11.6一元一次不等式组(4) 课件 (苏科版七年级下)
七年级数学下册第11章一元一次不等式11.5用一元一次不等式解决问题作业设计(新版)苏科版

精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!11.5 用一元一次不等式解决问题一.选择题(共13小题)1.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.12道B.13道C.14道D.15道2.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4 B.3 C.2 D.13.某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折4.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A.B.C.D.5.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读()A.50页B.60页C.80页D.100页6.某品牌电脑的成本价为2400元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.2 800x≥2400×5%B.2800x﹣2400≥2400×5%C.2 800×≥2400×5%D.2 800×﹣2400≥2400×5%7.一位老师说,他班上学生的一半在学数学,四分之一的学生在学外语,六分之一的学生在学音乐,还有不足5名同学在操场上踢足球,则这个班的学生最多有()人.A.36人B.48人C.59人D.0人8.自来水公司的收费标准如下:若每户用水不超过5立方米,则每立方米收费2.8元;若每户每月用水超过5立方米,则超出部分每立方米收费3元.小颖家每月水费都不少于29元,小颖家每月用水量至少()A.11立方米B.10立方米C.9立方米D.5立方米9.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元10.王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.211.南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.912.一个篮球队共打12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队赢了的场数最少为()A.3 B.4 C.5 D.613.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300 B.5×100+5x≥300C.100+5x>300 D.100+5x≥300二.填空题(共9小题)14.甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过元时,在甲商场购物花费少.15.商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.16.小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买支冰激凌.17.在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是场.18.老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的.一年前老张至少买了只种兔?19.某工程队计划在10天内修路6km.现计划发生变化,准备8天完成修路任务,那么这8天平均每天至少要修路多少?设这8天平均每天要修路xkm,依题意得一元一次不等式为:.20.小聪用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,则小聪最多可以买几支钢笔?设小聪购买x支钢笔,则可列关于x的一元一次不等式为.21.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.22.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出环的成绩.三.解答题(共6小题)23.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元;(1)求键盘和鼠标的单价各是多少元?(2)经过与经销商洽谈,键盘打八折,鼠标打八五折.若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘多少个?24.某校艺术节时欲购40盆花卉布置舞台.现有甲、乙两种花卉可供选择,已知甲种花卉的单价为18元/盆,乙种花卉的单价为25元/盆.若学校计划用于购买花卉的费用最多为860元,且购买乙花卉不少于18盆.请你为该校设计购买方案,并求出最小的费用是多少元?25.青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165元.(1)求每袋大米和面粉各多少元?(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?26.为弘扬中华优秀传统文化,某中学在全校开展诵读古诗词竞赛活动.测试题共有27道题,评分办法规定:答对一道题得10分,不答得0分,答错一道题倒扣5分,小明有1道题未答,他若得分不低于95分,至少要答对几道题?(I)分析:若设小明答对x道题,则可得分,答错道题,要倒扣分;(用含x的式子表示)(Ⅱ)根据题意,列出不等式,完成本题解答.27.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?28.蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200斤,老王昨天青菜和西兰花各进了多少斤?青菜西兰花进价(元/斤) 2.6 3.4售价(元/斤) 3.6 4.6(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,青菜每斤售价至少为多少元?参考答案与试题解析一.选择题(共13小题)1.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.12道B.13道C.14道D.15道【分析】设小明至少答对的题数是x道,答错的为(20﹣x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【解答】解:设小明至少答对的题数是x道,5x﹣2(20﹣x)≥60,x≥14,故应为15.故选:D.【点评】本题考查一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.2.