中考之2010-2011年度九年级上之一元二次方程复习

合集下载

中考数学复习 专题11 一元二次方程试题(B卷,含解析)-人教版初中九年级全册数学试题

中考数学复习 专题11 一元二次方程试题(B卷,含解析)-人教版初中九年级全册数学试题

一元二次方程一、选择题1. (某某某某,5,4分)—元二次方程x 2+2x +1=0的根的情况( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根【答案】B【逐步提示】先根据一元二次方程x 2+2x +1=0确定a 、b 、c 的值,再求判别式b 2-4ac 的值,最后根据判别式值的情况作出判断.【详细解答】解:一元二次方程x 2+2x +1=0中,a =1,b =2,c =1,所以b 2-4ac =22-4×1×1=0,故选择B .【解后反思】一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.【关键词】一元二次方程;一元二次方程根的判别式2. ( 某某省,14,2分)a ,b ,c 为常数,且(a -c )2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为0【答案】B【逐步提示】本题考查了一元二次方程根的判别式,先化简不等式得到ac <0,进而判断出b 2-4ac 的符号,由此可知方程根的情况.【详细解答】解:∵(a -c )2>a 2+c 2,即a 2-2ac+c 2>a 2+c 2,∴ac <0,a ≠0.∴关于x 的方程ax 2+bx+c 是一元二次方程,且b 2-4ac >0,故该方程有两个不相等的实数根.【解后反思】1.一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.ax 2+bx +c =0来说,只有当a≠0时,这个方程才是一元二次方程.【关键词】不等式;根的判别式;一元二次方程的定义3. (某某省某某市,10,3分)关于x 的一元二次方程042=++k x x 有两个相等的实根,则k 的值为( )A.k =-4B.k =4C.4-≥kD.4≥k【答案】B【逐步提示】本题考查的是一元二次方程根的判别式,利用一元二次方程的根的情况得到判别式的大小是解题的关键.第一步,根据题目已知条件判断“0=∆”;第二步, 由ac b 42-=∆,列出含有字母k 的方程并求解即可得出答案。

人教版九年级上册数学第21章一元二次方程知识点复习总结

人教版九年级上册数学第21章一元二次方程知识点复习总结

一元二次方程知识点复习总结1. 一元二次方程的一般形式:a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、c ;其中 a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式:当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.ac x x ab x x )2(a2ac4bbx )1(212122,1,;※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式acx x a bx x 2121,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数ab = 0且Δ≥0 b = 0且Δ≥0;(2)两根互为倒数a c =1且Δ≥0 a = c 且Δ≥0;(3)只有一个零根a c = 0且a b ≠0 c = 0且b ≠0;(4)有两个零根a c = 0且a b = 0c = 0且b=0;(5)至少有一个零根a c =0 c=0;(6)两根异号a c <0 a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值a c <0且a b >0a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值a c <0且a b <0a 、c 异号且a 、b 同号;(9)有两个正根a c >0,ab >0且Δ≥0 a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根ac >0,ab <0且Δ≥0 a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x1)(x-x2) 或 ax 2+bx+c=a2ac4bb xa2ac4bb xa 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x ):(1)第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x1x(x1x2)x1x(x1xx x 4)x x ()x x (x x 2)x x (xx )1(2121221221212122122121222222212212212122122214x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为;.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或;.0x ,0x :.1x x Bsin A cos ,1Acos Asin ,90BAB sin x ,A sin x )4(2122212221注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。

中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题-人教版初中九年级全册数学试题

中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题-人教版初中九年级全册数学试题

word公式法解一元二次方程1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=0 7. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=0 17.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=0 19.2x2+x﹣2=0 20.3x2+6x﹣4=0 21.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x ﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.34.x2+3x+1=0,35.4x2=2x+136.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=042. x2+5x+3=043.2x2﹣3x﹣6=0.44.3x2+4x+1=045.x2﹣4x﹣8=046.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2 51.2x2+x﹣=0.52.x2x+1=053.2x2﹣9x+8=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=158.3x2+5(2x+1)=0.59.2x2﹣4x﹣1=060.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;65. x2+3=2x.66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=090 .5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=094.3x2﹣4x﹣1=095.3x2+2(x﹣1)=0,97.3x2﹣4x﹣1=098.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,公式法解一元二次方程106题参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=2原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x 1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x 2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x ﹣1)(x+2)=11x﹣4.3x 2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x 1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x1=﹣+5,x2=﹣﹣5.26.3x2+4x+5=0.∵△=42﹣4×3×5=﹣44<0,∴方程没有实数根.27.x2﹣4x﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.28.x2﹣x﹣4=0.a=1,b=﹣1,c=﹣4.b2﹣4ac=1+16=17>0.∴=∴x1=,x2=29..由原方程,得t2+2t﹣2=0,这里a=1,b=2,c=2.则t===﹣,即t1=t 2=﹣30.2x2﹣2x﹣1=0∵a=2,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,∴x1=,x2=31.3x2+7x+10=1﹣8x.原方程可化为x2+5x+3=0,解得:32.5x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×5×2<0,∴此方程无解33. 5x2﹣3x=x+11(公式法)5x2﹣3x=x+11,整理得:5x2﹣4x﹣11=0,这里a=5,b=﹣4,c=﹣11,∵△=16+220=236,∴x==,则x1=,x2=34.x2+3x+1=0,这里a=1,b=3,c=1,∵△=b 2﹣4ac=9﹣4=5,∴x=,则x1=,x2=35.4x2=2x+1移项得:4x2﹣2x﹣1=0,∵b2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20,∴x==,∴x1=,x2=36.5x2﹣3x=x+1.方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∴x==,∴x1=1,x2=﹣.37.3x2+7x+4=03x2+7x+4=0,∵a=3,b=7,c=4,∴b2﹣4ac=49﹣48=1>0,∴x=,∴x 1=﹣1,x2=﹣.38.2x2﹣3x﹣1=0(用公式法)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17,∴x==,所以x1=,x2=39.3x2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是:x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b 2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.2∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x﹣=0.∵关于x的一元二次方程2x2+x﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴y=,∴y1=,y 2=;65. x2+3=2x.移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b 2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x 1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x 2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b 2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0 ∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0 ∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0 ∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a 2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x 2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x 1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 .5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x 2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x 2+2(x﹣1)=0,整理得:3x2+2x ﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x 2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x 1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b 2﹣4ac=25+8=33,∴x===.即x 1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x 1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x 2+5x+3=0,解得:x==,即:x1=,x2=;。

