初中数学 九年级上一元二次方程教案

合集下载

初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案

初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案

一元二次方程一、教学目标:知识技能:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3..理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.二、教学重难点:通过类比一元一次方程,了解一元二次方程的概念、一般形式ax2+bx+c=0(a≠0)及一元二次方程的根等概念,并能用这些概念解决简单问题.把实际问题转化为一元二次方程模型.教学时间:两课时三、教学过程:第一课时洋葱小视频分享一、有关解方程的科学家的故事,激发学生学习方程的兴趣。

洋葱小视频分享二、一元二次方程的定义讲解,激发学生利用手中的工具提前预习,轻松学习知识。

(一)、知识回顾、教师引导学生完成下列题目,复习一元一次方程的相关知识:一元一次方程的知识:1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.若关于x的方程(m+1)x|m|+1=0是一元一次方程,则m=____1____.3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=__-3__.(二)、【课堂引入】问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?学生先自主探究、分析,再在小组内合作讨论,设出合适的未知数,根据等量关系列出方程.1.探究交流观察[课堂引入]中所列的方程,分析以上两个方程是不是一元二次方程,它们与一元一次方程有什么区别与联系.学生观察、思考、讨论、交流、汇报.教师重点引导学生观察得到所列方程的特点:①整式;②一元;③二次.引入课题(板书):一元二次方程.2.归纳定义问题:根据找出的一元二次方程的特征,你能给一元二次方程下个定义吗?教师引导学生结合所列方程的三个特征及一元二次方程的名称,类比一元一次方程的定义,得出一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.教师板书:整式;一元;二次.(三)、新知探究运用1、(试一试)抢答:下列各方程是不是一元二次方程:①3x+2=5x-2;②2x2-2x=0;③x2=0;④-=0;⑤3y2=(3y+1)(y-2);⑥ax2+bx+c=0;⑦3x2=5x-1;⑧(x+3)(2x-4)=0.第二课时教学过程:一、简单回顾一元二次方程的定义及判断二、新知探究:(一)、一元二次方程的一般形式:问题1:类比一元一次方程的一般形式,你能写出一元二次方程的一般形式,并说出各项的名称吗?师生共同小结(板书):一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(试一试)抢答:指出下列各方程的二次项、一次项和常数项.①3x2+2x-1=0;②2x2=3;③=0.(二)、问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?师生共同小结(板书):概念:一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. (试一试)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3,4.(三)、【应用举例】例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.例2已知关于x的方程x2-2x+k2=0的一个根是1,那么k的值是________.变式练习:已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________.(四)、【拓展提升】例3已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程?例4已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.例5求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用.三、【达标测评】1.若方程mx2-2x+m=0是关于x的一元二次方程,则( C )A.m为任意实数B.m=0C.m≠0 D.m=0或m=12.下列方程中,不含一次项的是(D)A.3x2-5=2x B.16x=x2C.x(x-7)=0 D.(x+5)(x-5)=03.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__.4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__.5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.四、课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!五、【教学反思】①[授课流程反思]在问题导入环节中,出示的问题有难度,需要教师进一步讲解;在新知探究环节中,学生充分发挥主动性,总结新知能力较强;在能力训练环节中,学生完成较好,值得鼓励与表扬.②[讲授效果反思]对于一元二次方程的定义,教师必须强调:(1)把握一般形式;(2)二次项系数不为0;(3)分清各项系数.③[师生互动反思]从课堂过程和效果分析,学生能够充分交流、合作,对于问题思考和解答都有独立性,效果较好.。

人教版初中数学九年级上册21.2.2公式法解方程(教案)

人教版初中数学九年级上册21.2.2公式法解方程(教案)
人教版初中数学九年级上册21.2.2公式法解方程(教案)
一、教学内容
人教版初中数学九年级上册第21章第2节“一元二次方程”,本节课主要聚焦于21.2.2公式法解方程。内容包括:
(1)回顾一元二次方程的一般形式:ax^2 + bx + c = 0(a ≠ 0);
(2)介绍公式法解一元二次方程的原理,即求根公式:x1,2 = (-b ± √(b^2 - 4ac)) / (2a);
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了公式法解一元二次方程的基本概念、求根公式的应用和根的判别式的意义。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.案例分析:接下来,我们来看一个具体的案例。例如,方程2x^2 - 5x + 3 = 0,我们将展示如何使用求根公式求解这个方程,并解释它在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调求根公式的记忆和使用,以及根的判别式Δ的应用。对于难点部分,我会通过具体例题和逐步解析来帮助大家理解。
在学生小组讨论环节,我尝试扮演了一个引导者的角色,让学生们自主发现问题、分析问题并解决问题。这种教学方式取得了较好的效果,学生们在讨论中相互启发,共同进步。但我也发现,有些学生在分享成果时表达不够清晰,这可能是他们在语言组织和逻辑思维方面还有待提高。因此,在今后的教学中,我将加强对学生表达能力的培养,提高他们的逻辑思维能力。
四、教学流程
(一)导入新课(用时5分钟)