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4 B.3 C.2 D.1【分析】首先设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小红最多能买甲种饮料的瓶数是3瓶.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.3.某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折【分析】利用打折是在原价的基础上,利润是在进价的基础上得出,进而得出不等式关系求出即可.【解答】解:设商店可以打x折出售此商品,根据题意可得:,解得:x≥7,故选:B.【点评】此题主要考查了一元一次不等式的应用,得出正确的不等式关系是解题关键.4.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A.B.C.D.【分析】根据最大的降价率即是保证售价大于等于获利不低于10%,进而得出不等式即可.【解答】解:设成本为a元,由题意可得:a(1+m%)(1﹣n%)﹣(1+10%)a≥0,则(1+m%)(1﹣n%)﹣1.1≥0,去括号得:1﹣n%+m%﹣﹣1.1≥0,整理得:100n+mn+1000≤100m,故n≤.故选:B.【点评】此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.5.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读()A.50页B.60页C.80页D.100页【分析】设从第六天起平均每天要读x页,由题意得不等关系:100页+后5天读的页数≥400,根据不等关系列出不等式,进而可得答案.【解答】解:设从第六天起平均每天要读x页,由题意得:100+5x≥400,解得:x≥60,故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.6.某品牌电脑的成本价为2400元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.2 800x≥2400×5%B.2800x﹣2400≥2400×5%C.2 800×≥2400×5%D.2 800×﹣2400≥2400×5%【分析】设最低可打x折,根据电脑的利润率不低于5%,可列不等式求解.【解答】解:如果将这种品牌的电脑打x折销售,根据题意得2 800×﹣2400≥2400×5%,故选:D.【点评】本题考查了一元一次不等式的应用,根据利润=售价﹣进价,可列不等式求解.7.一位老师说,他班上学生的一半在学数学,四分之一的学生在学外语,六分之一的学生在学音乐,还有不足5名同学在操场上踢足球,则这个班的学生最多有()人.A.36人B.48人C.59人D.0人【分析】设这个班有x人,根据“他班上学生的一半在学数学,四分之一的学生在学外语,六分之一的学生在学音乐,还有不足5名同学在操场上踢足球”,列出关于x的一元一次不等式,解之即可.【解答】解:设这个班有x人,根据题意得:x﹣≤4,解得:x≤48,即这个班的学生最多有48人,故选:B.【点评】本题考查一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.8.自来水公司的收费标准如下:若每户用水不超过5立方米,则每立方米收费2.8元;若每户每月用水超过5立方米,则超出部分每立方米收费3元.小颖家每月水费都不少于29元,小颖家每月用水量至少()A.11立方米B.10立方米C.9立方米D.5立方米【分析】设小颖家每月的用水量为x立方米,根据水费=2.8×5+3×超出5立方米的部分结合每月水费都不少于29元,即可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:设小颖家每月的用水量为x立方米,根据题意得:2.8×5+3(x﹣5)≥29,解得:x≥10.故选:B.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.9.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元【分析】设可降价x元,根据利润率=×100%结合售后利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:设可降价x元,根据题意得:×100%≥20%,解得:x≤120.故选:D.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.2【分析】设王老师购买x本笔记本,则购买(15﹣x)支钢笔,根据总价=单价×数量结合总价不超过100元,即可得出关于x的一元一次不等式,解之取其中最小的整数即可得出结论.【解答】解:设王老师购买x本笔记本,则购买(15﹣x)支钢笔,根据题意得:5x+7(15﹣x)≤100,解得:x≥,∴x为整数,∴x的最小值为3.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x﹣3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.12.一个篮球队共打12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队赢了的场数最少为()A.3 B.4 C.5 D.6【分析】设这个篮球队赢了x场,则最多平(x+1)场,最多输(x+2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:设这个篮球队赢了x场,则最多平(x+1)场,最多输(x+2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.13.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300 B.5×100+5x≥300C.100+5x>300 D.100+5x≥300【分析】设从第6天起每天要读x页,根据前5天共读的页数+从第6天起每天要读的页数×5≥300可得不等式求解.【解答】解:依题意有100+5x≥300.故选:D.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,选准不等号.二.填空题(共9小题)14.甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过150 元时,在甲商场购物花费少.【分析】设李红的累积购物金额为x元,根据“在甲商场购物实际花费<在乙商场购物实际花费”列不等式求解可得.【解答】解:设李红的累积购物金额为x元,根据题意得,100+0.8(x﹣100)<50+0.9(x﹣50),解得:x>150,答:当李红的累计购物金额超过150元时,在甲商场购物花费少.故答案为:150.【点评】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出一元一次不等式.15.