人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

一元二次方程全章知识点专题复习【课标要点】1. 理解一元二次方程定义;2. 会解一元二次方程;3. 会根据根的判别式24b ac -判断一元二次方程的根的情况; 4. 会列一元二次方程解决实际问题.⎧⎪⎪⎪⎨⎪⎪⎪⎩解法根的判别式一元二次方程二次三项式的分解因式根与系数的关系实际应用问题第1讲 一元二次方程的概念【知识要点】1、一元二次方程的一般形式:200),,,ax bx c a a b c ++=≠(其中是常数. 2、在一般式中,当b =0时,则有220c 00ax c ax bx +=+=或当=时,则有,这两种情况都是一元二次方程.【典型例题】 例1判断下列关于x 的方程是不是一元二次方程.22222222213;(2)50;(3)235;(5)2(3)21;511(6)33;(7)2;(8)()10;(9)40:1(10)0.(0)x x x xy x x x x x x x x abx a b x x x x px qx m p =-=--==-=+++=-=+++=-+=+++=≠() 分析:一元二次方程,必须满足:(1)整式方程;(2)含有一个未知数,并且最高次数是2.解:方程(1)、(6)、(7)的左边是分式,不属于整式方程,方程(3)含有两个未知数,方程(4)的左边不是整式,方程(5)经整理候,得-6x =1,方程(8)中未确定ab≠0,因此,只有(2)、(9)、(10)是一元二次方程.例2方程25)(3)(3)50.m m m x m x ---+-+=((1) m 为何值时,此方程为一元二次方程? (2) m 为何值时,此方程为一元一次方程?分析:形如0nax bx c ++=的方程,当n =2且a≠0时为一元二次方程;当a =0时且b≠0时为一元二次方程.解:(1)当m -2=2时,m =4,这时5)(3)0.m m --≠(当m =4时,此方程为一元二次方程.(2)5)(3)0,20,2m 30m m m m --=->-≠当(为自然数,且-时,方程为一元一次方程.由5)(3)0m 5m 3m m m --=≠(得=或=,又因为3,∴当m =5时,此方程为一元一次方程.例3 为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用了新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2填,为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还应再增加多少米?(只需列出方程,并整理成一般一元二次方程形式.)分析:根据题意本题有两个关系式:一是计划每天加固的长度比原计划增加了20米,而是实际完成工程任务所需时间比原计划缩短2天,由时间关系列出方程.解:设现在计划每天加固河堤x 米,则原来计划每天加固河堤(x -20)米.根据题意德22402240220x x-=-,整理,得 22022400x x --=【知识运用】 一、选择题1.一元二次方程得一般形式是( )A.20x bx c ++= `B.20ax bx c ++=C. 20()ax bx c a o ++== D.以上都不对 2.下列方程为一元二次方程的有( )A.21102x x-+= B. 252ax bx c +=C.()219x -=D.x+y=03.关于x 的方程232232(m n m x mx m x nx px q +=+-+≠其中),经化简整理,化为200)ax bx c a ++=≠(的形式后,二次项系数、一次项系数及常数项分别是( )A.m -n ,p ,qB. m -n ,-p ,qC.m -n ,-p ,-qD.m -n ,p ,-q4.将一元二次方程21x 2x 302-+=-的二次项系数变为正整数,且使方程的根不变的是( )A. 2x 2x 30+=- B. 2x x 60+=-4C 2x x 60=-4-D 2x x 60-=+4二、填空题5.方程24x 0=是_____元______次方程,二次项系数是______,一次项系数是____,常数项是_______.6.当m__________时,方程2m-1)x 21)x 0m m -+=(-(不是关于x 的一元二次方程;当m___________时,上述方程才是关于x 的一元二次方程;7.若方程22x 3x 1k x +=+是一元二次方程,则k 的取值范围是_________; 三、解答题 8.若方程1(3)x230k k x --+-=是关于x 的一元二次方程,求k 的值.9.若关于x 的一元二次方程22(a-1)x +x+a 10-=的一个根是0,求a 的值.10.某大学改善校园环境,计划在一块长80米,宽60米的矩形场地中央建一矩形网球场,网球场占地面积为3500平方米,四周为宽度相等的步行道,求步行道的宽度,根据题意列出泛称,并将其化为一般形式.第2讲 配方法【知识要点】1、直接开平方法解一元二次方程:将方程化成()2b(0)x a b +=≥的形式,则x=0)a b -±≥.2、配方法解一元二次方程:利用公式222a 2()ab b a b ±+=±,把一元二次方程转化为2()(0)x a b b +=≥,再利用直接开平方法解方程.【典型例题】例1 用配方法解关于x 的一元二次方程: x 0px q ++=2分析:配方法解一元二次方程,关键要搞清配方的目的是什么,即配方要使方程能运用直接开平方法解决,该题是一种字母系数的一元二次方程,故可按上述步骤进行求解,先将其整理成一般形式,二次项系数化为1.因二次项系数为1,所以移项得2x x p q +=-,方程两边配方,然后利用完全平方公式,直接开平方法解出方程.解:22221212x ,x (),244qx ,244q p 400,4x (2)p 40x 23p 40px q p p px q p p p q x pq x q +=-++=-+--->>---<222222移项,得配方,得整理,得(+)=(1)当时,方程两边直接开平方,得当=时,==;()当时,原方程无实数解.例2 用配方法解方程(1)2x 6x 50+-=; (2)24x 7x 20-+=分析:方程经过移项,配方后变为形如2().ax b c +=的方程 解:(1)(2)移项,得24x 7x 2-=-化二次项系数为1,例3 试证:不论x 为何实数,多项式424224124x x x x ----的值总大于的值. 分析:比较两个代数式大小通常用做差的方法. 解:∴多项式424224124x x x x ----的值总大于的值. 【知识运用】 一、选择题1. 已知代数式2224x 228x 5x x +-+-的值为3,则代数式的值为( ) A.5B. -5C. 5或-5D.02.将二次三项式22x 4x 6-+进行配方,正确的结果是( )A.24-2(x-1) B.24+2(x-1)C.22-2(x-2)D. 22+2(x-2) 3.方程2(1)9x +=的解是( ) A.2x =B. 4x =-C. 122,4x x ==-D. 122,4x x =-=221265,6959,314333x x x x x x x +=++=+=∴+=∴=-+=--2移项,得配方,得即(x +)2222127717x ()()48287177x x 864877x x 88x x x -+=-+-∴-∴--∴得即()=,===4242424222224242(241)(24)23(21)2(1)2x (1)20(241)(24)0x x x x x x x x x x x x x x -----=-+=-++=-+-+>----->对于任何实数,总有即4.已知11120,19,21202020a xb xc x =+=+=+,则代数式222a b c ab bc ac ++---的值是( ) A.4 B.3C. 2D. 1二、填空题5.224___9(___3)x -+=-6.将二次三项式2x 2x 2--进行配方,其结果等于__________.7.已知m 是方程2x x 20--=的一个根,则代数式2m m -的值等于______. 三、解答题8.