辽宁省沈阳市沈河区2018-2019学年八年级上学期数学期末考试试卷及参考答案
沈阳市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分)1.在实数,,0,中,最小的数是A. B. C. 0 D.2.如图,的同位角是A.B.C.D.3.一组数据2,1,2,5,3,2的众数是A. 1B. 2C. 3D. 54.下列各式中正确的是A. B.C. D.5.若一次函数的函数值y随x的增大而增大,则A. B. C. D.6.已知一组数据1,2,3,x,5,它们的平均数是3,则这一组数据的方差为A. 4B. 3C. 2D. 17.在平面直角坐标系中,点所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,若,,则图中与互补的角有A. 1个B. 2个C. 3个D. 4个9.一个长方形抽屉长12厘米,宽9厘米,贴抽屉底面放一根木棒,那么这根木棒最长不计木棒粗细可以是A. 15厘米B. 13厘米C. 9厘米D. 8厘米10.对于实数a、b定义运算“”:,例如,因为,所以,若x、y满足方程组,则A. B. 13 C. D. 119二、填空题(本大题共6小题,共12.0分)11.直角三角形的两条直角边长分别为3和4,那么它的斜边长是______.12.如图,直线,,,则______.13.一组数据2、4、6、4、8的中位数为______.14.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,设小强同学生日的月数为x,日数为y,根据题意可列方程组为______.15.在平面直角坐标系中,点A的坐标为,点B的坐标是,若点A与点B关于原点O对称,则______.16.如图,在等腰中,,底边BC上的高,腰AC上的高,则的面积为______.三、计算题(本大题共1小题,共6.0分)17.如图,在中,,于点D,,,求BD的长.四、解答题(本大题共8小题,共62.0分)18.解方程组:.19.如图,直线AB、CD交直线MN于点E、F,过AB上的点H作于点G,若,,判断直线AB、CD是否平行?并说明理由.20.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?21.如图,在中,,,的外角的平分线BE交AC的延长线于点E,过点D作,交AC的延长线于点F,求的度数.22.用若干个形状、大小完全相同的长方形纸片围正方形,如图是用4个长方形纸片围成的正方形,其阴影部分的面积为16;如图是用8个长方形纸片围成的正方形,其阴影部分的面积为8;如图是用12个长方形纸片围成的正方形,求其阴影部分的周长.23.某公司招聘职员一名,对甲、乙、丙三名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占,面试占计算候选人的综合成绩.他们的各若候选人丙的综合成绩为分,求表中x的值;请求岀其余两名候选人的综合成绩,并以综合成绩最高确定所要招聘的候选人是哪一位?24.为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A、B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥,A、B两个果园分别需要110吨和70吨有机化肥.甲仓库到A、B两个果园的路程分别为15千米和25千米,乙仓库到A、B两个果园的路程都是20千米.设甲仓库运往A 果园x吨有机化肥,解答下列问题:甲仓库运往B果园______吨有机化肥,乙仓库运往B果园______吨有机化肥;若汽车每吨每千米的运费为2元,设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?此时的总运费是多少元?25.在等腰和等腰中,,,连接AC、BD交于点M.如图1,若:与BD的数量关系为______;的度数为______;如图2,若:判断AC与BD之间存在怎样的数量关系?并说明理由;求的度数;在的条件下,当,且点C与点M重合时,请直接写出OD与OA之间存在的数量关系.答案和解析1.【答案】B【解析】解:在实数,,0,中,,则,故最小的数是:.故选:B.直接利用利用绝对值的性质化简,进而比较大小得出答案.此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.【答案】C【解析】解:与是DE、BC被AB所截而成的同位角,故选:C.同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.3.【答案】B【解析】解:在数据2,1,2,5,3,2中,2出现3次,次数最多,所以众数为2,故选:B.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数.4.【答案】D【解析】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能化简,不符合题意;D、原式,符合题意,故选:D.原式利用平方根、立方根定义计算即可求出值.此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.5.【答案】B【解析】【分析】本题考查了一次函数的性质,,当时,函数值y随x的增大而增大.根据一次函数的性质,可得答案.【解答】解:由题意,得,解得.故选:B.6.【答案】C【解析】解:数据1、2、3、x、5的平均数是3,,解得:,则数据为1、2、3、4、5,方差为,故选:C.根据平均数的计算公式先求出x的值,再代入方差公式进行计算即可得出答案.本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.7.【答案】D【解析】解:,,点P的横坐标是正数,点所在的象限第四象限.故选D.根据平方数非负数判断出点P的横坐标是正数,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.8.【答案】D【解析】解:,,,,,,图中与互补的角有:,,,共4个.故选:D.直接利用平行线的性质得出相等的角以及互补的角进而得出答案.此题主要考查了平行线的性质,注意不要漏角是解题关键.9.【答案】A【解析】解:这根木棒最长厘米,故选:A.根据勾股定理即可得到结论.本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.10.【答案】C【解析】解:,可得:,解得,把代入,解得,原方程组的解是,,故选:C.首先应用加减消元法,求出方程组的解是多少;然后根据“”的运算方法,求出的值是多少即可.此题主要考查了解二元一次方程组的方法,以及实数的运算,要熟练掌握,注意代入消元法和加减消元法的应用.11.【答案】5【解析】解:斜边长是:.故答案是:5.利用勾股定理即可求解.本题考查了勾股定理,理解定理的内容是关键.12.【答案】【解析】解:,,,故答案为:.根据平行线的性质求出,根据三角形内角和定理计算即可.本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.13.【答案】4【解析】解:将这五个数从小到大排序后,处在第3位的数是4,因此中位数是4.故答案为:4.根据中位数的意义,将这5个数据从小到大排序后,找出处第3位的数即可,考查中位数的意义和求法,将一组数据从小到大排序后处在中间位置的一个数或两个数的平均数是中位数.14.【答案】【解析】解:设小强同学生日的月数为x,日数为y,依题意有,故答案是:.设小强同学生日的月数为x,日数为y,根据等量关系:强同学生日的月数减去日数为2,月数的两倍和日数相加为31,列出方程组即可.考查了由实际问题抽象出二元一次方程组,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.15.【答案】12【解析】解:点A的坐标为,点B的坐标是,点A与点B关于原点O对称,,,则.故答案为:12.直接利用关于原点对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.16.【答案】【解析】解:是BC边上的高,BE是AC边上的高,,,,,,,,,,,,整理得;,解得:,的面积为故答案为:.根据三角形的面积求得,根据勾股定理求得,依据这两个式子求出BC的值,即可求得面积.本题考查了三角形的面积以及勾股定理的应用,找出AB与BC的数量关系是本题的关键.17.【答案】解:在中,,,,,,.【解析】在中,利用勾股定理可求出AB的长,再根据三角形ABC的面积为定值可求出CD的长,再利用勾股定理即可求出BD的长本题考查了勾股定理的运用,利用三角形的面积为定值求出CD的长,是解题的关键.18.【答案】解:得:,解得:,把代入得:,解得:,故方程组的解是:.【解析】两个方程,即可去掉x,求得y的值,进而利用代入法求得x的值.本题主要考查了二元一次方程组的解法,解方程组的基本思想是消元,转化为一元一次方程.19.【答案】解:结论:.理由:,,,,,.【解析】结论:,只要证明即可.本题考查三角形的外角的性质,垂线,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.【解析】设A型号客车用了x辆,B型号客车用了y辆,根据两种客车共8辆正好乘坐368人,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.【答案】解:,,,,平分,,,,.【解析】根据直角三角形的性质求出,根据平分线的定义、平行线的性质解答即可.本题考查的是直角三角形的性质、平行线的性质,掌握直角三角形的两锐角互余是解题的关键.22.【答案】解:图中阴影边长为,图阴影边长为,设矩形长为a,宽为b,根据题意得,解得,所以图阴影正方形的边长,如图是用12个长方形纸片围成的正方形,其阴影部分的周长为.【解析】三个图中阴影部分都是正方形,根据前两个阴影面积列方程组求矩形的边长,再计算图阴影面积.本题考查一元一次方程组的应用,正方形的性质,矩形的性质等知识,解题的关键是理解题意,学会利用参数构建方程组解决问题.23.【答案】90【解析】解:这三名候选人面试成绩的中位数为90分;故答案为:90;根据题意得:解得,,答:表中x的值为86;甲候选人的综合成绩为:分,乙候选人的综合成绩为:分,则以综合成绩排序确定所要招聘的人选是甲.根据中位数的概念计算即可;根据题意列出方程,解方程即可;根据加权平均数的计算公式分别求出余二名候选人的综合成绩,比较即可.本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.24.【答案】【解析】解:甲仓库运往A果园x吨有机化肥,则甲仓库运往B果园吨有机化肥,乙仓库运往A果园吨有机化肥,乙仓库运往B果园吨有机化肥,故答案为:,;由题意可得,,,当时,y取得最小值,此时,答:y关于x的函数表达式是,当甲仓库运往A果园80吨有机化肥时,总运费最省,此时的总运费6400元.根据题意可以用含x的代数式表示出甲仓库运往B果园和乙仓库运往B果园的有机化肥的吨数,本题得以解决;根据题意可以直接写出y与x的函数关系式,然后根据一次函数的性质即可求得当甲仓库运往A果园多少吨有机化肥时,总运费最省,此时的总运费是多少元.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.25.【答案】【解析】解:如图1所示,在和中≌故答案为:,≌,又,在中,,故答案为:;如图2所示,,,,,在和中,≌≌ ,,又,,,,又在中,,;如图3所示,,,,,,,,由得 ≌,由勾股定理得:.如图4,同上易求得综上所述,或.先证明:,再证明 ≌ ,即可得;由 ≌ 及三角形内角和定理即可求得;证明 ≌ 即可得,根据全等三角形性质和三角形内角和定理即可求得;由得 ≌ ,根据角所对的直角边等于斜边一半及勾股定理可求得,再结合等腰直角三角形直角边与斜边的关系即可求得.本题考查了等腰直角三角形性质,全等三角形判定和性质,含的直角三角形性质,勾股定理等.熟练掌握全等三角形判定和性质是解题关键.。
2019年沈阳市八年级数学上期末试卷及答案