商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为20 元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥20,故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.16.小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买 5 支冰激凌.【分析】设他买了x支冰激凌,根据“矿泉水的总钱数+冰激凌的总钱数≤30”列不等式求解可得.【解答】解:设他买了x支冰激凌,根据题意,得:6×2+3.5x≤30,解得:x≤,∵x为整数,∴他最多能买5支冰激凌,故答案为:5.【点评】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的不等关系,并据此列出不等式.17.在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是7 场.【分析】设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据总积分=3×获胜场数+1×平局场数结合总积分不少于21分,即可得出关于x的一元一次不等式,解之取其中的最小整数即可得出结论.【解答】解:设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据题意得:3x+(9﹣1﹣x)≥21,解得:x≥.∵x为整数,∴x的最小值为7.故答案为:7.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.18.老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的.一年前老张至少买了 3 只种兔?【分析】设一年前老张买了x只种兔,则老李也买了x只种兔,根据“一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的”,列出关于x的一元一次不等式,解之即可.【解答】解:设一年前老张买了x只种兔,则老李也买了x只种兔,根据题意得:一年后老张的兔子数量为:x+2(只),一年后老李的兔子数量为:2x﹣1(只),则:x+2≤2x﹣1,解得:x≥3,即一年前老张至少买了3只种兔,故答案为:3.【点评】本题考查一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.19.某工程队计划在10天内修路6km.现计划发生变化,准备8天完成修路任务,那么这8天平均每天至少要修路多少?设这8天平均每天要修路xkm,依题意得一元一次不等式为:8x≥6 .【分析】根据题意可以列出相应的不等式即可.【解答】解:设这8天平均每天要修路xkm,8x≥6,故答案为:8x≥6【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.20.小聪用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,则小聪最多可以买几支钢笔?设小聪购买x支钢笔,则可列关于x的一元一次不等式为5x+2(30﹣x)≤100 .【分析】设小聪买了x支钢笔,则买了(30﹣x)本笔记本,根据总价=单价×购买数量结合总价不超过100元,即可得出关于x的一元一次不等式.【解答】解:设小聪买了x支钢笔,则买了(30﹣x)本笔记本,根据题意得:5x+2(30﹣x)≤100.故答案为5x+2(30﹣x)≤100.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量间的关系,正确列出一元一次不等式是解题的关键.21.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.22.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出8 环的成绩.【分析】设第8次射击打出x环的成绩,根据总成绩=前7次射击成绩+后3次射击成绩(9、10两次按最高成绩计算)结合总成绩大于89环,即可得出关于x的一元一次不等式,解之取其内的最小值即可得出结论.【解答】解:设第8次射击打出x环的成绩,根据题意得:62+x+10+10>89,解得:x>7,∵x为正整数,∴x≥8.故答案为:8.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共6小题)23.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元;(1)求键盘和鼠标的单价各是多少元?(2)经过与经销商洽谈,键盘打八折,鼠标打八五折.若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘多少个?【分析】(1)设键盘的单价为x元/个,鼠标的单价为y元/个,根据“购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买键盘m个,则购买鼠标(50﹣m)个,根据总价=单价×折扣率×数量结合总费用不超过1820元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设键盘的单价为x元/个,鼠标的单价为y元/个,根据题意得:,解得:.答:键盘的单价为50元/个,鼠标的单价为40元/个.(2)设购买键盘m个,则购买鼠标(50﹣m)个,根据题意得:50×0.8m+40×0.85(50﹣m)≤1820,解得:m≤20.答:最多可购买键盘20个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.某校艺术节时欲购40盆花卉布置舞台.现有甲、乙两种花卉可供选择,已知甲种花卉的单价为18元/盆,乙种花卉的单价为25元/盆.若学校计划用于购买花卉的费用最多为860元,且购买乙花卉不少于18盆.请你为该校设计购买方案,并求出最小的费用是多少元?【分析】直接利用学校计划用于购买花卉的费用最多为860元,进而得出不等关系求出答案.【解答】解:设购买乙种花卉x盆,则甲种花卉为(40﹣x)盆,由题意得 18(40﹣x)+25x≤860,解得:x≤20,又∵乙花卉不少于18盆,∴18≤x≤20,∵x为整数,∴x=18或19或20,40﹣x=22或21或20,∴一共有三种购买方案,分别是:①购买甲种花卉22盆,乙种花卉18盆,②购买甲种花卉21盆,乙种花卉19盆,③购买甲种花卉20盆,乙种花卉20盆,其中第①种购买方案的费用最少,最少费用为846元.【点评】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.25.青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165元.(1)求每袋大米和面粉各多少元?(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?【分析】(1)设每袋大米x元,每袋面粉y元,根据“购买1袋大米、4袋面粉,共需240。