用配方法解下列方程2(1)2360;x x --= 221(2)20;33y y --=2(3)0.40.81;x x -= 2(4)1)0;y y ++=9.用配方法证明21074x x -+-的值恒小于0.10.来自信息产业部的统计数字显示,2019年1月至4月份我国手机产量为4000万台,相当于2018年全年手机产量的80%,预计到2020年年底收机产量将达到9800万台,试求这两年手机产量平均每年的增长率.第3讲公式法【知识要点】1.公式法:一般地,对于一元二次方程221200),b 4ac 0x ax bx c a ++=≠≥,(当-时, 2.2b 4ac 0≥V 当=-,方程可用公式法求解;当2b 4ac 0<V 当=-时,方程无解.【典型例题】例1 用公式法解下列方程21x 100-+=() 2(2)221x x +=(3)(1)(1)x x +-=分析:首先把每个方程化成一般式,确定a 、b 、c 的值,在2b 4ac 0≥-的前提下,代入求根公式求出方程的根.解:2221222212(2)2210,2,2,1,424?2?(1122(3)10,1,2,1,44?1?(2(4)x x a b c b ac x x x a b c b ac x x +-====--=-±∴=⨯-+-∴===--===-=--=-±∴==⨯∴==Q 移项,得-1)=12>0,-2x=22原方程可化为(-1)=12>0,-(x=222221210,1,1,1,414?1?(x x a b c b ac x x +-====--=-∴=∴===Q 将原方程可化为-1)=5>0,x例2 阅读下面一段材料,并解答问题.22(1)1,4,10,4(411080,(212x x a b c b ac x ==-=-=-⨯⨯>--∴===⨯∴=Q 1=2-=22220(0)40,4200(0,,,)ax bx c a x b ac b ac b x aa ax bx c a abc ++=≠=-≥--∆=≠∆≥++=≠ 我们知道由一元二次方程运用配方法得其求根公式由平方根的意义知:当时即负数,没有平方根,故代数式就决定了方程根的情况,称它为一元二次方程根的判别式,用记号“”表示,故公式符合条件且0,方可用于求实数根.此外,若均为整数应当222121242,(1)10,:4,?,,?:,b ac b a k x x k x k x x x x k ∆=-∆--+++==∆≥注意当是完全平方时,方程根为有理根;当是完全平方且(是的整数倍时方程的根为整数根. 根据上面得出的结论,请你解答下列问题: 已知关于的方程试求 ⑴为何值时方程有两个实数根 ⑵若方程的两个实数根满足则为何值 分析根据上面材料分析当0时方程有实数根,从而确定k 的取值,对[]1222121121212121.:(1),1)4(1)043230.2(2)0,,0,2k-3=0,35k=,0,240,010,10,,x x k k k k x x x x x x x x x x x k k x =∆≥+-+≥-≥∴≥=≥=∆===><-=+=∴+==-∆≥Q 1于⑵中需分类讨论 解方程有实数根故0,即-( 化简得时方程有两个实数根由①当时此时即符合要求.②当x 时即与相矛盾故舍去k=-13综上可知:当k=时有22x = 例3 某工厂拟建一座平面图形为矩形且面积为200平方米 的三级污水处理池(平面图如右图),由于地形限制,三级水库处理 池的长、宽都不能超过16米,如果池的外围墙建造单价为每米 400元,中间两条间隔墙单价为每米300元,池底建造单价为每平 方米80元.(池墙的厚度忽略不计)(1) 当三级污水处理池的总造价为47200元时,求池长x;(2) 如果规定总造价越低就越合算那么根据题目提供的信息以47200元为总造价来修建三级污水处理池是否最合算?请说明理由.分析:可根据三级污水处理池的总造价为47200元列方程.ADBC隔墙隔墙x21212400400:(1)400(2)3002008047200,4007008002008047200,393500,14,25,,14,25,2516(,)10014,16.7x x xx xx x x x x x ⨯++⨯+⨯=⨯++⨯=-+=====><∴ 解由题意得即有 化简得 解得经检验都是原方程的根但米米不符合题意舍去 当池长为米时池宽为米米符合题意 当三级污水处理池的总造价为47200(2)1612.5164007008001620080463004720016<⨯⨯++⨯=<∴元时,池长为14米.当以47200元为总造价修建三级污水处理池时,不是最合算. 当池长为米时,池宽为米米,故池长为16米符合题意,这时总造价为当以47200元为总造价修建三级污水处理池时,不是最合算.【知识应用】 一、选择题22222401)53200,0,0,x x k k m x x m m m n x mx n n m n --=-++-+=++=≠+1.方程2有两个相等的实数根,则的值为( )A.-1 B.-2 C.1 D.22.若一元二次方程(的常数项为则为( )A.1 B.2 C.1或2 D.53.若是方程的根则的值为( )1A. B.1 C.222235020,______.6.610_______.7.x x x mx m x x x --=++=--=1- D.-124.不解方程,判断方程2的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定二、填空题5.已知的一个根则方程的另一个根是_____,的值是方程3的两根之和是方程22230530______.x x x --=++=与方程2的公共解是三、解答题,28.已知直角三角形的一条直角边比另一条直角边长2cm,且面积为24cm 求直角三角形的周长.21)(4)240,10,.k x k x k k k +++-+=+≠9.已知方程(有零根其中求的值2210.2)0,a a x ax b x a --++=要使(是关于的一元二次方程求的取值范围.第4讲 分解因式法【知识要点】112212121212a xb a x b b b a a x x a a ++≠=-=- 1. 分解因式法:把一个一元一次方:程整理为:()()=0的(0)的形式,方程的解为:;;. 2.注意(1)方程一边一定化为0;(2)常用的方法:①提公因式法;②运用公式法③十字相乘法.【典型例题】260;x x -=例1 用因式分解法解下列方程. (1):(1),,(2),(5)(5),,.x x --分析方程的右边是零左边可以用提公因式法分解方程不要去掉括号更不要两边同时除以或要先移项使方程右边为零212212:60,(6)0,060,0, 6.(2)3(5)2(5)0,(5)[3(5)2]0,(5)(133)0,501330,135,.3x x x x x x x x x x x x x x x x x x -=-=∴=-=∴==---=---=--=∴-=-=∴==解(1)即或原方程可变形为 即或 2(2)3(5)2(5)x x -=-例2 用公式法因式分解式解下列方程.2222(4)(43)(2)49(3)16(6)x x x x -=--=+ (1)3221222(1)(2)(1)(4)(43)0[(4)(43)][(4)(43)]0(77)(1)0,770101, 1.(2)7(3)][4(6)]0,7(3)4(6)][7(3)4(x x x x x x x x x x x x x x x x x x ---=∴-+----=∴---=∴-=--=∴==---+=-++--分析:方程先移项再利用因式分解法来解,方程移项后也能因式分解.解:移项,得333或 原方程化为[ [126)]0,(113)(345)0,3,15.11x x x x +=+-=∴=-=化简为,1).x x x x +-例3 为解决新疆农牧民出行难的问题今年是新疆投资公路建设力度最大、最多的一年,某公路修筑队接受了改建农村公路96千米的任务,为了尽量减少施工带来的交通不便,实际施工时每天比计划多修1千米,结果提前16天完成任务,问原计划每天修多少千米?分析:如果把修路队原来计划每天修(千米),则实际每天修路是(千米,工作任务可根据工作时间=列方程工作效率解:设原计划每天修路千米,由题意得962129616160(3)(2)03(),2:x x x x x x x =++-=∴+-=∴=-= 化简整理得舍去答原计划每天修2千米.