2019年沈阳市八年级数学上期末试卷及答案一、选择题1.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②① 2.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( ) A .13cmB .6cmC .5cmD .4m 3.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 4.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .135.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°6.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 7.若2310a a -+=,则12a a +-的值为( ) A 51 B .1 C .-1 D .-58.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④9.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠D .设OD m =,AE AF n +=,则12AEF S mn ∆= 10.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1811.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24° 12.23x 可以表示为( )A .x 3+x 3B .2x 4-xC .x 3·x 3D .62x ÷x 2 二、填空题13.如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是__________.14.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .15.如图所示,请将12A ∠∠∠、、用“>”排列__________________.16.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____. 17.分解因式:2x 2-8x+8=__________. 18.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.19.已知等腰三角形的两边长分别为4和6,则它的周长等于_______20.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 三、解答题21.龙人文教用品商店欲购进A 、B 两种笔记本,用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同,每本B 种笔记本的进价比每本A 种笔记本的进价贵10元.(1)求A 、B 两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A 、B 两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A 种笔记本多少本?22.如图,在Rt ABC ∆中,90BCA ∠=︒,30A ∠=︒.(1)请在图中用尺规作图的方法作出AB 的垂直平分线交AC 于点D ,并标出D 点;(不写作法,保留作图痕迹).(2)在(1)的条件下,连接BD ,求证:BD 平分CBA ∠.23.如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交于两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点作交于点.(1)若,求的度数;(2)若,垂足为,求证: .24.如图在平面直角坐标系中,已知点A(0,23),△AOB为等边三角形,P是x轴负半轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.(1)求点B的坐标;(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小:如改变,请说明理由;(3)连接OQ,当OQ∥AB时,求P点的坐标.25.作图题:(要求保留作图痕迹,不写做法)如图,已知∠AOB与点M、N.求作:点P,使点P到OA、OB的距离相等,且到点M与点N的距离也相等.(不写作法与证明,保留作图痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH⊥AC即可.【详解】用尺规作图作△ABC边AC上的高BH,做法如下:④取一点K使K和B在AC的两侧;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;①分别以点D、E为圆心,大于DE的长为半径作弧两弧交于F;②作射线BF,交边AC于点H;故选B.【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.2.B解析:B【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a,根据三角形三边关系a9494a.解得513只有B符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.3.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.A解析:A【解析】因为ba b-=14,所以4b=a-b.,解得a=5b,所以ab=55bb=.故选A. 5.C解析:C 【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.6.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-, 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值7.B解析:B【解析】【分析】先将2310a a -+=变形为130a a -+=,即13a a +=,再代入求解即可. 【详解】∵2310a a -+=,∴130a a -+=,即13a a +=, ∴12321a a+-=-=.故选B. 【点睛】本题考查分式的化简求值,解题的关键是将2310a a -+=变形为13a a+=. 8.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】 解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.9.C解析:C【解析】【分析】利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.【详解】∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12∠A ∴∠BOC=180°-(∠OBC+∠OCB )=90°+12∠A ,故C 错误; ∵∠EBO=∠CBO ,∠FCO=∠BCO ,//EF BC ∴∠EBO=∠EOB ,∠FCO=∠FOC ,∴BE=OE ,CF=OF∴EF=EO+OF=BE+CF ,故A 正确;由已知,得点O 是ABC ∆的内心,到ABC ∆各边的距离相等,故B 正确;作OM ⊥AB ,交AB 于M ,连接OA ,如图所示:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴OM=OD m =∴()11112222AEF AOE AOF S S S AE OM AF OD OD AE AF mn =+=⋅+⋅=⋅+=△△△,故D 选项正确;故选:C.【点睛】此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用.10.B解析:B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.11.C解析:C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.12.A解析:A【解析】【分析】根据整式的运算法则即可求出答案.【详解】B、原式=42x .-,故B的结果不是32x xC、原式=6x,故C的结果不是32x.D、原式=42x,故D的结果不是32x.故选A.【点睛】本题主要考查整式的运算法则,熟悉掌握是关键.二、填空题13.【解析】【分析】从已知条件结合图形认真思考通过构造全等三角形利用三角形的三边的关系确定线段和的最小值【详解】如图在AC上截取AE=AN连接B E∵∠BAC的平分线交BC于点D∴∠EAM=∠NAM∵AM解析:【解析】【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=2即BE取最小值为22∴BM+MN的最小值是22【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.14.280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数再根据多边形的外角和定理即可求解解:如图∵∠EAB+∠5=180°∠EAB=100°∴∠5=80°∵∠1+∠2+∠3+∠解析:280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.15.【解析】【分析】根据三角形的外角的性质判断即可【详解】解:根据三角形的外角的性质得∠2>∠1∠1>∠A ∴∠2>∠1>∠A 故答案为:∠2>∠1>∠A 【点睛】本题考查了三角形的外角的性质掌握三角形的一个解析:21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.16.m <6且m≠2【解析】【分析】利用解分式方程的一般步骤解出方程根据题意列出不等式解不等式即可【详解】方程两边同乘(x-2)得x+m-2m=3x-6解得x=由题意得>0解得m <6∵≠2∴m≠2∴m<6解析:m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2,∴m≠2,∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.17.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.18.12【解析】【分析】逆用同底数幂的除法法则和幂的乘方的运算法则进行解答即可【详解】∵∴故答案为12【点睛】熟记同底数幂的除法法则:幂的乘方的运算法则:并能逆用这两个法则是解答本题的关键解析:12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键. 19.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14 解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.20.且【解析】分式方程去分母得:2(2x-a )=x-2去括号移项合并得:3x=2a-2解得:∵分式方程的解为非负数∴且解得:a≥1且a≠4解析:1a ≥-且2a ≠【解析】分式方程去分母得:2(2x -a )=x -2,去括号移项合并得:3x =2a -2, 解得:223a x -=, ∵分式方程的解为非负数,∴2203a -≥且 22203a --≠, 解得:a ≥1 且a ≠4 . 三、解答题21.(1)A 、B 两种笔记本每本的进价分别为 20 元、30 元;(2)至少购进 A 种笔记本 35 本【解析】【分析】(1)设A 种笔记本每本的进价为x 元,则每本B 种笔记本的进价为(x +10)元,根据用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进A 种笔记本a 本,根据购进的A 种笔记本的价钱+购进的B 种笔记本的价钱≤2650即可列出关于a 的不等式,解不等式即可求出结果.【详解】(1)解:设A 种笔记本每本的进价为x 元,根据题意,得:16024010x x =+,解得:=20x . 经检验:=20x 是原分式方程的解,+10=20+10=30x .答:A 、B 两种笔记本每本的进价分别为20 元、30元.(2)解:设购进A 种笔记本a 本,根据题意,得:()20+301002650a a -≤,解得:35a ≥.∴至少购进A 种笔记本35本.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)作线段AB 的垂直平分线即可;(2)根据线段垂直平分线的性质可得DA=DB ,根据等边对等角可得30DBA A ︒∴∠=∠=,进而可得∠CBA =60°,然后可得答案. 