第11章 一元一次不等式-2023-2024学年苏科版数学七年级下册章节复习讲义(导图+(0001)

2023-2024学年苏科版数学七年级下册章节知识讲练1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.知识点01:不等式【高频考点精讲】1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.【易错点剖析】(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).知识点02:一元一次不等式【高频考点精讲】1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,【易错点剖析】ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.【易错点剖析】不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.【易错点剖析】列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.知识点03:一元一次不等式组【高频考点精讲】关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.【易错点剖析】(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.检测时间:120分钟试题满分:100分难度系数:0.55一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023秋•姑苏区期末)若a>b,则下列不等式变形错误的是()A.a﹣1>b﹣1 B.C.3a>3b D.1﹣a>1﹣b2.(2分)(2023秋•奉化区校级期中)若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤73.(2分)(2023秋•永州期末)已知关于x的不等式整数解共有2个,若m为整数,则m=()A.2 B.3 C.4 D.54.(2分)(2022秋•新化县期末)方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1 B.a>1 C.a<2 D.a>25.(2分)(2022秋•新田县期末)若关于x的不等式组恰有3个整数解,则实数a的取值范围是()A.7<a<8 B.7≤a<8 C.7<a≤8 D.7≤a≤86.(2分)(2023秋•沙坪坝区校级期末)如果不等式(a﹣5)x<a﹣5的解集为x>1,则a必须满足的条件是()A.a>0 B.a>5 C.a≠5 D.a<57.(2分)(2023春•自贡期末)若关于x的不等式组有100个整数解,则a的取值范围是()A.﹣1449<a≤﹣1448 B.﹣1449≤a<﹣1448C.﹣1450≤a<﹣1449 D.﹣1450<a≤﹣14498.(2分)(2023春•那曲市期末)若关于x的一元一次不等式组有解,则k的取值范围是()A.k≤3 B.k<3 C.k<2 D.k≤29.(2分)(2023春•吕梁期末)若关于x的方程的解为正数,且a使得关于y的不等式组恰有两个整数解,则所有满足条件的整数a的值的和是()A.0 B.1 C.2 D.310.(2分)(2023秋•姑苏区校级期末)如果关于y的方程有非负整数解,且关于x的不等式组的解集为x≥1,则所有符合条件的整数a的和为()A.﹣5 B.﹣8 C.﹣9 D.﹣12二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023秋•惠州期末)不等式组:的解集是.12.(2分)(2023春•集美区校级期中)若不等式(a﹣1)x>1﹣a的解集是x<﹣1,则a的取值范围是.13.(2分)(2023秋•海曙区期中)不等式组的解集为x>3,则k的取值范围为.14.(2分)(2023春•富锦市校级期末)已知关于x的不等式组的所有整数解的和为﹣9,m的取值范围是.15.(2分)(2023秋•新田县期末)关于x的不等式组恰有3个整数解,则a的取值范围是.16.(2分)(2023秋•鄞州区期中)若不等式(a﹣1)x<a﹣1的解集是x>1,则a的取值范围是.17.(2分)(2023春•渝中区校级期末)关于x的不等式组的解集为x≥3,且关于x的一次方程5x﹣a=x+3有非负整数解,则所有满足条件的整数a的和为.18.(2分)(2023春•重庆期中)若关于x的一元一次方程有正整数解,且使关于x的不等式组至少有4个整数解,求出满足条件的整数a的所有值的积为.19.(2分)(2022春•渝中区校级月考)清明将至,前去扫墓的人逐渐增多.某花店购进白菊,白百合,马蹄莲共计m捆.白菊每捆20支,白百合每捆12支,马蹄莲每捆10支.现取出白菊的,白百合的,马蹄莲的,全部用于扎成A、B两款花束销售.其中A款花束白菊2支,白百合3支,马蹄莲1支,B 款花束白菊5支,马蹄莲2支.如此取出后剩下的白百合支数不多于马蹄莲支数,则购进的白菊捆数与白百合捆数之比至少为.20.(2分)(2022春•梁园区期末)对于x,符号[x]表示不大于x的最大整数.如:[3.14]=3,[﹣7.59]=﹣8,则满足关系式的x的整数值有个.三.解答题(共8小题,满分60分)21.(6分)(2023秋•桐乡市期末)解不等式,并把解在数轴上表示出来.22.(6分)(2023秋•钢城区期末)解不等式组:,并求出它的非负整数解.23.(8分)(2023秋•邵阳期末)已知关于x的不等式组;(1)若该不等式组有且只有三个整数解,求a的取值范围;(2)若该不等式组有解,且它的解集中的任何一个值均不在x≥5的范围内,求a的取值范围.24.(8分)(2023春•大竹县校级期末)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<3>=4,<﹣2.5>=﹣2.根据上述规定,解决下列问题:(1)[﹣4.5]=,<3.01>=;(2)若x为整数,且[x]+<x>=2017,求x的值;(3)若x、y满足方程组,求x、y的取值范围.25.(8分)(2024•邵阳模拟)某商场同时采购了A,B两种品牌的运动装,第一次采购A品牌运动装10件,B品牌运动装30件,采购费用为8600元;第二次只采购了B品牌运动装50件,采购费用为11000元.(1)求A,B两种品牌运动装的采购单价分别为多少元每件?(2)商家通过一段时间的营销后发现,B品牌运动装的销售明显比A品牌好,商家决定采购一批运动装,要求:①采购B品牌运动装的数量是A品牌运动装的2倍多10件,且A品牌的采购数量不低于18件;②采购两种品牌运动装的总费用不超过15000元,请问该商家有哪几种采购方案?26.(8分)(2023•曲靖一模)2022年1月7日,《云南省全民健身实施计划(2021﹣2025年)》新闻发布会顺利举行.