一元二次方程的解法教案人教版

一元二次方程的解法教案人教版
在今天的《一元二次方程的解法》课程中,我们学习了以下内容:
- 一元二次方程的定义和解法(直接开方法、因式分解法、求根公式法)
- 一元二次方程的解法检验
- 一元二次方程的应用
在教学过程中,我们通过实例讲解、小组讨论等教学方法,使学生能够更好地理解和掌握一元二次方程的解法。同时,通过实践活动,学生能够运用所学知识解决实际问题。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是……(详细解释概念)。它是……(解释其重要性或应用)。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了一元二次方程在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调直接开方法、因式分解法和求根公式法这三个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
学生可以通过阅读《数学年鉴》了解一元二次方程的历史背景和发展,对数学有更深的认识。
学生可以通过阅读《数学思维训练》和《一元二次方程的奇妙世界》提高自己的数学思维能力和对一元二次方程的理解。
学生可以观看与一元二次方程相关的视频资源,如数学讲座、教学视频等,从不同角度理解和掌握一元二次方程的解法。
鼓励学生积极参与课后拓展,通过阅读、思考和实践,进一步提高自己的数学素养和解决问题的能力。
针对这些问题和不足,我计划在今后的教学中进行改进。例如,在讲解重点难点部分时,我可以通过更多实例和比较来帮助学生理解,或者通过分组教学,让学生有更多的机会进行实践操作。在实验操作环节,我可以在课堂上安排更多时间,让学生有更多的机会进行实验操作,提高他们对一元二次方程的理解。
课堂小结,当堂检测
1.课堂小结
2.拓展要求
鼓励学生在课后自主学习和拓展,可以结合课堂所学的知识点进行深入阅读和思考。学生在阅读过程中遇到疑问可以随时向老师提问,老师会提供必要的指导和帮助。

九年级(上)数学教案:用一元二次方程解决问题(全3课时)

九年级(上)数学教案:用一元二次方程解决问题(全3课时)

教学过程教师主导活动学生主体活动2.某商店6月份的利润是2500元,要使8月份的利润达到3600元,平均每月增长的百分率是多少?三.释疑拓展:1.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元。

求3月份到5月份营业额的月平均增长率。

2.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为36平方米的花圃,AB的长是多少米?(2)能围成面积比36平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.学生思考后可以小组讨论,让学生谈谈自己是如何思考让学生独立思考,然后让学生板演,最后学生点评教学过程教学内容个案调整教师主导活动学生主体活动2某公司组织一批员工到该风景区旅游,支付给旅行社28000元,你能确定参加这次旅游的人数吗?三.释疑拓展:某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降1元,可多售50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余的旅游纪念品清仓处理,以每个4元的价格全部售出。

如果这批旅游纪念品一共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?四.检测巩固:1.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。

调查表明:这种台灯的售价每上涨一元,其销售量就将减少10个。

为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论学生思考后可以小组讨论让学生谈谈自己是如何思考的。

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案一元二次方程是初中数学的主要内容,在初中代数中占重要地位。

学生积极动手、动脑、动口为主线来完成。

在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。

以下是小编整理的关于一元二次方程教案,欢迎查阅!一元二次方程教案1教学目标1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。

教学重点、难点教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.2。

难点:通过实际问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。

教学过程:(一)创设情景,导入新课问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少分析:设长方形绿地的宽为x米,则列方程,整理可得。

问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形分析:设长方形绿地的宽为x米,则列方程,整理可得。

问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。

同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。

情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。

初中数学一元二次方程教案

初中数学一元二次方程教案

初中数学一元二次方程教案教学目标:1. 理解一元二次方程的概念和特点;2. 学会解一元二次方程的方法;3. 能够应用一元二次方程解决实际问题。

教学重点:1. 一元二次方程的概念和特点;2. 解一元二次方程的方法。

教学难点:1. 一元二次方程的解法;2. 应用一元二次方程解决实际问题。

教学准备:1. 教学课件或黑板;2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾一元一次方程的知识,复习解一元一次方程的方法。