【详解】(1)解:如图所示,点D 就是所求.(2)证明:由(1)可知:AB 的垂直平分线交AC 于点DAD BD ∴=30DBA A ︒∴∠=∠=90BCA ︒∠=且30A ∠=︒90CBA A ︒∴∠+∠=90903060CBA A ︒︒︒︒∴∠=-∠=-=30CBD DBA ︒∴∠=∠=BD ∴平分CBA ∠【点睛】本题考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.23.(1)35°;(2)见解析.【解析】【分析】(1)首先根据OB ∥FD ,可得∠OFD +∠AOB =18O °,进而得到∠AOB 的度数,再根据作图可知OP 平分∠AOB ,进而算出∠DOB 的度数即可;(2)首先证明∴∠AOD =∠ODF ,再由FM ⊥OD 可得∠OMF =∠DMF ,再加上公共边FM =FM ,可利用AAS 证明△FMO ≌△FMD .【详解】(1)解:∵OB ∥FD ,∴∠OFD +∠AOB =18O °,又∵∠OFD =110°,∴∠AOB =180°−∠OFD =180°−110°=70°,由作法知,OP 是∠AOB 的平分线,∴∠DOB=∠ABO=;(2)证明:∵OP平分∠AOB,∴∠AOD=∠DOB,∵OB∥FD,∴∠DOB=∠ODF,∴∠AOD=∠ODF,又∵FM⊥OD,∴∠OMF=∠DMF,在△MFO和△MFD中∴△MFO≌△MFD(AAS).【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.24.(1)点B的坐标为B(3,3;(2)∠ABQ=90°,始终不变,理由见解析;(3)P的坐标为(﹣3,0).【解析】【分析】(1)如图,作辅助线;证明∠BOC=30°,OB=3,借助直角三角形的边角关系即可解决问题;(2)证明△APO≌△AQB,得到∠ABQ=∠AOP=90°,即可解决问题;(3)根据点P在x的负半轴上,再根据全等三角形的性质即可得出结果【详解】(1)如图1,过点B作BC⊥x轴于点C,∵△AOB为等边三角形,且OA=3∴∠AOB=60°,OB=OA=3∴∠BOC=30°,而∠OCB=90°,∴BC=12OB3OC222(3)(3)3,∴点B的坐标为B(33;(2)∠ABQ=90°,始终不变.理由如下:∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠P AQ=∠OAB,∴∠P AO=∠QAB,在△APO与△AQB中,{AP AQPAO QAB AO AB=∠=∠=,∴△APO≌△AQB(SAS),∴∠ABQ=∠AOP=90°;(3)如图2,∵点P在x轴负半轴上,点Q在点B的下方,∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.又OB=OA=23,可求得BQ=3,由(2)可知,△APO≌△AQB,∴OP=BQ=3,∴此时P的坐标为(﹣3,0).【点睛】本题考查了等边三角形的性质以及全等三角形的判定及性质以及梯形的性质,注意利用三角形全等的性质解题的关键.25.见解析【解析】【分析】首先作出∠AOB的角平分线,再作出MN的垂直平分线,两线的交点就是P点.【详解】如图所示:【点睛】此题考查角平分线的性质,线段垂直平分线的性质,作图—复杂作图,解题关键在于掌握作图法则.。
2018—2019学年度第一学期期末学业水平检测 八年级数学试题答案

2018—2019学年度第一学期期末学业水平检测八年级数学参考答案一、选择题 (每小题3分,共36分。
每小题只有一个选项符合题意)二、填空题(每小题3分,共15分。
每小题只填写最后结果)13. 5个14. 112°15. 2 16. 42 17. (﹣2,5)三、解答题(共7小题,共69分。
解答应写出必要的步骤)18.(本题满分8分,每小题4分)解:(1)去分母得:x2﹣x=x2﹣2x﹣3,解得:x=﹣3,……………………3分经检验x=﹣3是原方程的根;…………………………………………………4分(2)去分母得:x2+4x﹣x2﹣2x+8=12,解得:x=2,………………………………3分经检验x=2是增根,分式方程无解.…………………………………………4分19.(本题满分8分,(1)题3分,(2)题5分)(1)原式= •= ﹣•= ……………………3分(2)原式=﹣=…………………………………………………………3分当m=﹣12时,原式=53………………………………………………………5分20.(本题满分7分)解:(1)设D31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:﹣=1,……………………………………………………3分解得x=250.经检验:x=250,是分式方程的解,且符合题意.………………………4分所以,D31的平均速度250千米/时.……………………………………5分(2)G377的性价比==0.75 D31的性价比==0.94,…………7分∵0.94>0.75 ∴为了G377的性价比达到D31的性价比,建议降低G377票价.……………………………………………………………………………8分21.(本题满分8分)(1)如图所示△A′B′C′……………………………………………3分(2)A′(2,3)、B′(3,1)、C′(-1,2) ……………………………………………6分(3)如图所示P点即为所求找到点B关于x轴的对称点B′′,连接AB′′交x轴于点P,此时P A+PB的值最小.………………………………………………………8分22.(本题满分8分)(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;…………………4分(2)△ABE是等边三角形;理由如下:连接BE,如图:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.……………………8分23.(本题满分8分)解:(1)服装项目的权是:1﹣20%﹣30%﹣40%=10%;……………………………2分(2)小亮在选拔赛中四个项目所得分数的众数是85,…………………………3分中位数是:(80+85)÷2=82.5;…………………………………………………4分(3)小亮得分为:85×10%+70×20%+80×30%+85×40%=80.5,小颖得分为:90×10%+75×20%+75×30%+80×40%=78.5,……………………6分∵80.5>78.5,∴小亮的演讲成绩好,故选择小亮参加“不忘初心,永远跟党走”主题演讲比赛.……………………8分24.(本题满分10分)(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.………………………………………………………3分在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;……………………………………………………………………………5分(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FD A.……………………………………………………………………8分在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.……………………………………………………………………………10分25.(本题满分12分)解:(1)∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵BC=7cm,BP=5cm,∴PC=2cm,∴AB=PC,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS);………3分(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DP A=∠DPE=90°,在△DP A和△DPE中,,∴△DP A≌△DPE(ASA),∴P A=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=90°.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;…………………8分(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=2cm,∴PC=BC﹣BP=5cm,∴CD=CP=5cm. ………………………………12分。
每日一学:辽宁省沈阳市沈河区2018-2019学年八年级上学期数学期末考试试卷_压轴题解答

辽 宁 省 沈 阳 市 沈 河 区 2018-2019学 年 八 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题
~~ 第1题 ~~
(2019沈河.八上期末)
(1) 如图Βιβλιοθήκη ,已知, 交 于 ,那么图1中
A . 25° B . 50° C . 65° D . 70°
辽 宁 省 沈 阳 市 沈 河 区 2018-2019学 年 八 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题 解 答
~~ 第1题 ~~
答案:
解析:
~~ 第2题 ~~
答案: 解析:
~~ 第3题 ~~
答案:C
解析:
、
、
之间有什么数量关系?并
说明理由.
(2) 如图2,已知
,点
利用(1)的结论求图2中 的度数.
考点: 平行线的性质;三角形的外角性质;
是线段
上一点,
,
和
的平分线交于点 ,请
答案
~~ 第2题 ~~
(2019沈河.八上期末) 已知如图, 平分
, 平分
,
,
,则
__
______.(用 表示)
~~ 第3题 ~~ (2019沈河.八上期末) 如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为( )
2018-2019学年辽宁省沈阳七中八年级(上)期末数学试卷(解析版)

2018-2019学年辽宁省沈阳七中八年级(上)期末数学试卷一、选择题:1.(3分)观察下列各图,其中的轴对称图形是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a 3.(3分)如果把分式中的x、y的值都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍B.缩小为原来的一半C.扩大为原来的4倍D.保持不变4.(3分)某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣10米B.3.1×10﹣9米C.﹣3.1×109米D.0.31×10﹣8米5.(3分)若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠06.(3分)在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A.3B.4C.5D.7.(3分)如图,AC与BD交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC,还需()A.AB=DC B.OB=OC C.∠A=∠D D.∠AOB=∠DOC 8.(3分)下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=a x+a yB.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x9.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm10.(3分)已知:﹣=,则的值是()A.B.﹣C.3D.﹣3二、填空题:11.(3分)若分式的值为0,则x的值为.12.(3分)因式分解:x2﹣9=.13.(3分)木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面(填“合格”或“不合格”).14.(3分)在多项式:①x2+2xy﹣y2②﹣x2+2xy﹣y2③x2+xy+y2④1+x+中,能用完全平方公式分解因式的是(填序号即可)15.(3分)边长为a、b的长方形,它的周长为14,面积为10,则a2b+ab2的值为.16.(3分)如图,在Rt△ABC中,AB=6,∠BAC=30°,∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,则BE+EF的最小值是.