会议上就“十四五”时期深化体育改革,推进新时代全民健身高质量发展作了全面部署和安排.其中,“强化供给,补齐全民健身设施建设短板”是《云南省全民健身实施计划(2021﹣2025年)》的主要任务之一.春城小区计划购买10台健身器材供小区居民锻炼使用,了解到购买1台B型健身器材比1台A型健身器材贵200元,购买2台A型健身器材和5台B型健身器材共花8000元.(1)A型健身器材和B型健身器材的单价是多少钱?(2)春城小区计划购买B型健身器材的数量不超过A型健身器材的数量的2倍,购买资金不低于10800元,请问共有哪几种购买方案,哪一种方案最省钱.27.(8分)(2023•金凤区校级二模)围棋起源于中国,古代称为“弈”,是棋类鼻祖,围棋距今已有4000多年的历史,中国象棋也是中华民族的文化瑰宝,它源远流长,趣味浓厚,基本规则简明易懂.某学校为活跃学生课余生活,欲购买一批象棋和围棋,已知购买3副象棋和1副围棋共需125元,购买2副象棋和3副围棋共需165元.(1)求每副象棋和围棋的价格;(2)若学校准备购买象棋和围棋总共100副,且总费用不超过3200元,则最多能购买多少副围棋?28.(8分)(2022秋•婺城区期末)为更好地推进生活垃圾分类工作,改善城市生态环境,某小区准备购买A、B两种型号的垃圾箱,通过对市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需390元,购买2个A型垃圾箱比购买1个B型垃圾箱少用20元.(1)求每个A型垃圾箱和每个B型垃圾箱分别多少元?(2)该小区计划用不多于1500元的资金购买A、B两种型号的垃圾箱共20个,且A型号垃圾箱个数不多于B型垃圾箱个数的3倍,则该小区购买A、B两种型号垃圾箱的方案有哪些?。
专题11.6 用一元一次不等式解决问题(专项练习)七年级数学下册基础知识专项讲练(苏科版)

专题11.6 用一元一次不等式解决问题(专项练习)一、单选题1.(2020·浙江省杭州市萧山区高桥初级中学八年级期中)如果代数式32x-的值不小于3-,那么x 的取值范围是( ) A .0x ≥B .0x >C .12x ≤D .12x <-2.(2021·浙江湖州市·八年级期末)某超市开展促销活动,一次购买的商品超过88元时,就可享受打折优惠.小明同学准备为班级购买奖品.需买6本笔记本和若干支钢笔.已知笔记本每本4元.钢笔每支7元,如果小明想享受打折优惠,那么至少买钢笔( ) A .12支B .11支C .10支D .9支3.(2020·浙江杭州市·八年级期末)根据数量关系“y 与6的和不小于1”列不等式,正确的是( ) A .61y +>B .61y +≥C .61y +<D .61y +≤4.(2020·山东日照市·九年级二模)为了奉献爱心,贡献自己的一份力量,本次新冠状病毒疫情期间,九年级4班18名团员计划在家加工2250个口罩,奉献给社区志愿者,并规定每人每天加工a 个口罩(a 为整数),干了几天以后,其中4人因特殊情况没能继续,若剩下的同学每人每天多加工3个口罩,则提前完成了这次任务,由此可知a 的值最多是( ) A .8B .9C .10D .115.(2020·河北九年级其他模拟)x 的3倍与它的14的差不少于5,列出的关系式为( ) A .1354x x -≥ B .1354x x -≤C .1354x x ->D .1354x x -<6.(2019·山西七年级期末)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A .11B .8C .7D .57.(2020·瑞安市安阳实验中学八年级月考)商店为了对某种商品进行促销,将定价为5元的商品,以下列方式优惠销售:若购买不超过8件,则按原价付款;若一次性购买8件以上,则超出的部分打八折,小明带了70元钱,最多可以购买该商品( )A .14件B .15件C .16件D .17件8.(2021·全国七年级)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( ) A .105(20)80x x -- B .105(20x x +- )80 C .105(20)80x x -->D .105(20x x +- )80>9.(2021·湖南益阳市·八年级期末)李老师网购了一本《好玩的数学》,让大家猜书的价格.甲说:“不少于10元”,乙说:“少于12元”.老师说:“大家说的都没有错”.则这本书的价格x (元)所在的范围为( ) A .10≤x <12B .10≤x ≤12C .10<x <12D .10<x ≤1210.(2021·浙江湖州市·八年级期末)假期,小云带150元去图书馆,下表记录了他当天的所有支出,其中小零食支出的金额不小心被涂黑了,如果平均每包小零食的售价为5元,那么小云可能剩下的金额是( )A .1元B .2元C .3元D .4元11.(2021·广东佛山市·八年级期末)某电信公司推出两种手机收费方案.方案A :月租费30元,本地通话话费0.15元/分;方案B :不收月租费,本地通话话费为0.3元/分.设婷婷的爸爸一个月通话时间为x 分钟,婷婷的爸爸一个月通话时间为多少时,选择方案A 比方案B 优惠?( ) A .100分钟B .150分钟C .200分钟D .250分钟12.(2021·全国八年级)运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A.7B.8C.9D.10 13.(2020·贵州黔西南布依族苗族自治州·八年级期末)等腰三角形的周长为20cm且三边均为整数,底边可能的取值有()个.A.1B.2C.3D.4 14.(2021·黑龙江齐齐哈尔市·九年级期末)某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有()A.2种B.3种C.4种D.5种15.(2021·广东潮州市·七年级期末)某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是().A.两胜一负B.一胜两平C.五平一负D.一胜一平一负二、填空题16.(2021·浙江杭州市·八年级期末)“比x小1的数大于x的2倍”用不等式表示为_________.17.(2020·山西七年级期末)某超市在一次促销活动中规定:消费者消费满300元或超过300元就可领取礼品.某人准备买15瓶啤酒和若干袋火腿肠,已知啤酒每瓶5元,火腿肠每袋15元,他至少买_______袋火腿肠才能领取礼品.18.(2020·全国课时练习)当x______________时,114x--的值是非负数.19.(2020·广西百色市·七年级期中)华润超市在2019年中从某商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于疫情影响,该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打____折20.(2020·浙江杭州市·八年级期末)一次生活常识知识竞赛一共有30道题,答对一题得4分,不答得0分,答错扣2分.小聪有2道题没答,竞赛成绩超过80分,则小聪至多答错了________道题.21.