【知识运用】1212121212121200550505244552A. B.4C.,4D.,4225(1)(2)034,A B x x x x x x x x x x x x x x x x x x x x x x x x -======-==--======+-===-一、选择题1.一元二次方(5)=0的两个根为( )A.,B.,C.,D.,2.方程()=5()的根为( )3.方程的根是,则这个方程为( ).-1,2 .12C D 34,A.(3)(4)0B.(3)(4)0C.(3)(4)0D.(3)(4)0x x x x x x x x x x ==--+=+-=++=--=1,-2 .0,-1,2 .0,1,-24.已知一元二次方程的两根分别为,则这个方程为( )22225123,_____.4_____,.5147.235(23)201(21);(2)(5)59.,3,x x x x x x x x x x y x x x +-+=-=+-++++=-=-=2二、填空题:5.若与的值相等则6.当时代数式的值为零用分解因式法解方程:2()的解是_____.三、解答题8.用适当的方法解方程.1(1)2有一个直角三角形它的边长恰是个连续整数这个三角形的三边长是多少?10.有一个两位数,它的十位数字和个位数字的和是5,把这个两位数的十位数字和个位数字互换后得到另一个两位数,两个两位数的积为736,求原来的两位数.第5讲 一元二次方程【知识要点】 1、黄金分割:如,图若点C 把线段分成两条线段AB 和BC ,且满足AC BCAB AC=则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2、列方程解应用题的基本步骤可归纳为:审(审题);设(设未知数);列(列方程)解(解方程);答(答案).3、列方程解应用题的关键是找出存在的相等关系 【典型例题】例1 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到五月份营业额的平均增长率.分析:本题属于平均增长率问题,由已知可设月平均增长率为x ,那么3月份的营业额为400(1+10%)(1+x ),5月份营业额为400(1+10%)(1+x )2.解:设平均月增长率为x ,由题意得400(1+10%)(1+x )2=633.6 整理得:(1+x )2=633.61 1.2440x ∴+=± 0.2x ∴= 所以平均月增长率为20%.例2 一块矩形耕地大小尺寸如图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600米2,那么水渠应挖多宽?分析:这类问题的 特点是挖蕖所占用土地面积只与挖蕖的条数、渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把沿东西和南北方向挖的渠道移动到一起,那ABC么剩余可耕的长方形土地的长为(162-2x )米,宽为(64-4x )米.解:设水渠应挖x 米宽,以题意,得(162-2x )(64-4x )=9600化简,297960x x -+=解得11x =,296x =(舍去)答:水渠应挖1米宽. 【知识运用】 一、选择题1. 某商店十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率是( ) A .20% B ..12% C .22% D.10%2. 从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A. 9cm 2B.68cm 2C. 8cm 2D. 64cm 23.有一个两位数,它的数字和等于14,交换数字位置后,得到新的两位数比原来的两位数大18,则原来的两位数是( )A .68 B.86 C.-68 D.-864.随着通讯市场竞争日益激烈,某通讯公司的收集市话收费标准按原标准每分钟降低了a 院后,再次下降25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( ) A. 5(1)4b -元 B. 5()4b a +元 C. 3()4b a +元 D 4()3b a +元. 二、填空题5.三个连续偶数,较小的两个数的平方和等于较大的数的平方,则这三个数为________. 6.一个两位数,它的数字之和为9,如果十位数字为a ,那么这个两位数是________;b 把这个两位数的个位数字与十位数字对调组成一个新数,则这个数与原数的差为________. 7.某种手表的成本在两年内以100元降低到81元,那么平均每年降低成本的百分率是_____. 三、解答题8.某工厂计划用两个月把产量提高21%,如果每月比上个月提高的百分数相同,求这个百分数.9.某人将2000元人民币按一年定期存入银行,到期后支出1000元用来购物,剩下的1000元及应得利息又全部按一年定期存入银行.若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率.10.某商店如果将进货价为8元的商品按每件10元出售,每天可销售200件.现采用提高售价、减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.问售价定为多少时,才能使所赚利润最大,并求出最大利润.第1讲一、1.C 2.C 3.D 4.D 二、5.一、二,4,0,0 6.m=1,m ≠1 7.222a ab b --三、8.根据题意的1230k k ⎧-=⎪⎨-≠⎪⎩①②由①得k -1=-2解得k=3或k=-1,由②得k ≠3,所以k=-19.由于方程的解使方程的左右两边相等,故将方程的解代入原方程后得到关于a 得方程,求出a 得值,但是需要满足原一元二次方程的二次项系数不为零,故只取a=-1. 10.设步行道的宽度为x 米,根据题意得(80-2x ).(60-2x)=3500整理,得方程的一般形式为703250x -+=2x 第2讲一、1.A 2.B 3.C 4.B二、5.12x,2x ;6.2(1)3x --;7.22m m -=三、8.121233(1)(2)2,31342x y y y y ±±==-==-=--2()x=29.2711110)002040x --<原式配方得-( 2210740,10740x x x x +-=+-即-故-的值恒小于 10.设这两年手机产量平均每年的增长率为x ,根据题意得2124000212(1)980040%,8055x x x +====-解得%(舍去) 第3讲一、1.B 2..B 3.D 4.A 二、5.24-- 6.2 7.x=-1三、8.设直角三角形的较短的直角边长为xcm ,则较长的直角边长为(x+2)cm.根据题意得:2001)0(4)02402x x k k k k =∴=+⨯++⨯-+=∴=Q 方程有零根即将代入方程得,(2121(2)24248026,8()2810x x x x x x x +=∴+-===-∴+=∴∴解得不符合题意舍去较长直角边为直角三角形的周长为6+8+10=24(cm )9. 10.要使方程是x 的一元二次方程,则由一元二次方程的定义.有220,2,1a a a a x --≠∴≠≠-且时该方程时关于的一元二次方程第4讲一、1.C 2.A 3.C 4.C 二、5.- 1或4 6.x =-27.260,y y x +-==三、8.(1)y=12±(2)121x x 5==- 9. 3,4,5 10. 32,23第5讲一、1.C 2.A 3.B 4.D 二、5. 7,6,8 6.9a+9,81-18a 7.10%三、8.设每月提高的百分率为x,原产量为a ,以题意得a(1+x)2=a(1+21%)220(1) 1.210.110% 2.1(10a x x ≠∴+====-∴Q 1解得x 舍去)为%9.设此种存款的年利率为x ,由题意得: 【2000(1+x )-1000】(1+x)=1320 所以年利率为10%10.设此种商品的售价为x 元,商品所赚利润s 最大.2210.(20010)2040020(10)20000.5102000.x s x x x s x x s -=-⨯=-+∴=--+∴=当时,取最大值。