三、解答题:17.(1)计算:()﹣1+()2﹣;(2)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2.18.计算:(1)﹣;(2)•﹣.19.解方程:=2.20.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)四、解答题:21.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?22.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离杆脚周围多大范围内有被砸伤的危险?23.四边形ABCD中,AB=BC,∠ABC=90°,点E在BD上,点F在射线CD上,且AE =EF,∠AEF=90°(1)如图①,若∠ABE=∠AEB,AG⊥BD,垂足为G,求证:BG=GE;(2)在(1)的条件下,猜想线段CD,DF的数量关系,并证明你的猜想;(3)如图②,若∠ABE=a,∠AEB=135°,CD=a,求DF的长(用含a,α的式子表示)五、解答题:24.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间(只要直接写出答案).25.小明在学习过程中遇到这样一个问题:如图1,在△ABC中,CA=CB,E是CD上一点,且ED=EB,∠DEB=∠ACB,连接AD,探究∠ADC与∠DEB之间的数量关系.小明发现,∠ACD=∠CBE,CA=CB,因此可以通过作∠CAF=∠BCE交CD于点F构造全等,经过推理论证解决问题.(1)按照小明思考问题的方法,解决问题;(2)如图2,∠ACB=90°,CA=CB,D是AB上一点,过点D作DE⊥AB交AC于点E,过点E作EM⊥CD于点M,BN⊥CD于点N,探究EM,BN,CD之间的数量关系.26.如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)(1)求B点坐标;(2)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求∠AOD的度数;(3)过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式=1是否成立?若成立,请证明:若不成立,说明理由.2018-2019学年辽宁省沈阳七中八年级(上)期末数学试卷参考答案一、选择题:1.(3分)观察下列各图,其中的轴对称图形是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意.故选:C.2.(3分)下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a 【解答】解:A、a2与a3是相加,不是相乘,不能运用同底数幂的乘法计算,故本选项错误;B、应为a6÷a2=a4,故本选项错误;C、(a2)3=a6,正确;D、应为2a×3a=6a2,故本选项错误.故选:C.3.(3分)如果把分式中的x、y的值都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍B.缩小为原来的一半C.扩大为原来的4倍D.保持不变【解答】解:原式==,故选:D.4.(3分)某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣10米B.3.1×10﹣9米C.﹣3.1×109米D.0.31×10﹣8米【解答】解:0.0000000031=3.1×10﹣9,故选:B.5.(3分)若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠0【解答】解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选:C.6.(3分)在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A.3B.4C.5D.【解答】解:如图所示:∵P(3,4),∴OP==5.故选:C.7.(3分)如图,AC与BD交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC,还需()A.AB=DC B.OB=OC C.∠A=∠D D.∠AOB=∠DOC 【解答】解:A、根据条件AB=DC,OA=OB,∠AOB=∠DOC不能推出△AOB≌△DOC,故本选项错误;B、∵在△AOB和△DOC中∴△AOB≌△DOC(SAS),故本选项正确;C、∠A=∠D,OA=OD,∠AOB=∠DOC,符合全等三角形的判定定理ASA,不符合全等三角形的判定定理SAS,故本选项错误;D、根据∠AOB=∠DOC和OA=OD不能推出△AOB≌△DOC,故本选项错误;故选:B.8.(3分)下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=a x+a yB.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【解答】解:A、a(x+y)=ax+ay,是整式的乘法运算,故此选项不合题意;B、x2﹣4x+4=(x﹣2)2,故此选项不合题意;C、10x2﹣5x=5x(2x﹣1),正确,符合题意;D、x2﹣16+3x,无法分解因式,故此选项不合题意;故选:C.9.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【解答】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故选:C.10.(3分)已知:﹣=,则的值是()A.B.﹣C.3D.﹣3【解答】解:∵﹣=,∴=,则=3,故选:C.二、填空题:11.(3分)若分式的值为0,则x的值为﹣5.【解答】解:由题意,得x2﹣25=0且5﹣x≠0,解得x=﹣5,故答案是:﹣5.12.(3分)因式分解:x2﹣9=(x+3)(x﹣3).【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).13.(3分)木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面合格(填“合格”或“不合格”).【解答】解:∵802+602=10000=1002,即:AD2+DC2=AC2,∴∠D=90°,同理:∠B=∠BCD=90°,∴四边形ABCD是矩形,∴这个桌面合格.故答案为:合格.14.(3分)在多项式:①x2+2xy﹣y2②﹣x2+2xy﹣y2③x2+xy+y2④1+x+中,能用完全平方公式分解因式的是②④(填序号即可)【解答】解:①x2+2xy﹣y2,无法运用公式法分解因式;②﹣x2+2xy﹣y2=﹣(x﹣y)2,符合题意;③x2+xy+y2,无法运用公式法分解因式;④1+x+=(+1)2,符合题意.故答案为:②④.15.(3分)边长为a、b的长方形,它的周长为14,面积为10,则a2b+ab2的值为70.【解答】解:根据题意得:a+b=7,ab=10,则a2b+ab2=ab(a+b)=70.故答案为70.16.(3分)如图,在Rt△ABC中,AB=6,∠BAC=30°,∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,则BE+EF的最小值是3.【解答】解:作FH⊥AC交AD于点E,作EF⊥AB于F,∵AD平分∠BAC,EH⊥AC,EF⊥AB,∴EF=EH,∴BE+EF=BE+EH=BH,∵H是与B点的距离最短的点,即为BH最短,∴BE+EF最短为BH,∵AB=6,∠BAC=30°,∴BH=AB=3,故答案为3.三、解答题:17.(1)计算:()﹣1+()2﹣;(2)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2.【解答】解:(1)原式=2+3+1﹣2﹣6=﹣2;(2)(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x)=4x2﹣y2﹣4y2+x2=5x2﹣5y2,当x=1,y=2时,原式=5×12﹣5×22=﹣15.18.计算:(1)﹣;(2)•﹣.【解答】解:(1)原式==;(2)原式=×﹣=﹣=;19.解方程:=2.【解答】解:去分母得:2﹣1=4x﹣2,解得:x=,经检验x=是分式方程的解.20.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).四、解答题:21.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?【解答】解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20×=1,解得:x=80,经检验得:x=80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.(2)设李老师要工作y分钟,由题意,得:(1﹣)÷≤30,解得:y≥25.答:李老师至少要工作25分钟.22.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离杆脚周围多大范围内有被砸伤的危险?【解答】解:由题意可知:AC+BC=8米,∵∠A=90°,∴AB2+AC2=BC2,又∵AB=4米,∴AC=3米,BC=5米,∵D点距地面AD=3﹣1.25=1.75米,∴BD=8﹣1.75=6.25米,∴AB′==6米,∴距离杆脚周围6米大范围内有被砸伤的危险.23.四边形ABCD中,AB=BC,∠ABC=90°,点E在BD上,点F在射线CD上,且AE =EF,∠AEF=90°(1)如图①,若∠ABE=∠AEB,AG⊥BD,垂足为G,求证:BG=GE;(2)在(1)的条件下,猜想线段CD,DF的数量关系,并证明你的猜想;(3)如图②,若∠ABE=a,∠AEB=135°,CD=a,求DF的长(用含a,α的式子表示)【解答】解:(1)∵∠ABE=∠AEB,∴AB=AE,∵AG⊥BD,∴BG=GE;(2)如图①,过点C作CP⊥BD于P,过点F作FQ⊥BD交BD的延长线于Q,∴∠BPC=∠DPC=∠FQE=90°,∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠ABE=∠AEB,∴∠AEB+∠CBD=90°,∵∠AEF=90°,∴∠AEB+∠FEQ=90°,∴∠CBP=∠FEQ,∵AB=BC,AE=EF,AB=AE,∴BC=EF,在△BCP和△EFQ中,,∴△BCP≌△EFQ,∴CP=FQ,在△CPD和△FQD中,,∴△CPD≌△FQD,∴CD=DF,(3)如图②,连接AF,过点C作CP⊥BD,∵∠AEB=135°,∴∠AED=45°,∵∠AEF=90°,∴∠FED=45°=∠AED,∵AE=EF,∴AQ=FQ,EQ⊥AF,∵CP⊥BD,在Rt△ABQ中,tan∠ABE=tanα=∴CP∥FQ,∵∠ABD+∠CBD=90°,∠BCP+∠CBP=90°,∴∠ABQ=∠BCP,在△ABQ和△BCP中,,∴△ABQ≌△BCP,∴BQ=CP,∵CP∥FQ,∴△DQF∽△DPC,∴,∵QF=AQ,PC=BQ,∴,∴DF==tanα•a=a•tanα.五、解答题:24.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间(只要直接写出答案).【解答】解:(1)当t=2时,则AP=2,BQ=2t=4,∵AB=8cm,∴BP=AB﹣AP=8﹣2=6(cm),在Rt△BPQ中,由勾股定理可得PQ===2(cm),即PQ的长为2cm;(2)由题意可知AP=t,BQ=2t,∵AB=8,∴BP=AB﹣AP=8﹣t,当△PQB为等腰三角形时,则有BP=BQ,即8﹣t=2t,解得t=,∴出发秒后△PQB能形成等腰三角形;(3)在△ABC中,由勾股定理可求得AC=10,当点Q在AC上时,AQ=BC+AC﹣2t=16﹣2t,∴CQ=AC﹣AQ=10﹣(16﹣2t)=2t﹣6,∵△BCQ为等腰三角形,∴有BQ=BC、CQ=BC和CQ=BQ三种情况,①当BQ=BC=6时,如图1,过B作BD⊥AC,则CD=CQ=t﹣3,在Rt△ABC中,求得BD=,在Rt△BCD中中,由勾股定理可得BC2=BD2+CD2,即62=()2+(t﹣3)2,解得t=6.6或t=﹣0.6<0(舍去);②当CQ=BC=6时,则2t﹣6=6,解得t=6;③当CQ=BQ时,则∠C=∠QBC,∴∠C+∠A=∠CBQ+∠QBA,∴∠A=∠QBA,∴QB=QA,∴CQ=AC=5,即2t﹣6=5,解得t=5.5;综上可知当t的值为6.6秒或6秒或5.5秒时,△BCQ为等腰三角形时.25.