(2020·广东江门市·七年级期末)某商店对一商品进行促销活动,将定价为10元的商品,按以下方式优惠销售:若购买不超过5件按原价付款;若一次性购买5件以上,超过部分打8折,现有98元钱,最多可以购买该商品_______件.22.(2020·全国七年级课时练习)某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元23.(2020·湖北武汉市·七年级期末)某工厂计划m 天生产2160元个零件,若安排15名工人每人每天加工a 个零件(a 为整数)恰好完成.实际开工x 天后,其中3人外出培训,剩下的工人每人每天多加工2个零件,不能按期完成这次任务,则a 与m 的数量关系是_____________,a 的值至少为__________24.(2020·全国单元测试)当13x <<时,化简213x x -+-=________.25.(2020·四川巴中市·七年级期末)某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.26.(2020·江苏徐州市·七年级期末)疫情过后,地摊经济火爆,张阿姨以每件80元的价格购进50件衬衫,在地摊上以每件100元的价格出售,她至少销售__________件衬衫,所得销售额才能超过进货总价.27.(2020·河南洛阳市·七年级期末)现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.28.(2020·洛阳市实验中学九年级月考)为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.29.(2020·浙江省开化县第三初级中学八年级期中)“x 的4倍与1的差不大于3”用不等式表示为 ________________ .30.(2020·沙坪坝区·重庆八中八年级月考)今年立冬,某超市发起限时抢购饺子活动,规定立冬前一天(11月6日)价格打九折,立冬当天(11月7日)价格打八折,其余时间不打折,11月5日王老师在该超市选购甲、乙、丙三种饺子,他发现,2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在立冬当天(11月7日)的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在立冬前一天(11月6日)总价的2027,且4千克甲立冬前一天(11月6日)的总价不低于65元,也不超过100元.如果三种饺子每千克的价格均为正整数,则王老师11月5日买2千克甲,1千克乙,1千克丙共付款______元.三、解答题31.(2021·四川绵阳市·八年级期末)受“疫情”的影响,绵阳某水果批发市场某月只购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍.且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=利润成本×100%)32.(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.33.(2021·全国八年级)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?34.(2021·高台县城关初级中学)某社区要进行十九届五中全会会议精神宣讲,需要印刷宣传材料。
解一元一次不等式(第1课时)(课件)七年级数学下册精品课件(苏科版)

新知归纳 一元一次不等式的概念
只含有一个未知数,并且未知数的次数都是1,系数不等于0. 像这样的不等式,叫做一元一次不等式.
新知巩固
1.判断下列各式是否是一元一次不等式? 否 否 是 否
x>0 是
8>4 否
新知巩固
2.已知3x2-m +70>100是关于x的一元一次不等式,则m=__1__. 解:2-m=1,m=1.
解:因为(m-1)x|m|+3>0是关于x的一元一次不等式, 所以m-1≠0,|m|=1,解得m=-1.
课堂检测
6. 若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0 的解为___y_=__2____.
7. 用※定义一种新运算:对于任意数m和n,规定m※n=m2n-mn-3n. 如1※2=12×2-1×2-3×2=-6. 若3※k≥-6,则k的取值范围 是__2__.
将m=1代入不等式,得3x +70>100
如何解这个 不等式呢?
知识回顾
解一元一次方程的一般步骤和依据是什么?
解一元一次方程的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
解一元一次方程的依据是等式的性质.
新知探索
解一元一次不等式能不能采取类似的步骤呢?
请你类比一元一次方程的解法,探索如何解元一次不等式 3x +70>100?说出每一步变形的依据.
0
-6 0
新知巩固
2.当x取什么值时,代数式2x-4的值大于代数式3x+1的值? 解:根据题意,得 2x-4>3x+1 2x-3x>1+4 -x>5 x<-5 当x<-5时,代数式2x-4的值大于代数式3x+1的值.
新知巩固
3.求一元一次不等式10(x+4)+x ≤73的非负整数解. 解: 10x+40+x≤73 11x≤33 x≤3
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
苏科版七年级数学下册第11章一元一次不等式小结与思考课件

不等式与方程结合的应用
如果关于x的方程3x+a=x+4的解是非负数,求a的取 值范围。
解:3x-x = 4-a
2x = 4-a
x = 4-a 2
X是非负数
4-a 2
≥
0
4-a≥0 -a ≥-4
a≤4
本节课你收获了什么?
1、不等式、一元一次不等式(组)的定义 2、不等式的基本性质 3、解一元一次不等式(组) 4、一元一次不等式的应用 5、数学思想的应用
作业: 导学案055反面
谢谢
3
x
x 0 (4)
(5)
x 0
(6)
x 1 3x 2 3
6
2
(7) x xy y2
A 5个 B 4个 C 6个 D 3个
不等式的基本性质
专 题 性质1: 不等式的两边都加 (或减去)同一个整式,
二
不等号的方向 不变;
性质2: 不等式的两边都乘以(或除以)同一个正数,
性
质
不等号的方向不变;
小结与思考
1、不等式的两边都加上(或减去)
同一个数,所得不等式仍成立
不等式的性质
2、不等式的两边都乘(或都除以)
不
同一个正数,所得不等式仍成立 不等式的两边都都乘(或都除以)
等
同一个负数,必须把不等号改变方向,
式
所得不等式仍成立
一元一次
解一元一次不等式
在数轴上表示
不等式(组)
不等式(组的
解一元一次不等式组 解集
用数轴表示不等式的解集的步骤: 1.画数轴; 2.定界点; 3.定方向. 4.定虚实.
x 1 x 1 x 1 326
(1)求出不等式的最大整数解 (2)求出不等式的正整数解 (3)求出不等式的非负整数解 (4)不等式的整数解的个数?