中考一元二次方程真题汇总附答案

中考一元二次方程真题汇总附答案

中考一元二次方程专项训练一、单项选择题 (说明 )1、( 2011甘肃兰州,1, 4 分)以下方程中是对于x 的一元二次方程的是A.B.C.D.2、( 2011 安徽, 8, 4分)一元二次方程x( x- 2) =2-x 的根是()A.- 1B. 2C.1和 2D.-1和 23、( 2011 浙江省舟山, 2, 3 分)一元二次方程的解是()A.B.C.或D.或4、( 2011四川南充市, 6, 3 分)方程 (x+1)(x- 2)=x+1 的解是()A. 2B. 3C.- 1,2D.- 1, 35、( 2011江苏泰州,3, 3 分)一元二次方程x2=2x 的根是A. x=2B. x="0"C. x1="0," x2=2D. x1="0," x2= - 26、( 2011甘肃兰州,10, 4分)用配方法解方程时,原方程应变形为A.B.C.D.7、( 2011 台湾全区, 31)对于方程式的两根,以下判断何者正确A.一根小于 1,另一根大于 3B.一根小于- 2,另一根大于 2C.两根都小于 0D.两根都大于28、( 2011福建福州,7, 4 分)一元二次方程根的状况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9、( 2011四川成都,6,3 分)已知对于的一元二次方程有两个实数根,则以下对于鉴别式的判断正确的选项是()A.B.C.D.10 、( 2011 重庆江津, 9, 4 分)已知对于x 的一元二次方程 (a- 1)x2- 2x+1=0 有两个不相等的实数根,则 a 的取值范围是( )<2 B,a>2 <2 且 a≠ 1 -< 2·11 、( 2011台湾台北,20 )若一元二次方程式的两根为0、 2,则之值为什么A. 2B. 5C. 7D. 812 、( 2011山东济宁,5, 3分)已知对于x 的方程 x 2+ bx+ a= 0有一个根是- a(a≠,0)则 a- b 的值为A.-1B. 0C. 1D. 213 、( 2011 湖北荆州, 9, 3 分)对于的方程有两个不相等的实根、,且有,则的值是A. 1B.- 1C.1 或- 1D. 214 、( 2011江苏南通,7, 3分)已知 3 是对于 x 的方程x2- 5x+ c= 0 的一个根,则这个方程的另一个根是-152011A. x1< x2< a< b12 3x1,x2(x1x2)B. x1< a< x2< b(x a)(x b) =" 1(a" < b)x1,x2,a,bC. x1< a< b< x2D. a< x1< b< x216、( 2011湖北黄石,9, 3 分)设一元二次方程( x- 1)( x- 2) =m(m>0) 的两实根分别为α,β,且,则α,β满足A. 1<α <β <2B. 1<α <2 < βC.α <1<β <2D.α <1且β >217、( 2011四川凉山州,6, 4 分)某品牌服饰原价173 元,连续两次降价后售价价为127 元,下边所列方程中正确的是()A.B.C.D.18、( 2011山东威海,9,3 分)对于 x 的一元二次方程有两个相等的实数根,则m 的值是()A.B.C.D.或19、( 2011 山东潍坊,7, 3分)对于 x 的方程的根的状况描绘正确的选项是()A. k 为任何实数,方程都没有实数根B. k 为任何实数,方程都有两个不相等的实数根C. k 为任何实数,方程都有两个相等的实数根D.依据 k 的取值不一样,方程根的状况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种20、( 2011江苏苏州,8,3 分)以下四个结论中,正确的选项是()A.方程 x+=- 2 有两个不相等的实数根B.方程 x+=1 有两个不相等的实数根C.方程 x+=2 有两个不相等的实数根D.方程 x+=a(此中 a 为常数,且 |a|>2)有两个不相等的实数根21、( 2011湖北鄂州,11 , 3 分)以下说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据 5, 2, 7, 1,2, 4 的中位数是 3,众数是 2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ ABC中,∠ C=90°,两直角边 a, b 分别是方程x2- 7x+ 7=0 的两个根,则AB 边上的中线长为。