小明在学习过程中遇到这样一个问题:如图1,在△ABC中,CA=CB,E是CD上一点,且ED=EB,∠DEB=∠ACB,连接AD,探究∠ADC与∠DEB之间的数量关系.小明发现,∠ACD=∠CBE,CA=CB,因此可以通过作∠CAF=∠BCE交CD于点F构造全等,经过推理论证解决问题.(1)按照小明思考问题的方法,解决问题;(2)如图2,∠ACB=90°,CA=CB,D是AB上一点,过点D作DE⊥AB交AC于点E,过点E作EM⊥CD于点M,BN⊥CD于点N,探究EM,BN,CD之间的数量关系.【解答】解:(1)∵∠CAF=∠BCE,∠ACD=∠CBE,CA=CB,∴△ACF≌△CBE(ASA)∴CE=AF,∠AFC=∠CEB,CF=BE,∵DE=BE,∴CF=DE,∴DF=CE=AF,∴∠F AD=∠ADC,∴∠AFC=∠F AD+∠ADC=2∠ADC,∴∠CEB=2∠ADC,∵∠DEB+∠CEB=180°,∴∠DEB+2∠ADC=180°;(2)如图,过点A作AH⊥CD于H,∵∠ACB=90°,CA=CB,∴∠BAC=45°∵∠ACB=∠BNC=90°,∴∠ACD+∠BCD=90°,且∠BCD+∠NBC=90°,∴∠ACD=∠NBC,且AC=BC,∠AHC=∠BNC=90°,∴△ACH≌△CBN(AAS)∴CN=AH,BN=CH,∵DE⊥AB,∠BAC=45°,∴∠BAC=∠AED=45°,∴AD=DE,∵∠ADH+∠DAH=90°,∠ADH+∠EDM=90°,∴∠DAH=∠EDM,且AD=DE,∠AHD=∠EMD=90°,∴△ADH≌△DEM(AAS)∴EM=DH,∵CH=CD+DH,∴BN=CD+EM.26.如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)(1)求B点坐标;(2)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求∠AOD的度数;(3)过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式=1是否成立?若成立,请证明:若不成立,说明理由.【解答】解:(1)作AE⊥OB于E,∵A(4,4),∴OE=4,∵△AOB为等腰直角三角形,且AE⊥OB,∴OE=EB=4,∴OB=8,∴B(8,0);(2)作AE⊥OB于E,DF⊥OB于F,∵△ACD为等腰直角三角形,∴AC=DC,∠ACD=90°即∠ACF+∠DCF=90°,∵∠FDC+∠DCF=90°,∴∠ACF=∠FDC,在△DFC和△CEA中,∴△DFC≌△CEA,∴EC=DF,FC=AE,∵A(4,4),∴AE=OE=4,∴FC=OE,即OF+EF=CE+EF,∴OF=CE,∴OF=DF,∴∠DOF=45°,∵△AOB为等腰直角三角形,∴∠AOB=45°,∴∠AOD=∠AOB+∠DOF=90°;方法一:过C作CK⊥x轴交OA的延长线于K,则△OCK为等腰直角三角形,OC=CK,∠K=45°,又∵△ACD为等腰Rt△,∴∠ACK=90°﹣∠OCA=∠DCO,AC=DC,∴△ACK≌△DCO(SAS),∴∠DOC=∠K=45°,∴∠AOD=∠AOB+∠DOC=90°;(3)成立,理由如下:在AM上截取AN=OF,连EN.∵A(4,4),∴AE=OE=4,又∵∠EAN=∠EOF=90°,AN=OF,∴△EAN≌△EOF(SAS),∴∠OEF=∠AEN,EF=EN,又∵△EGH为等腰直角三角形,∴∠GEH=45°,即∠OEF+∠OEM=45°,∴∠AEN+∠OEM=45°又∵∠AEO=90°,∴∠NEM=45°=∠FEM,又∵EM=EM,∴△NEM≌△FEM(SAS),∴MN=MF,∴AM﹣MF=AM﹣MN=AN,∴AM﹣MF=OF,即;方法二:在x轴的负半轴上截取ON=AM,连EN,MN,则△EAM≌△EON(SAS),EN=EM,∠NEO=∠MEA,即∠NEF+∠FEO=∠MEA,而∠MEA+∠MEO=90°,∴∠NEF+∠FEO+∠MEO=90°,而∠FEO+∠MEO=45°,∴∠NEF=45°=∠MEF,∴△NEF≌△MEF(SAS),∴NF=MF,∴AM=ON=OF+NF=OF+MF,即.注:本题第(3)问的原型:已知正方形AEOP,∠GEH=45°,将∠GEH的顶点E与正方形的顶点E重合,∠GEH的两边分别交PO、AP的延长线于F、M,求证:AM=MF+OF.。
2019-2020学年辽宁省沈阳市沈河区八年级(上)期末数学试卷

2019-2020学年辽宁省沈阳市沈河区八年级(上)期末数学试卷一、选择题(下列备题的备选答案中,只有一个答案是正确的)1.(2分)下列四个数中,是无理数的是()A.B.C.D.()22.(2分)满足下列条件的不是直角三角形的是()A.三边之比为1:2:B.三边之比1::C.三个内角之比1:2:3D.三个内角之比3:4:53.(2分)下列运算正确的是()A.B.C.D.4.(2分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(2分)某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数6.(2分)估计5﹣的值应在()A.8和9之间B.7和8之间C.6和7之间D.5和6之间7.(2分)在平面直角坐标系中,一次函数y=kx﹣6(k<0)的图象大致是(()A.B.C.D.8.(2分)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°9.(2分)某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x人,绘画小组有y人,那么可列方程组为()A.B.C.D.10.(2分)在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=()A.5B.4C.6D.、10二、填空题:(每小题3分,共18分11.(3分)计算:=.12.(3分)如图,在直角坐标系中有两条直线,l1:y=x+1和L2:y=ax+b,这两条直线交于轴上的点(0,1)那么方程组的解是.13.(3分)将长为20cm,宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为.14.(3分)如图,在一个长为8cm,宽为5cm的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为2cm的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是.15.(3分)如图.有一个三角形纸片ABC,∠A=65°,∠B=75°,将纸片一角折叠,使点C落在△ABC外,若∠2=20°,则∠1的大小为.16.(3分)在平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m上,且AP=OP=4,则m的值为.三、计算题(第17小题8分,第18小题8分,共16分17.(8分)计算:(1)﹣|2﹣|﹣(2)(1﹣2)(1+2)﹣(﹣1)218.(8分)解方程组:(1)(2)四、(每小题8分,共24分)19.(8分)如图,在四边形ACBD中,AC=6,BC=8,AD=2,BD=4,DE是△ABD的边AB上的高,且DE=4,求△ABC的边AB上的高.20.(8分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:选手平均数众数中位数方差甲8b80.4乙a9c 3.2根据以上信息,请解答下面的问题:(1)a=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)21.(8分)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.五、(本10分)22.(10分)某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的A、B、C三个社区积极响应号并购买,具体购买的数和总价如表所示.社区甲型垃圾桶乙型垃圾桶总价A1083320B592860C a b2820(1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?(2)按要求各个社区两种类型的垃圾桶都要有,则a=.六、(本题10分)23.(10分)甲、乙两车从A地出发,沿同一路线驶向B地,甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示(1)a=,甲的速度是km/h;(2)求线段CF对应的函数表达式,并求乙刚到达货站时,甲距B地还有多远?(3)乙车出发min追上甲车?(4)直接写出甲出发多长时间,甲乙两车相距40km.七、解答题(共1小题,满分10分)24.(10分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点)(1)若∠CFE=119°,PG交∠FEB的平分线EG于点G,∠APG=150°,则∠G的大小为.(2)如图2,连接PF.将△EPF折叠,顶点E落在点Q处.①若∠PEF=48°,点Q刚好落在其中的一条平行线上,请直接写出∠EFP的大小为.②若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.八、(本题12分)25.(12分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.2019-2020学年辽宁省沈阳市沈河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(下列备题的备选答案中,只有一个答案是正确的)1.【解答】解:A、是无理数,,,()2是有理数,故选:A.2.【解答】解:A、12+()2=22,符合勾股定理的逆定理,所以是直角三角形;B、12+()2=()2,三边符合勾股定理的逆定理,所以是直角三角形;C、根据三角形内角和定理,求得第三个角为90°,所以此三角形是直角三角形;D、根据三角形内角和定理,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选:D.3.【解答】解:A、=2,故本选项错误;B、=5,故本选项错误;C、(﹣)2=7,故本选项正确;D、没有意义,故本选项错误.故选:C.4.【解答】解:由点P(a,2)在第二象限,得a<0.由﹣3<0,a<0,得点Q(﹣3,a)在三象限,故选:C.5.【解答】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.6.【解答】解:5﹣=5﹣2=3=,∵<<,∴5﹣的值应在7和8之间.故选:B.7.【解答】解:∵一次函数y=kx﹣6中,k<0∴直线从左往右下降又∵常数项﹣6<0∴直线与y轴交于负半轴∴直线经过第二、三、四象限故选:B.8.【解答】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°.故选:D.9.【解答】解:若设书法小组有x人,绘画小组有y人,由题意得:,故选:D.10.【解答】解:如图,∵图中的四边形为正方形,∴∠ABD=90°,AB=DB,∴∠ABC+∠DBE=90°,∵∠ABC+∠CAB=90°,∴∠CAB=∠DBE,∵在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴AC=BE,∵DE2+BE2=BD2,∴ED2+AC2=BD2,∵S1=AC2,S2=DE2,BD2=1,∴S1+S2=1,同理可得S2+S3=2,S3+S4=3,∴S1+2S2+2S3+S4=1+2+3=6.故选:C.二、填空题:(每小题3分,共18分11.【解答】解:∵42=16,∴=4,故答案为4.12.【解答】解:∵l1:y=x+1和L2:y=ax+b,这两条直线交于轴上的点(0,1),∴方程组的解是,故答案为:.13.【解答】解:由题意得:y=20x﹣(x﹣1)×3=17x+3,故答案为:y=17x+3.14.【解答】解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为8+2×2=12cm;宽为5cm.于是最短路径为:=13cm.故答案为13cm.15.