苏科版七年级下册数学-第七章课件

定义
在平面内画两条互相垂直、原点 重合的数轴,组成平面直角坐标
系。
构成
水平方向的数轴称为x轴或横轴, 竖直方向的数轴称为y轴或纵轴, 两坐标轴的交点为平面直角坐标
系的原点。
坐标
对于平面内任意一点P,过点P分 别向x轴、y轴作垂线,垂足在x 轴、y轴上对应的数a、b分别叫 做点P的横坐标、纵坐标,有序 数对(a,b)叫做点P的坐标。
反映一组数据的集中趋势,中位数将数据 按大小排列后位于中间的数,众数是一组 数据中出现次数最多的数。
数据波动程度刻画
极差
一组数据中最大值与最小值的 差,反映数据的波动范围。
方差
各数据与平均数之差的平方的 平均数,反映数据的离散程度 。
标准差
方差的算术平方根,反映数据 的波动程度。
变异系数
标准差与平均数的比值,用于 比较不同单位或平均数不同时
价
关键知识点总结回顾
平面直角坐标系
掌握平面直角坐标系的概念,理解坐 标轴、坐标原点的意义,能够熟练标 出点的坐标。
点的平移
理解点的平移规律,掌握平移公式, 能够应用平移规律解决相关问题。
一次函数的图象与性质
理解一次函数的概念和性质,掌握一 次函数的图象特征,能够利用一次函 数的性质解决问题。
二元一次方程组
理解二元一次方程组的概念,掌握二 元一次方程组的解法,包括代入消元 法和加减消元法。
易错难点剖析指导
平面直角坐标系中点的坐标特征
注意区分各象限内点的坐标符号特征,特别是坐标轴上的点。
点的平移规律
在平移过程中,要注意平移的方向和距离,避免混淆。
一次函数的图象与性质
要注意一次函数的斜率和截距对函数图象的影响,理解函数图象与x 轴、y轴的交点意义。
湘教版数学八年级上册第4章《一元一次不等式(组)单元复习课》课件

A.0
B.-1
C.1
10.(2023·遂宁中考)若关于x的不等式组
D.2 023
4( − 1) > 3 − 1
的解集为x>3,则a的
5 > 3 + 2
取值范围是( D )
A.a>3
B.a<3
C.a≥3
D.a≤3
7 − 14 ≤ 0①,
11.(1)(2023·湘潭中考)解不等式组
方案1:租用5辆B种客车,20辆A种客车;
方案2:租用6辆B种客车,19辆A种客车;
方案3:租用7辆B种客车,18辆A种客车;
(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎
最小整数解.
【解析】由①得:x<1,由②得:x≥-2,
∴不等式组的解集为:-2≤x<1,
∴该不等式组的最小整数解为x=-2.
− 3( − 2) > 4①
2−1
3
≥
3+2
6
− 1②
,并写出该不等式组的
考点4一元一次不等式(组)的应用
12.(2023·邵阳中考)低碳生活已是如今社会的一种潮流形式,人们的环保观念也
其解集在数轴上表示如图:
−1 −3
(2)(2022·宜昌中考)解不等式 ≥ +1,并在数轴上表示解集.
3
2
【解析】去分母得:2(x-1)≥3(x-3)+6,
去括号得:2x-2≥3x-9+6,
移项得:2x-3x≥-9+6+2,
合并同类项得:-x≥-1,
系数化为1得:x≤1.
表示如图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解不等式组: 解:解不等式①,得
2x+1<-1 3-x≥1 x<-1
① ②
解不等式②,得 x≤2
在数轴上表示不等式①、 ②解集:
。 -1
0
2
由图可知,不等式组的解集是 x<-1
解一元一次不等式组的步骤是什么?
解一元一次不等式组的步骤: (1)解不等式组中的各个不等式; (2)求出这几个不等式解集的公共部分. 解不等式组:
初中数学七年级下册
(苏科版)
11.6一元一次不等式组(1)
一个长方形足球场的宽是65m,如果 它的周长大于340m,面积不大于7150m2,求这 个足球场的的长的范围,并判断这个足球场是 否可以用于国际比赛。 (足球比赛规则规定:用于国际比赛的足球场 长度为100~110m,宽度为64~75m) 分析:设长方形足球场的长是x m,那么它的周 长和面积分别为2(x+65)m,65xm2. 根据题意,得 2(x+65)>340
65x≤7150
什么叫一元一次不等式组?
由几个含有同一个未知数的一次不等式
组成的不等式组叫做一元一次不等式组.