中考数学专题复习之一元二次方程

中考数学专题复习之一元二次方程
2023年中考数学一轮复习
一元二次方程
中考命题说明
考点
课标要求
考查角度
了解一元二次方程的概念,理 一元二次
解配方法,会用因式分解法、 1 方程的
公式法、配方法解简单的数字 解法
系数的一元二次方程.
常以选择题、填空题、解答题的形式考 查一元二次方程的定义和解法.有时会 要求用指定的方法解方程,以考查是否 全面掌握了一元二次方程的解法.
【分析】A、是一元二次方程,故本选项符合题意; B、是分式方程,不是一元二次方程,故本选项不符合题意; C、当a=0时,不是一元二次方程,故本选项不符合题意; D、化简后为–1= x+1,是一元一次方程,不是一元二次方程,本选项不符合题意, 故选A. 【答案】A.
知识点1:一元二次方程及有关概念
典型例题
知识点1:一元二次方程及有关概念
典型例题
【例3】(2分)(2021•青海9/25)已知m是一元二次方程x2+x﹣6=0的一个根,
则代数式m2+m的值等于

【解答】解:将x=m代入方程x2+x﹣6=0,
得m2+m﹣6=0,
即m2+m=6, 故答案为:6. 【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未
3. 选择技巧:
知识点2:一元二次方程的解法
(1)若一元二次方程缺少常数项,且方程的右边为0,可考虑用因式分解法求解; (2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解; (3)若一元二次方程的二次项系数为1,且一次项的系数是偶数时或常数项非常 大时,可考虑用配方法求解; (4)若用以上三种方法都不容易求解时,可考虑用公式法求解.
一元二次 了解一元二次方程根的判别式, 常以选择题、填空题的形式考查一元二

中考一元二次方程及其应用--拔高题

中考一元二次方程及其应用--拔高题

中考一元二次方程一选择题1. (2011甘肃兰州)下列方程中是关于x 的一元二次方程的是( )A .2210x x+= B . 20ax bx c ++=C .(1)(2)1x x -+= D .223250x xy y --=2.(10巴中)一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 3.关于x 的方程220x kx k -+-=的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、无实数根D 、不能确定 4.方程2x (x -3)=5(x -3)的根是( )A. 52x =B.3C. 1253,2x x ==D. 125,32x x =-=-5. (2011哈尔滨)若x=2是关于x 的一元二次方程x 2﹣mx+8=0的一个解.则m 的值是( ) A.6 B.5 C.2 D.﹣66.已知ac <0,则方程ax 2-bx +c =0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根7.(2011张家界)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A 、1 B 、﹣1 C 、0 D 、无法确定8. (2011乌鲁木齐)关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )A 、-1 B 、0 C 、1 D 、-1或19. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p =( ) A .4 B .0或2 C .1 D .1-10.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( ) A.k <-1 B.k >-1,且k ≠0 C. k <1 D. k <1,且k ≠011.若代数式x 2+8x +m 是一个完全平方式,则m 的值为( )A.4B.-4C.16D.-16 12.一元二次方程2310x x -+=的两个根分别是12x x ,,则221212x x x x +的值是( ) A.3B.3-C.13D.13-13. (2011兰州)关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 .14.(2010年,2分)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x +=B .230005000x =C . 23000(1)5000x +=%D .23000(1)3000(1)5000x x +++= 15.三角形两边的长分别是8和6,第三边的长是一元二次方程x 2-16x +60=0的一个实数根,则该三角形的面积是( )A.24 B.24或 C.48 D.16.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、3 C 、6 D 、917. (2011•台湾20,4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分( )A 、11B 、12C 、13D 、1418. (2011甘肃兰州)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -=19. (2011贵州毕节)广州亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,下列所列方程正确的是( )A .128%)1(1602=+aB .128%)1(1602=-aC .128%)21(160=-aD .128%)1(160=-a 20.(2011湖北黄石)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n 的值为( )A .5 B .6 C .7 D .821. (2011云南保山)据调查,某市2011年的房价为4000元/m 2,预计2013年将达到4840元/m 2,求这两年的年平均增长率.设年平均增长率为x ,根据题意,所列方程为( )A .4000(1+x )=4840B .4000(1+x )2=4840C .4000(1-x )=4840D .4000(1-x )2=4840 二填空题1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 .2.关于x 的一元二次方程1(3)(1)30n n x n x n +++-+=中,则一次项系数是 . 3. (2011梧州)一元二次方程x 2+5x+6=0的根是 .4.x 2+6x + =(x +3)2.5.(2010年,3分)已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .6. (2011江苏镇江常州)已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .7. (2011山东滨州)若x=2是关于x 的方程2250x x a --+=的一个根,则a 的值为______.8. 若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 . 9.设x 1、x 2是方程3x 2+4x -5=0的两根,则=+2111x x ,.x 12+x 22= . 10.关于x 的方程2x 2+(m 2-9)x +m +1=0,当m = 时,两根互为倒数; 当m = 时,两根互为相反数.11.已知方程mx 2-mx +2=0有两个相等的实数根,则m 的值为 . 12.若x =1是一元二次方程x 2+x +c +=0的一个解,则c 2= .13.当c =__________时,关于x 的方程2280x x c ++=有实数根.(填一个符合要求的数即可)14.当x= 时,分式2231x x x +--的值为0.15.若x1=23-是二次方程x2+ax+1=0的一个根,则a=,该方程的另一个根x2= .16.设x1,x2是方程2x2+4x-3=0的两个根,则(x1+1)(x2+1)= __________,x12+x22=_________,1211x x+=__________,(x1-x2)2=_______.17. (2011•宁夏)某商场在促销活动中,将原价36元的商品,连续两次降价m%后现价为25元.根据题意可列方程为.18. (2011山西)“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的主要动力. 2010年全省全年旅游总收入大约1000亿元,如果到2012年全省全年旅游总收入要达到1440亿元,那么年平均增长率应为__________.19. 某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长是.20. (2011•山西)“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,21. (2011•江苏宿迁)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是m(可利用的围墙长度超过6m).22. (2011天水)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.三、解答题1.解方程 4x2-8x+1=0(用配方法);2.当m为何值时,关于x的一元二次方程21402x x m-+-=有两个相等的实数根?此时这两个实数根是多少?3.已知关于x的一元二次方程x2+(m-2)x-m-1=0,试说明无论m取何值,这个方程总有两个不相等的实数根.4.(2011湖北黄石6分)解方程:0)10553(|4|222=--+--yxyx.5.已知a ,b ,c 2410b c ++-=(),求方程ax 2+bx +c =0的解.6. (2011山东淄博)已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+2m ﹣14=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2,那么▱ABCD 的周长是多少?7. (2011山东日照8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.8. (2011年广西桂林8分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?9. (2011新疆建设兵团10分)某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P (个)与每个书包销售价x (元)满足一次函数关系式.当定价为35元时,每天销售30个;定价为37元时,每天销售26个.问:如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?10. (2011湖北十堰6分)请阅读下列材料:问题:已知方程x 2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍。