【解答】解:如图,∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°﹣80°=100°.故答案为100°.16.【解答】解:由已知AP=OP,点P在线段OA的垂直平分线PM上.∴OA=AP=OP=4,∴△AOP是等边三角形.如图,当m≥0时,点P在第一象限,OM=2,OP=4.在Rt△OPM中,PM===2,∴P(2,2).∵点P在y=﹣x+m上,∴m=2+2.当m<0时,点P在第四象限,根据对称性,P′(2,﹣2).∵点P′在y=﹣x+m上,∴m=2﹣2.则m的值为2+2或2﹣2.故答案为:2+2或2﹣2.三、计算题(第17小题8分,第18小题8分,共16分17.【解答】解:(1)原式=5﹣2++3=6﹣;(2)原式=1﹣(2)2﹣(3﹣2+1)=1﹣12﹣4+2=﹣15+2.18.【解答】解:(1)把①代入②得:2(1﹣2y)+3y=﹣2,解得:y=4,把y=4代入①得:x=1﹣8=﹣7,所以原方程组的解是:;(2)整理得:,②﹣①得:6y=27,解得:y=4.5,把y=4.5代入①得:3x﹣9=9,解得:x=6,所以原方程组的解是:.四、(每小题8分,共24分)19.【解答】解:∵DE是AB边上的高,∴∠AED=∠BED=90°,在Rt△ADE中,由勾股定理,得AE===2.同理:在Rt△BDE中,由勾股定理得:BE=8,∴AB=2+8=10,在△ABC中,由AB=10,AC=6,BC=8,得:AB2=AC2+BC2,∴△ABC是直角三角形,设△ABC的AB边上的高为h,则×AB×h=AC×BC,即:10h=6×8,∴h=4.8,∴△ABC的边AB上的高为4.8.20.【解答】解:(1)由题可得,a=(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如下:(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定.(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=[(5﹣8)2+(9﹣8)2+(10﹣8)2+(9﹣8)2+(8﹣8)2]=2.5<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为:变小.21.【解答】解:(1)如图所示;(2)如图,即为所求;(3)作点B1关于y轴的对称点B2,连接C、B2交y轴于点P,则点P即为所求.设直线CB2的解析式为y=kx+b(k≠0),∵C(﹣1,4),B2(2,﹣2),∴,解得,∴直线CB2的解析式为:y=﹣2x+2,∴当x=0时,y=2,∴P(0,2).五、(本10分)22.【解答】解:(1)设甲型垃圾桶的单价每套为x元,乙型垃圾桶的单价每套为y元,根据题意,得解得答:甲型垃圾桶的单价每套为140元,乙型垃圾桶的单价每套为240元;(2)由题意,得140a+240b=2820整理得,7a+12b=141因为a、b都是整数,所以,或答:a的值为3或15.故答案为3或15.六、(本题10分)23.【解答】解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),甲车的速度==60(千米/小时);故答案为:4.5;60;(2)乙出发时甲所走的路程为:60×=40(km),∴线段CF对应的函数表达式为:y=60x+40;乙刚到达货站时,甲距B地的路程为:460﹣60(4+)=180(km).(3)设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=90.乙车追上甲车的时间为40÷(90﹣60)=(小时),小时=80分钟,故答案为:80;(4)易得直线OD的解析式为y=90x(0≤x≤4),根据题意得60x+40﹣90x=40或90x﹣(60x+40)=40或60x=460﹣180﹣40或60x=460﹣40,解得x=或x=或x=4或x=7.答:甲出发小时或x=小时或x=4小时或x=7小时后,甲乙两车相距40km.七、解答题(共1小题,满分10分)24.【解答】解:(1)∵直线AB∥CD,∴∠BEF=∠CFE=119°,∠PEF=180°﹣∠CFE=61°,∵EG平分∠BEF,∴∠FEG=BEF=59.5°,∵∠APG=150°,∴∠EPF=30°,∴∠G=180°﹣30°﹣61°﹣59.5°=29.5°;故答案为:29.5°;(2)①Ⅰ、当点Q落在AB上时,易证PF⊥AB,可得∠EPF=90°,∴∠EFP=90°﹣∠PEF=90°﹣48°=42°.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,∵AB∥CD,∴∠EPQ+∠PQF=180°,∴∠EPQ=132°,∵∠EPF=∠QPF,∴∠EPF=×132°=66°,∴∠EFP=180°﹣48°﹣66°=66°.综上所述,满足条件的∠EFP的值为42°或66°,故答案为:42°或66°.②Ⅰ、当点Q在平行线AB,CD之间时.设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.Ⅱ、当点Q在CD下方时,设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=x,∴75°+x+x=180°,解得x=63°,∴∠EFP=63°.八、(本题12分)25.【解答】解:(1)∵把A(0,4)代入y=﹣x+b得b=4∴直线AB的函数表达式为:y=﹣x+4.令y=0得:﹣x+4=0,解得:x=4∴点B的坐标为(4,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+4得:y=﹣2+4=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.∵S△APB=S△APD+S△BPD,∴S△ABP=PD•OE+PD•BE=(n﹣2)×2+(n﹣2)×2=2n﹣4.②∵S△ABP=8,∴2n﹣4=8,解得:n=6.∴点P的坐标为(2,6).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(6,4).如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(0,2)舍去.综上所述点C的坐标为(6,4).。
2018-2019学年辽宁省沈阳市沈河区八年级(上)期末数学试卷

2018-2019学年辽宁省沈阳市沈河区八年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π2.(2分)下列二次根式中是最简二次根式的是()A.B.C.D.3.(2分)一个正方形的面积等于30,则它的边长a满足()A.4<a<5B.5<a<6C.6<a<7D.7<a<84.(2分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a:b:c=1:2:3D.a2﹣b2=c25.(2分)下列各组数中,是方程2x+y=7的解的是()A.B.C.D.6.(2分)如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)7.(2分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0B.k<0C.k≤0D.k≥08.(2分)下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.等腰三角形的两边长是2和3,则周长是79.(2分)在一次13人参加的歌咏比赛中,预赛成绩各不同,要取前7名参加决赛,小丽已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这13名同学成绩的()A.平均数B.众数C.方差D.中位数10.(2分)如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC 的大小为()A.25°B.50°C.65°D.70°二.填空题(每小题3分,共18分)11.(3分)一组数据﹣1、1、3、4、5的极差是.12.(3分)若x2=,则x=;若x3=﹣27,则x=.13.(3分)如图所示,已知四边形ABCD是边长为2的正方形,AP=AC,则数轴上点P 所表示的数是.14.(3分)命题“等角的余角相等”的题设是,结论是.15.(3分)一次函数y1=k1x+b和y2=k2x的图象上一部分点的坐标见下表:则方程组的解为.16.(3分)已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC =.(用α,β表示)三.解答题(第17小题6分,第18,19小题各8分,共22分)17.(6分)(1)计算:2﹣3+5;(2)计算:(1+)(﹣)﹣(2﹣1)2.18.(8分)解方程组:(1)(2)19.(8分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?四.(每小题8分,共16分)20.(8分)(1)在平面直角坐标系中,描出下列3个点:A(﹣1,0),B(3,﹣1),C(4,3);(2)顺次连接A,B,C,组成△ABC,求△ABC的面积.21.(8分)某校八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图:(1)根据上图求出下表所缺数据(2)根据上表中的平均数、中位数和方差你认为哪班的成绩较好?并说明你的理由.五.(本题10分)22.(10分)列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?六、(本题10分)23.(10分)我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶如图(1),图(2)中l1,l2中,分别表示两船相对于海岸的距离s (海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快?(3)15分钟内B能否追上A?为什么?(4)如果一直追下去,那么B能否追上A?(5)当A逃离海岸12海里时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?(6)l1与l2对应的两个一次函数s=k1t+b1与s=k2t+b2中,k1、k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?七、(本题12分)24.(12分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.八.(本题12分)25.(12分)(1)如图1,已知AB∥CD,那么图1中∠PAB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.2018-2019学年辽宁省沈阳市沈河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π【分析】依据无理数的三种常见类型进行判断即可.【解答】解:A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.【点评】本题主要考查的是无理数的定义,熟练掌握无理数的三种常见类型是解题的关键.2.(2分)下列二次根式中是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义选择即可.【解答】解:A、是最简二次公式,故本选项正确;B、=3不是最简二次根式,故本选项错误;C、=3不是最简二次根式,故本选项错误;D、=2不是最简二次根式,故本选项错误;故选:A.【点评】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.3.(2分)一个正方形的面积等于30,则它的边长a满足()A.4<a<5B.5<a<6C.6<a<7D.7<a<8【分析】直接得出5<<6,进而得出答案.【解答】解:∵<<,∴5<<6.故选:B.【点评】此题主要考查了估算无理数的大小,正确估算出的取值范围是解题关键.4.(2分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a:b:c=1:2:3D.a2﹣b2=c2【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、(x)2+(2x)2≠(3x)2,不符合勾股定理的逆定理,不是直角三角形;D、由a2﹣b2=c2,得c2+b2=a2,符合勾股定理的逆定理,是直角三角形.