解:设长方形足球场的长是xm,那么它的周长 和面积分别为2(x+65)m,65xm2. 根据题意,得 2(x+65)>340 ① ② 65x≤7150 解不等式①,得 x>105 解不等式②,得 x≤110 在数轴上表示不等式的解集:
3x 1 2 x 1 (1 ) 1 x 2 2
x>2
5 x 4 3( x 1) (2 ) x 1 2x 1 5 2
1 x 2
1、求不等式组 的整数解.
5x 1 3( x 1)
2x 1 5x 1 1 3 2
105 110 0 这个不等式组的解集是105<x≤110 答:这个足球场的的宽是65m,长大于105m并 不大于110m.这个足球场可以用于国际足球比赛。
什么叫不等式组的解集?
所有不等式的解集 公共部分 不等式组中所有不等式的解集的公共部分 叫做这个不等式组的解集.
求不等式组解集的过程叫做解不等式组.
1
2
3
4
x 1
解:原不等式组的解集为
-6
-5 -4 -3 -2 -1
0
1
x 4
同小取小
x 3, (9) x 7.
探索. 求下列不等式组的解集:
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
3 x7
x 2, (10) x 5. x 1, (11) x 4. x 0, (12) x 4.
0 1 2 3 4 5 6 7 8 9
x3
x 2, (6) x 5. x 1, (7) x 4. x 0, (8) x 4.
解:原不等式组的解集为 -7 -6 -5 -4 -3 -2 -1 0
x 5
解:原不等式组的解集为
5
-3 -2 -1 0
不等式组的解集:
你会找不等式组的公 共部分吗?
探索. 求下列不等式组的解集:
x 3, (1) x 7. x 2, (2) x 3. x 2, (3) x 5. x 0, (4) x 4.
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
A. -5
(5)如图,
-2
B. -5
2.5 4
-2
C.
-5
-2
D. -5
-2
A. 1 x 2.5
-1
则其解集是( C )
B. 1 x 4
C. 2.5 x 4
D. 2.5 x 4
1、选择题: x≥2, (1)不等式组 的解集是( D ) x ≤2 A. x ≥2, B. x≤2, D. x =2. C. 无解, x 0.5, (2)不等式组 的整数解是( C ) x≤1 A. 0, 1 , B. 0 , D. x ≤1. C. 1, x ≥-2, (3)不等式组 的负整数解是( C ) x 3 A. -2, 0, -1 , B. -2 , C. -2, -1, D.不能确定. x ≥-2, (4)不等式组 的解集在数轴上表示为( B ) x 5
小结
• 你有哪些收获?说出来,大家共同分 享 • 你还有什么疑惑?提出来,我们一起
讨论
2.解下列不等式组:
3x - 2 < x + 2, (1) 5x + 5 2x - 7;
2x - 3 < 9 - x, (2) 2x - 5 > 10 - 3x;
2 (3 x ) 2 2 , 2x - 8 > 5x +1, 5 (3) (4) 2 11 - 2x < 21 - 4x; (x + 5)-1 < 3. 3
解:原不等式组的解集为
-7 -6 -5 -4 -3 -2 -1 0
5 x 2
解:原不等式组的解集为
-3 -2 -1 0
1
2
3
4
5
1 x 4
解:原不等式组的解集为
-6
-5 -4 -3 -2 -1
0
1
4 x 0
大小小大取中间
x 3, (13) x 7.
探索. 求下列不等式组的解集:
3.大小小大取中间,
运用规律求下列不等式组的解集:
4.大大小小是无解。
x 3 , x 0 , x 1 3 x 6 x 0 , 1 , x 2 x 3 , ( 2 ) ( 7 ) 6 ) (5) ( 1 ) 8 ( 4) (3 x 7 . x 4 . x 5 . 2 x x 2 4 . x 7 . x 4.
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1
0
1
解:原不等式组无解.
大大小小是无解
一般由两个一元一次不等式组成的不等式组的 解集,可以归结为下面四种情况:
①同大取大,同小取小;②大小小大取中间; ③大大小小是无解.
上表可以找出规律,编为口诀:
比一比:看谁反应快
1. 同大取大,
2.同小取小;
x7
解:原不等式组的解集为
-3 -2 -1 0 1 2 3 4
x2
解:原不等式组的解集为 -5 -4
-3
-2
-1
0
x 2
解:原不等式组的解集为
-5 -4 -3 -2 -1
0 1 2
x0
同大取大
x 3, (5) x 7.
探索. 求下列不等式组的解集:
解:原不等式组的解集为
1、若不等式组 x a x 3 0 只有三个整数解,求a的取值范围.
2、若不等式组
1 x 2 x m
有解,求m的取值范围。
x m 1 无解, 3、若不等式组 x 2m 1
则m的取值范围是_______ 4、若不等式4x-a≤0的正整数解是1,2, 则a的取值范围是______.
0 1 2 3 4 5 6 7 8 9
解:原不等式组无解.
x 2, (14) x 5. x 1, (15) x 4. x 0, (16) x 4.
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4