中考数学复习之一元二次方程与应用题,概念与应用练习题

中考数学复习之一元二次方程与应用题,概念与应用练习题

9. 一元二次方程知识过关1. 一元二次方程的概念及一般形式:只含有一个未知数,未知数的高最次数是2的___方程.一元二次方程的一般开式是_______________2. 一元二次方程的解的概念:使一元二次方程左右两边相等的未知数的值是一元二次方程的根.3. 一元二次方程的解法:(1)直接开平方法:c b ax a x =+=22)(、(2)配方法:(3)公式法:aac b b x 2422,1-±-= (4)因式分解法:4.一元二次方程根的判别式:__________叫做一元二次方程02=++c bx ax 的根的判别式,用“∆”表示.(1))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(2))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(3))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(4))0(00≠=++⇔>∆a c bx ax 有两个________实数根.5.列一元二次方程解应用题的一般步骤审题—设_____列出一元二次方程—解一元二次方程—检验—写出答案6. 应用题中常见的数量关系(1) 平均增长率、降低率问题若基数为a ,平均增长率为x ,则一次增长后的值为a (1+x ),两次增长后的值为a (1+x )2(2) 利润问题利润=售价-______;利润率=%100⨯-进价进价售价 打折后的价格=原价⨯打折数×101 (3) 利息问题利息=本金利率期数本息和=本金+利息=本金(1+利率⨯期数)利息税=利息⨯____贷款利息=贷款数额⨯____⨯期数(4) 面积问题、传染病问题、握手问题、面积问题等.考点分类考点1 一元二次方程的相关概念例1 (1)下列方程中是关于x 的一元二次方程是( )A. 0122=+xx B.02=++c bx ax C.1)2)(1(=+-x x D.052322=--y xy x(2) 关于x 的一元二次方程01||)1(2=-++-a x x a 的一个根为0,则实数a 的值为( )A. -1B.0C.1D.-1或1考点2 一元二次方程的解法例2 (1)方程1)2)(1(+=-+x x x 的解是( )A.2B.3C.-1,2D.-1,3(2)解方程:0142=+-x x考点3 一元二次方程的判别式例3 已知关于x 的一元二次方程012)1(2=+--x x a 有两个不相等的实数根,则a 的取值范围是( )A. a <2B.a >2C.a <2且a ≠1D.a <-2考点4 一元二次方程的应用例4 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建立力度,2018年市政府共投资了2亿人民币建设了廉租房8万平方米,预计到2020年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2020年底共建设了多少万平方米的廉租房.真题演练1.设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣60402.有两个人患了流感,每轮传染中平均一个人传染了x个人,则两轮传染后患流感的人数共有()A.x(x+2)人B.(x+1)2人C.(x+2)2人D.2(x+1)2人3.若m,n是方程2x2﹣4x﹣3=0的两个根,则2m2﹣5m﹣n的值为()A.9B.1C.﹣1D.54.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=4 5.如果关于x的方程x2﹣x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m≥−14B.m<−14C.m>−14D.m≤−146.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)2其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③7.若一个等腰三角形的一边为4,另外两边为x2﹣12x+m=0的两根,则m的值为()A.32B.36C.32或36D.不存在8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3569.某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x 元,可列方程为 .10.如图,在△ABC 中,AB =3cm ,BC =6cm ,AC =5cm ,蚂蚁甲从点A 出发,以2.5cm /s 的速度沿着三角形的边按A →B →C →A 的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm /s 的速度沿着三角形的边按A →C →B →A 的方向行走,那么甲出发 s 后,甲乙第一次相距2.5cm .10. 由于新冠疫情的影响,口罩需求量急剧上升,但在有关部门大力调控下,口罩价格没有上涨.经调查发现,某社区药店把口罩定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.如果该药店想一天获得315元口罩销售额,并且尽可能让顾客获得更大的优惠,应该降价多少元?课后作业1.下列一元二次方程中,两实数根之和为2的是( )A .x 2+2x +1=0B .x 2﹣2=0C .﹣x 2+2x ﹣3=0D .12x 2﹣x −32=02.设a ,b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2022B .2018C .﹣2018D .20223.关于x的一元二次方程x2﹣4x+1=2k有两个不相等的实数根,则k的取值范围为()A.k>32B.k>1C.k<1D.k>−324.方程x(x﹣1)=x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=1 5.如图,在一个长为60m,宽为40m的矩形场地内修筑两条等宽的道路,剩余部分为绿化用地,如果绿化用地的面积为2204m2,那么道路的宽为m.6.某水果店以相同的进价购进两批车厘子,第一批80千克,每斤16元出售;第二批60千克,每斤18运出售,两批车厘子全部售完,店主共获利960元.(1)求车厘子的进价是每千克多少元?(2)该水果店一相同的进价购进第三批车厘子若干,第一天将车厘子涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批车厘子,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时车厘子售完,店主销售第三批车厘子获得的利润为850元,求第二天车厘子的售价是每千克多少元?7.已知k为实数,关于x的方程为x2﹣kx=3(k+3).(1)请证明不论k取何值,这个方程总有两个实数根;(2)若方程的两个根分别记为x1,x2,且满足x12+x22=9,求k值.冲击A+已知,在菱形ABCD中,∠BCD=60°,将边CD绕点C顺时针旋转α(0<α<120°),得到线段CE,连接ED、ED或其延长线交∠BCE的角平分线于点F.(1)如图1,若α=20°,直接写出∠E与∠CFE的度数;(2)如图2,若60°<α<120°.求证:EF﹣DF=CF;(3)如图3,若AB=6,点G为AF的中点,连接BG,则DC旋转过程中,BG的最大值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程复习一、选择题1.下列四个说法中,正确的是 A.一元二次方程245x x ++=有实数根; B.一元二次方程2452x x ++=有实数根; C.一元二次方程245x x ++=有实数根; D .一元二次方程x 2+4x+5=a(a ≥1)有实数根.2.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠53.一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是A.ac b 42-=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥04.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是(A )-3,2 (B )3,-2 (C )2,-3 (D )2,3 5.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为 A .7- B .3- C .7 D .36. 若a 为方程式(x -17)2=100的一根,b 为方程式(y -4)2=17的一根, 且a 、b 都是正数,则a -b 之值为何?(A) 5 (B) 6 (C) 83 (D) 10-17 。