故选:C.【点评】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.(2分)下列各组数中,是方程2x+y=7的解的是()A.B.C.D.【分析】把各项中x与y的值代入方程检验即可.【解答】解:把x=1,y=5代入方程左边得:2+5=7,右边=7,∴左边=右边,则是方程2x+y=7的解.故选:C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.(2分)如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)【分析】直接利用“将”位于点(1,﹣1),得出原点位置进而得出答案.【解答】解:如图所示:“马”位于点(4,2).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.7.(2分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0B.k<0C.k≤0D.k≥0【分析】根据一次函数的性质求解.【解答】解:一次函数y=2x+k的图象经过第一、二、三象限,那么k>0.故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(2分)下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.等腰三角形的两边长是2和3,则周长是7【分析】根据等腰三角形的定义、平行线的性质、绝对值的性质一一判断即可;【解答】解:A、有两条边相等的三角形是等腰三角形,是真命题,本选项符合题意;B、同位角相等.假命题,两直线平行,同位角相等,本选项不符合题意;C、如果|a|=|b|,那么a=b,错误,结论:a=±b,本选项不符合题意;D、等腰三角形的两边长是2和3,则周长是7,错误,周长为7或8.本选项不符合题意;故选:A.【点评】本题考查等腰三角形的定义、平行线的性质、绝对值的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(2分)在一次13人参加的歌咏比赛中,预赛成绩各不同,要取前7名参加决赛,小丽已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这13名同学成绩的()A.平均数B.众数C.方差D.中位数【分析】由于有11名同学参加歌咏比赛,要取前7名参加决赛,故应考虑中位数的大小.【解答】解:共有13名学生参加歌咏比赛,取前7名,所以小丽需要知道自己的成绩是否进入决赛,即前7名.我们把所有同学的成绩按大小顺序排列,第7名的成绩是这组数据的中位数,所以小丽知道这组数据的中位数,才能知道自己是否进入决赛.故选:D.【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.(2分)如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC 的大小为()A.25°B.50°C.65°D.70°【分析】根据三角形的内角和定理以及角平分线的定义即可求出答案.【解答】解:由三角形的内角和定理可知:∠CAB=50°,∵AD是∠BAC的平分线,∴∠DAC=25°,∴∠ADC=90°﹣∠DAC=65°故选:C.【点评】本题考查三角形的内角和定理,解题的关键是熟练运用三角形的内角和定理,本题属于基础题型.二.填空题(每小题3分,共18分)11.(3分)一组数据﹣1、1、3、4、5的极差是6.【分析】根据极差的定义即可求得.【解答】解:数据﹣1、1、3、4、5的极差是5﹣(﹣1)=6;故答案为:6.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.12.(3分)若x2=,则x=±;若x3=﹣27,则x=﹣3.【分析】利用平方根、立方根定义计算即可求出所求.【解答】解:若x2==3,则x=±;若x3=﹣27,则x=﹣3,故答案为:±;﹣3【点评】此题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.13.(3分)如图所示,已知四边形ABCD是边长为2的正方形,AP=AC,则数轴上点P所表示的数是1﹣2.【分析】根据勾股定理,可得AC的长,根据数轴上两点间的距离,可得答案.【解答】解:AC==2,AP=AC=2,1﹣2,P点坐标1﹣2.故答案为:1﹣2.【点评】本题考查了实数与数轴,利用勾股定理得出AC的长是解题关键.14.(3分)命题“等角的余角相等”的题设是两个角是等角,结论是它们的余角相等.【分析】一个命题由题设和结论两部分组成,如果是条件,那么是结论.【解答】解:命题“等角的余角相等”的题设是两个角是等角,结论是它们的余角相等.【点评】本题比较简单,考查的是命题的组成,需同学们熟练掌握.15.(3分)一次函数y1=k1x+b和y2=k2x的图象上一部分点的坐标见下表:则方程组的解为.【分析】根据待定系数法确定函数解析式后解答即可.【解答】解:把(2,3)和(3,5)代入y1=k1x+b,可得:,解得:,所以y1=2x﹣1;把(2,﹣2)代入y2=k2x,可得:2k2=﹣2,解得:k2=﹣1,所以y2=﹣x,联立两个方程可得:﹣解得:,故答案为:,【点评】此题考查函数与方程组的关系,关键是根据两个函数的交点即为方程组的解集.16.(3分)已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=(α+β).(用α,β表示)【分析】连接BC,根据角平分线的性质得到∠3=ABP,∠4=ACP,根据三角形的内角和得到∠1+∠2=180°﹣β,2(∠3+∠4)+(∠1+∠2)=180°﹣α,求出∠3+∠4=(β﹣α),根据三角形的内角和即可得到结论.【解答】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=ABP,∠4=ACP,∵∠1+∠2=180°﹣β,2(∠3+∠4)+(∠1+∠2)=180°﹣α,∴∠3+∠4=(β﹣α),∵∠BQC=180°﹣(∠1+∠2)﹣(∠3+∠4)=180°﹣(180°﹣β)﹣(β﹣α),即:∠BQC=(α+β).故答案为:(α+β).【点评】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.三.解答题(第17小题6分,第18,19小题各8分,共22分)17.(6分)(1)计算:2﹣3+5;(2)计算:(1+)(﹣)﹣(2﹣1)2.【分析】(1)先化简各二次根式,再合并同类二次根式;(2)依据二次根式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=2﹣6+15=11;(2)原式=﹣+﹣3﹣(12﹣4+1)=﹣2﹣12+4﹣1=﹣2+4﹣13.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.18.(8分)解方程组:(1)(2)【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),①×2﹣②,得:7x=70,解得:x=10,将x=10代入①,得:40﹣y=30,解得:y=10,则方程组的解为;(2),①×2﹣②×5,得:﹣21x=84,解得:x=﹣4,将x=﹣4代入①,得:﹣8﹣5y=﹣3,解得:y=﹣1,则方程组的解为.【点评】本题考查二元一次方程组解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.19.(8分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离.【解答】解:(1)∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE===15,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.【点评】本题考查的是勾股定理的应用,熟知勾股定理是解答此题的关键.四.(每小题8分,共16分)20.(8分)(1)在平面直角坐标系中,描出下列3个点:A(﹣1,0),B(3,﹣1),C(4,3);(2)顺次连接A ,B ,C ,组成△ABC ,求△ABC 的面积.【分析】(1)利用描点法,描出A (﹣1,0),B (3,﹣1),C (4,3)即可; (2)根据S 三角形ABC =S 梯形ADCE ﹣S 三角形ADB ﹣S 三角形BCE 计算即可;【解答】解:(1)描点如图:A (﹣1,0),B (3,﹣1),C (4,3);(2)分别过点A ,C 作y 轴的平行线,过点B 作x 轴的平行线, 围成梯形ADEC ,则梯形ADEC 的面积为∴S 梯形ADCE =(AD +CE )DE =(1+4)×5=12.5,S 三角形ADB =AD •BD =×1×4=2,S 三角形BCE =BE •CE =×1×4=2,∴S 三角形ABC =S 梯形ADCE ﹣S 三角形ADB ﹣S 三角形BCE =12.5﹣2﹣2=8.5.【点评】本题考查坐标与图形、三角形的面积等知识,解题的关键是学会利用分割法求三角形的面积,属于中考常考题型.21.(8分)某校八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图:(1)根据上图求出下表所缺数据(2)根据上表中的平均数、中位数和方差你认为哪班的成绩较好?并说明你的理由.【分析】(1)根据众数、方差和平均数的定义及公式分别进行解答即可;(2)从平均数、中位数以及方差的意义三个方面分别进行解答即可得出答案.【解答】解:(1)甲班的众数是8.5;方差是:×[(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7.乙班的平均数是:(7+10+10+7.5+8)=8.5,故答案为:8.5,0.7;8.5;(2)因为甲、乙两班成绩的平均数相同,而甲班成绩的中位数高于乙班的中位数,甲班的方差小于乙班的方差,所以甲班的成绩较好.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.五.(本题10分)22.(10分)列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?【分析】设小长方形的长为x米,宽为y米,由大长方形的周长及上下两边相等,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总价=单价×长方形的面积即可求出结论.【解答】解:设小长方形的长为x米,宽为y米,依题意,得:,解得:,∴210×2x×(x+2y)=75600(元).答:要完成这块绿化工程,预计花费75600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.六、(本题10分)23.(10分)我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶如图(1),图(2)中l1,l2中,分别表示两船相对于海岸的距离s (海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快?(3)15分钟内B能否追上A?为什么?(4)如果一直追下去,那么B能否追上A?(5)当A逃离海岸12海里时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?(6)l1与l2对应的两个一次函数s=k1t+b1与s=k2t+b2中,k1、k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【分析】根据图2中的图象可以得到可疑船只A和快艇B的起始位置和行驶速度,再用这些量可逐一解决题中各项问题.【解答】解:(1)从图2中不难看出,L1表示快艇B是从海岸开始去追击可疑船只A 的;(2)根据一次函数的图象可知,L1的斜率大于L2,所以B的速度比A快;(3)分别计算15分钟时,A、B离海岸的距离:根据一次函数图象在本题中的意义,可得A的速度为0.2海里/分钟,B的速度为0.5海里/分钟,则15分钟各行驶的距离:S A=5+0.2×15=8(海里),S B=0.5×15=7.5(海里),S A>S B,所以快艇B在15分钟内追不上可疑船A;(4)从图2中两条线相交可知B是能够追上A的;(5)设B追上A所用时间为t,可得:0.5t=5+0.2t,解得t==16(分钟),可见经过16分钟时,B追上A.