,cos(α+β)=-13,且α、β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于() A .-12 B.12 C .-13 D.2327解析:∵α∈(0,π2),∴2α∈(0,π).∵cos α=13,∴cos2α=2cos 2α-1=-79,∴sin2α=1-cos 22α=429,而α,β∈⎝ ⎛⎭⎪⎫0,π2,∴α+β∈(0,π), ∴sin(α+β)=1-cos 2(α+β)=223, ∴cos(α-β)=cos[2α-(α+β)]∴cos2αcos(α+β)+sin2αsin(α+β)=(-79)×(-13)+429×223=2327.答案:D10.如图所示,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( ) A.31010 B.1010 C.510 D.515解析:因为四边形ABCD 是正方形,且AE =AD =1,所以∠AED =π4,在Rt △EBC 中,EB =2,BC =1,所以sin ∠BEC =55,cos ∠BEC =255.sin ∠CED =sin(π4-∠BEC )=22cos ∠BEC -22sin ∠BEC =22×(255-55)=1010.答案:B二、填空题11.3-sin70°2-cos 210°=________. 解析:3-sin70°2-cos 210°=3-cos20°2-cos 210°=3-(2cos 210°-1)2-cos 210°=4-2cos 210°2-cos 210°=2. 答案:212.若α∈(0,π2),且sin 2α+cos2α=14,则tan α的值等于________.解析:由sin 2α+cos2α=14得sin 2α+1-2sin 2α=1-sin 2α=cos 2α=14,∵α∈(0,π2),∴cos α=12,∴α=π3,∴tan α=tan π3= 3. 答案: 313.已知tan α,tan β是lg(6x 2-5x +2)=0的两个实根,则tan(α+β)=________.解析:由lg(6x 2-5x +2)=0,得6x 2-5x +1=0,∴由题意知tan α+tan β=56,tan α·tan β=16,∴tan(α+β)=tan α+tan β1-tan αtan β=561-16=1.答案:114.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=________. 解析:由2sin 2α-sin αcos α-3cos 2α=0,得(2sin α-3cos α)·(sin α+cos α)=0,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α+cos α>0,∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=213,sin α=313, ∴sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268三、解答题15.已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2).(1)求sin2α和tan2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45,又2α∈(0,π2),∴cos2α=1-sin 22α=35, ∴tan2α=sin2αcos2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈(0,π4),sin(β-π4)=35, ∴cos(β-π4)=45.于是sin2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425. 又sin2⎝ ⎛⎭⎪⎫β-π4=-cos2β,∴cos2β=-2425. 又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin2β=725, 又cos 2α=1+cos2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, ∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos2β-sin αsin2β =255×(-2425)-55×725=-11525.16.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+sin ⎝ ⎛⎭⎪⎫x -3π4+π2 =sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝ ⎛⎭⎪⎫x -π4. ∴T =2π,f (x )的最小值为-2.(2)证明:∵cos(β-α)=45,cos(β+α)=-45,∴cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加,得2cos βcos α=0,∵0<α<β≤π2,∴β=π2.由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4, ∴[f (β)]2-2=4sin 2π4-2=4×⎝ ⎛⎭⎪⎫222-2=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和差的正弦余弦正切公式练习题
一、选择题
1.给出如下四个命题
①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ
αβαtan tan 1tan ⋅-+an 成立的条件是)(2
Z k k ∈+≠ππα且)(2
Z k k ∈+≠ππβ;
④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是
( )
A .①②
B .②③
C .③④
D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是
( )
A .21+
B .12-
C .2
D . 2 3.当]2
,2[π
π-
∈x 时,函数x x x f cos 3sin )(+=的
( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为2
1-
C .最大值为2,最小值为-2
D .最大值为2,最小值为-1 4.已知)cos(,3
2
tan tan ,7)tan(βαβαβα-=
⋅=+则的值 ( )
A .2
1 B .
2
2 C .2
2-
D .2

5.已知
=-=+=-<<<αβαβαπαβπ
2sin ,53
)sin(,1312)cos(,432则 ( )
A .6556
B .-6556
C .5665
D .-56
65
6. 75sin 30sin 15sin ⋅⋅的值等于
( )
A .
4
3 B .
8
3 C .8
1
D .
4
1 7.函数)4
cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=
+=π
π其中为相同函数的是 ( )
A .)()(x g x f 与
B .)()(x h x g 与
C .)()(x f x h 与
D .)()()(x h x g x f 及与
8.α、β、γ都是锐角,γβαγβα++===
则,8
1
tan ,51tan ,21tan 等于 ( )
A .
3
π B .
4π C .π65
D .π4
5
9.设0)4
tan(tan 2=++-q px x 是方程和θπ
θ的两个根,则p 、q 之间的关系是( )
A .p+q+1=0
B .p -q+1=0
C .p+q -1=0
D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是
( )
A .
4
12
--a a
B .-4
12
--a a
C .2
14a a --±
D .4
12
--±a a
11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为
( )
A .1tan tan >+
B A B .1tan tan <⋅B A
C .1tan tan =⋅B A
D .不能确定
12. 50sin 10sin 70cos 20sin +的值是
( )
A .4
1
B .
2
3
C .2
1
D .4
3
二、填空题(每小题4分,共16分,将答案填在横线上)
13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=
.
15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,2
2
sin sin +=
+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34
sin(x +⋅π

18.已知 0βαβαcos ,cos ,90且 <<<是方程02
1
50sin 50sin 222=-
+- x x 的两根,求)2tan(αβ-的值.
19.求证:y
x x
y x y x 22sin cos 2sin )tan()tan(-=-++.
20.已知α,β∈(0,π)且7
1
tan ,21)tan(-==-ββα,求βα-2的值.
21.证明:x
x x
x x 2cos cos sin 22tan 23tan +=-.
22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2
cos C
A -的值.
两角和差的正弦余弦正切公式练习题参考答案
一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A
二、13.m 14.3π
15.32-- 16.]214,214[-
三、17.原式=)34
cos()33
sin()33
cos()34
sin(x x x x -----ππππ=
4
6
2-.
18.)4550sin(2
)
21
50(sin 4)50sin 2(50sin 222 ±=---±=x ,
12sin 95cos5,sin 5cos85,x x ∴====
3275tan )2tan(+==- αβ.
19.证:y x y x y x y x y x y x y x y x 2
222sin sin cos cos )]
()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左
=-=+-=y
x x
y x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13
tan ,
tan(2)1,
2.3
4
ααβαβπ=-=-=-
21.左=
=+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22
cos
23cos sin 2cos 23cos 2sin
23cos 2cos 23sin
右.
22.由题设B=60°,A+C=120°,设2
C
A -=α知A=60°+α, C=60°-α, 22cos ,224
3cos cos cos 1
cos 12
=
-=-
=+ααα
即C A
故222cos =-C A .。

相关文档
最新文档