7.方程 x 2 + x – 1 = 0的一个根是 A. 1 –5 B.251- C. –1+5 D. 251+- 8.已知n m ,是方程0122=--x x 的两根,且8)763)(147(22=--+-n n a m m ,则a 的值等于 ( )A .-5 B.5 C.-9 D.99.已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定10.已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A .abB .abC .a b +D .a b -11.若12,x x 是方程2x =4的两根,则12x x +的值是( )A.8B.4C.2D.012. 一元二次方程x 2+kx-3=0的一个根是x=1,则另一个根是( )A.3B.-1C.-3D.-213.关于x 的一元二次方程x2-6x +2k =0有两个不相等的实数根,则实数k 的取值范围是( ).A .k ≤92B .k <92C .k ≥92D .k >9214.方程2560x x --=的两根为( )A . 6和-1B .-6和1C .-2和-3D .2和3 15.一元二次方程x 2-4=0的解是( )A .x 1=2,x 2=-2B .x =-2C .x =2D . x 1=2,x 2=0 16.方程230x -=的根是 (A) 3x = (B) 123,3x x ==- (C)x =(D)12x x ==17.一元二次方程220x x +-=的两根之积是( )A .-1B .-2C .1D .218.方程x (x -1)=2的解是A .x =-1B .x =-2C .x 1=1,x 2=-2D .x 1=-1,x 2=219.方程112,022x x x x 下面对的一较小根为=--的估计正确的是( ) A .121-<<-x B .011<<-xC .101<<xD .211<<x20.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .2521.一元二次方程2340x x +-=的解是 ( ).A .11x =,24x =-B .11x =-,24x =C .11x =-,24x =-D .11x =,24x =22.已知x =0是方程x 2+2x +a =0的一个根,则方程的另一个根为( ) A .-1 B .1 C .-2 D .2 23.方程(x-5)(x-6)=x-5的解是( )A.x=5B.x=5或x=6C.x=7D.x=5或x=7 二、填空题1.(2010甘肃兰州) 已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是 .2.(2010江苏苏州)若一元二次方程x 2-(a+2)x+2a=0的两个实数根分别是3、b ,则a+b= . 2.(2010安徽芜湖)已知x 1、x 2为方程x 2+3x +1=0的两实根,则x 12+8x 2+20=__________.3.(2010江苏南通)设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = .4.(2010山东烟台)方程x 2-2x-1=0的两个实数根分别为x 1,x 2,则(x 1-1)(x 1-1)=_________。

5.(2010四川眉山)一元二次方程2260x -=的解为___________________.6.(2010 福建德化)已知关于x 的一元二次方程的一个根是1,写出一个符合条件的方程: . 7.(2010江苏无锡)方程2310x x -+=的解是▲.8.(2010年上海)方程 x + 6 = x 的根是____________.9.(2010 江苏连云港)若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一个符合条件的值即可)10.(2010 河北)已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 . 11.(2010湖北荆门)如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是 12.(2010 四川成都)设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.13.(2010湖北鄂州)已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)= . 14.(2010陕西西安)方程042=-x x 的解是 。

15.(2010 四川绵阳)若实数m 满足m 2-10m + 1 = 0,则 m 4 + m -4 = . 16.(2010四川 泸州)已知一元二次方程)2110x x -=的两根为1x 、2x ,则1211x x +=_____________. 17.(2010 云南玉溪)一元二次方程x 2-5x+6=0 的两根分别是x 1,x 2, 则x 1+x 2等于 A. 5 B. 6 C. -5 D. -6 18.(2010 贵州贵阳)方程x 2+1=2的解是 ___ .19.(2010 四川自贡)关于x 的一元二次方程-x 2+(2m +1)x +1-m 2=0无实数根,则m 的取值范围是_______________。

20.(2010 山东荷泽)已知2是关于x 的一元二次方程x 2+4x -p =0的一个根,则该方程的另一个根是 .21.(2010 广西钦州市)已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = . 22.(2010广西梧州)方程x 2-9=0的解是x =_________ 23.(2010广西柳州)关于x 的一元二次方程(x +3)(x -1)=0的根是_____________. 24.(2010辽宁本溪)一元二次方程21104x -=的解是 . 25.(2010福建南平)写出一个有实数根的一元二次方程___________________. 26.(2010 福建莆田)如果关于x 的方程220x x a -+=有两个相等的实数根,那么a= .27.(2010广西河池)方程()10x x -=的解为 . 28.方程2x(x-3)=0的解是 .29.(2010湖南娄底)阅读材料:若一元二次方程ax 2+b x +c=0(a ≠0)的两个实根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2= -b a ,x 1x 2= ca根据上述材料填空:已知x 1、x 2是方程x 2+4x +2=0的两个实数根,则 1x 1+1x 2=_________.30.(2010内蒙呼和浩特)方程(x ﹣1)(x + 2)= 2(x + 2)的根是 .31.(2010广西百色)方程x x 22=-1的两根之和等于 . 三、解答题1.(2010江苏苏州)解方程:()221120x x xx----=. 2.(2010安徽省中中考)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/2m 下降到5月分的12600元/2m⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/2m ?请说明理由。

3.(2010广东广州,19,10分)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab的值。

【分析】由于这个方程有两个相等的实数根,因此⊿=240b a -=,可得出a 、b 之间的关系,然后将4)2(222-+-b a ab 化简后,用含b 的代数式表示a ,即可求出这个分式的值.4.(2010 四川南充)关于x 的一元二次方程230x x k --=有两个不相等的实数根. (1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根. 5.(2010重庆綦江县)解方程:x 2-2x -1=0.6.(2010 广东珠海)已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。

7.(2010年贵州毕节)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .(1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.8.(2010湖北武汉)解方程:x 2+x-1=0. 9.(2010江苏常州)解方程2660x x --=10.(2010 四川成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.11.(2010广东中山)已知一元二次方程022=+-m x x .(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。

相关文档
最新文档