此时可疑船A离海岸的距离=5+0.2×=8(海里),可见在A逃离海岸8海里时,快艇B就追上了B,也就是说在A逃入公海前快艇可以将其拦截;(6)根据一次函数在题中的应用,两个一次函数s=k1t+b1与s=k2t+b2中,k1、k2的实际意义就是A和B的速度,由图2可知,可疑船只的速度==0.2(海里/分钟),快艇的速度==0.5(海里/分钟).【点评】本题考查一次函数在行程中的应用,即y=kx+b表达式中k、b的实际含义.属常考知识点.七、(本题12分)24.(12分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S=AP△ABP•OB=,则AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.八.(本题12分)25.(12分)(1)如图1,已知AB∥CD,那么图1中∠PAB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.【分析】(1)结论:∠P=∠PCD﹣∠PAB.根据平行线的性质以及三角形的外角的性质即可解决问题;(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,想办法求出x﹣y即可解决问题;【解答】解:(1)结论:∠P=∠PCD﹣∠PAB.理由:如图1中,设AB交PC于H.∵AB∥CD,∴∠PCD=∠AHC,∵∠AHC=∠PAB+∠P,∴∠P=∠AHC﹣∠PAB,∴∠P=∠PCD﹣∠PAB.(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,∵BD∥CE,∴∠BDC=∠DCE=2x,∵∠BDC=∠ABD+∠A,∴2x=2y+80°,∴x﹣y=40°,∴∠F=40°.【点评】本题考查平行线的性质和判定、三角形的外角等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
辽宁省沈阳市和平区2018-2019学年八年级(上)期末数学试卷

2018-2019学年八年级(上)期末数学试卷一.选择题(共10小题)1.下列实数是无理数的是()A.1 B.C.D.2.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°3.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等4.已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=1::2C.∠C=∠A﹣∠B D.b2=a2﹣c25.已知正比例函数的图象经过点(﹣2,6),则该函数图象还经过的点是()A.(2,﹣6)B.(2,6)C.(6,﹣2)D.(﹣6,2)6.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.7.小明调查了班级同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的扇形统计图,则班级同学本学期计划购买课外书的平均花费是()A.100元B.120元C.150元D.180元8.如图Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,再添两个条件不能够全等的是()A.AB=A′B′,BC=B′C′B.AC=AC′,BC=BC′C.∠A=∠A′,BC=B′C′D.∠A=∠A′,∠B=∠B′9.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+210.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12)B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)二.填空题(共6小题)11.27的立方根为.12.如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE和DE,如果∠ABE=40°,BE=DE.则∠CED=°.13.在平面直角坐标系中,点P(m,m+1)不可能在第象限.14.估算:≈.(结果精确到0.1)15.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣上,则常数b=.16.如图,在平面直角坐标系中,点A的坐标是(﹣2,3),点B的坐标是(1,﹣1),连接AB,点C是坐标轴上任意一点,则使△ABC为等腰三角形的点C共有个.三.解答题(共9小题)17.计算:+518.如图,直线AB∥CD,并且被直线MN所截,MN分别交AB和CD于点E、F,点Q在PM 上,且∠AEP=∠CFQ.求证:∠EPM=∠FQM.19.在如图所示的方格纸中建立适当的直角坐标系、使得△ABC的顶点坐标分别满足点A的坐标为(4,﹣2),点B的坐标为(1,﹣1),点C的坐标为(5,2).(1)请在方格纸中画出x轴,y轴,并标出原点O;(2)画出△ABC关于x轴对称的△A1B1C1.(点A,B,C的对应点分别是点A1,B1,C1)20.(列二元一次方程组求解)一、二两班共有100名学生,他们的体育达标率(达到标准的百分率)为81%.如果一班学生的的体育达标率为87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?21.如图,锐角△ABC的两条高BD与CE相交于点O,且OB=OC,连接AO.(1)求证:∠ABC=∠ACB;(2)求证:AO垂直平分线段BC.22.甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:(1)a=;b=;c=;(2)填空:(填“甲”或“乙”).①从平均数和中位数的角度来比较,成绩较好的是;②从平均数和众数的角度来比较,成绩较好的是;③成绩相对较稳定的是.23.如图,一次函数y=x+b的图象与x轴,y轴分别交于点A,B,与一次函数y=x 的图象交于点M,点M的横坐标为,在x轴上有一点P(a,0),过点P作x轴的垂线,分别交一次函数y=x+b和一次函数y=x的图象于点C,D.(1)点M的纵坐标是;b的值是;(2)求线段AB的长;(3)当CD=AB时,请直接写出a的值.24.有一笔直的公路连接M,N两地,甲车从M地驶往N地,速度为60km/h,乙车从M地驶往N地,速度为40km/h,丙车从N地驶往M地,速度为80km/h,三辆车同时出发,先到目的地的车停止不动.途中甲车发生故障,于是停车修理了2.5h,修好后立即按原速驶往N地.设甲车行驶的时间为t(h),甲、丙两车之间的距离为S1(km).甲、乙两车离M地的距离为S2(km),S1与t之间的关系如图1所示,S2与t之间的关系如图2所示.根据题中的信息回答下列问题:(1)①图1中点C的实际意义是;②点B的横坐标是;点E的横坐标是;点Q的坐标是;(2)请求出图2中线段QR所表示的S2与t之间的关系式;(3)当甲、乙两车距70km时,请直接写出t的值.25.如图所示,在平面直角坐标系中,O为坐标原点,直线y=kx+b经过点A(﹣2,﹣1),交y轴负半轴于点B,且∠ABO=30°,过点A作直线AC⊥x轴于点C,点P在直线AC 上.(1)k=;b=;(2)设△ABP的面积为S,点P的纵坐标为m.①当m>0时,求S与m之间的函数关系式;②当S=2时,求m的值;③当m>0且S=4时,以BP为边作等边△BPQ,请直接写出符合条件的所有点Q的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省沈阳市沈河区2018-2019学年八年级上学期数学期末考试试卷
一、单选题
1. 下列各数是无理数的是()
A . 1
B . ﹣0.6
C . ﹣6
D . π
2. 下列二次根式中,是最简二次根式的是()
A .
B .
C .
D .
3. 一个正方形的面积等于30,则它的边长a满足()
A . 4<a<5
B . 5<a<6
C . 6<a<7
D . 7<a<8
4. 由下列条件不能判定为直角三角形的是()
A .
B .
C .
D .
5. 下列各组数中,是方程2x+y=7的解的是( )
A .
B .
C .
D .
6. 如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点( )
A . (3,2)
B . (2,3)
C . (4,2)
D . (2,4)
7. 在平面直角坐标系中,若直线经过第一、二、三象限,则的取值范围是()
A .
B .
C .
D .
8. 下列命题中,是真命题的是()
A . 有两条边相等的三角形是等腰三角形
B . 同位角相等
C . 如果,那么
D . 等腰三角形的两边长是2和3,则周长
是7
9. 在一次13人参加的歌咏比赛中,预赛成绩各不同,要取前7名参加决赛,小丽已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这13名同学成绩的()
A . 平均数
B . 众数
C . 方差
D . 中位数
10. 如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为( )
A . 25°
B . 50°
C . 65°
D . 70°
二、填空题
11. 一组数据的极差是________.
12.
若,则 ________;若,则 ________.
13. 如图所示,已知四边形ABCD是等边长为2的正方形,AP=AC,则数轴上点P所表示的数是________.
14. 命题“等角的余角相等”的条件是________,结论是________.
15. 一次函数和的图象上一部分点的坐标见下表:
x
……234……y ……357……y ……-2-3-4……
则方程组 的解为________.
16. 已知如图,
平分
,
平分
, ,
,则
________.(用
表示)
三、解答题
17. 计算
(1
)
;(2) .
18.
解方程组(1)
;(2) 19.
如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1) 此时梯子顶端离地面多少米?
(2) 若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
20.
(1) 在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3);
(2) 顺次连接A ,B ,C ,组成△ABC ,求△ABC 的面积.
21. 某校八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图:
1
2
(1)根据上图求出下表所缺数据;
平均数中位数众数方差
甲班8.58.5
乙班810 1.6
(2)根据上表中的平均数、中位数和方差你认为哪班的成绩较好?并说明你的理由.
22. 某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?
23. 我国边防局接到情报,近海处有一可疑船只正向公海方向航行,边防部迅速派出快艇追赶如图1,图2中
分别表示两船相对海岸的距离 (海里)与追赶时间 (分)之间的关系.
根据图象回答问题:
(1)哪条线表示到海岸的距离与追赶时间之间的关系?
(2)哪个速度快?
(3) 15分钟内能否追上?为什么?
(4)如果一直追下去,那么能否追上?
(5)当逃离海岸12海里时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?
(6)与对应的两个一次函数与中,的实际意义各是什么?可疑船只与快艇的速
度各是多少?
24. 如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.
25.
(1)如图1,已知,交于,那么图1中、、之间有什么数量关系?并
说明理由.
(2)如图2,已知,点是线段上一点,,和的平分线交于点,请
利用(1)的结论求图2中的度数.
参考答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
14.
15.
16.
17.
18.
19.
21.
22.
23.
24.
25.。