2. 提问:同学们,我们今天要学习一元二次方程,你们知道什么是二次方程吗?二、新课讲解(15分钟)1. 讲解一元二次方程的概念和特点:一元二次方程是只含有一个未知数,并且未知数的最高次数是2的整式方程。

一般形式为ax^2+bx+c=0,其中a、b、c是常数,且a≠0。

2. 讲解一元二次方程的解法:因式分解法、配方法、公式法。

a. 因式分解法:将一元二次方程转化为两个一元一次方程,从而求解。

b. 配方法:通过配方将一元二次方程转化为完全平方形式,从而求解。

c. 公式法:利用一元二次方程的求根公式x=(-b±√(b^2-4ac))/(2a)求解。

三、例题讲解(15分钟)1. 讲解一个一元二次方程的解法,展示解题过程。

2. 让学生尝试解一个一元二次方程,并提供解答。

四、课堂练习(15分钟)1. 布置一些一元二次方程的练习题,让学生独立解答。

2. 提供解答,让学生互相交流解题方法。

五、总结(5分钟)1. 总结一元二次方程的概念和特点。

2. 总结一元二次方程的解法。

六、作业布置(5分钟)1. 布置一些一元二次方程的练习题,让学生回家巩固所学知识。

教学反思:在教学过程中,要注意引导学生理解一元二次方程的概念和特点,让他们掌握解一元二次方程的方法。

通过例题讲解和课堂练习,让学生熟练运用一元二次方程解决实际问题。

在教学过程中,要注意解答学生的疑问,并提供解答,让学生互相交流解题方法。

通过作业布置,让学生回家巩固所学知识。

九年级数学上一元二次方程的解法教案(优秀5篇)

九年级数学上一元二次方程的解法教案(优秀5篇)

九年级数学上一元二次方程的解法教案(优秀5篇)数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

初三上册数学教学工作计划篇二【学习目标】1、了解整式方程和一元二次方程的概念。

2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

【重点、难点】重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定【学习过程】一、知识回顾1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1 一元二次方程
第二课时
教学内容
1.一元二次方程根的概念;
2. 根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.
提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重难点关键
1.重点:判定一个数是否是方程的根;
2. 难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程
一、复习引入
学生活动:请同学独立完成下列问题.
问题1.如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,那么梯子的底端距墙多少米?
设梯子底端距墙为xm ,那么,
根据题意,可得方程为___________.
整理,得_________.
列表:
问题2.一个面积为的矩形苗圃,它的长比宽多2m , 苗圃的长和宽各是多少? 设苗圃的宽为xm ,则长为_______m .
根据题意,得________.
整理,得________.
列表:
老师点评(略) 二、探索新知
提问:(1)问题1中一元二次方程的解是多少?问题2 中一元二次方程的解是多少?
(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?
老师点评:(1)问题1中x=6是x 2-36=0的解,问题2中,x=10是x 2+2x-120=0的解.
(3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解. 为了与以前所学的一元一次方程等只有一个解的区别,我们称:
108
一元二次方程的解叫做一元二次方程的根.
回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
例1.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
例2.你能用以前所学的知识求出下列方程的根吗?
(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:(1)移项得x2=64
根据平方根的意义,得:x=±8
即x1=8,x2=-8
(2)移项、整理,得x2=2
根据平方根的意义,得x=
即x1,x2
(3)因为x2-3x=x(x-3)
所以x2-3x=0,就是x(x-3)=0
所以x=0或x-3=0
即x1=0,x2=3
三、巩固练习
教材P33思考题练习1、2.
四、应用拓展
例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm, 这块铁片应该怎样剪?
设长为xcm,则宽为(x-5)cm
列方程x(x-5)=150,即x2-5x-150=0
请根据列方程回答以下问题:
(1)x可能小于5吗?可能等于10吗?说说你的理由.
(2)完成下表:
(3)你知道铁片的长x是多少吗?
分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根, 但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.
解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.
x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.
(2)
(3
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
(1)一元二次方程根的概念及它与以前的解的相同处与不同处;
(2)要会判断一个数是否是一元二次方程的根;
(3)要会用一些方法求一元二次方程的根.
六、布置作业
1.教材P34复习巩固3、4 综合运用5、6、7 拓广探索8、9.
2.选用课时作业设计.
作业设计
一、选择题
1.方程x(x-1)=2的两根为().
A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 2.方程ax(x-b)+(b-x)=0的根是().
A.x1=b,x2=a B.x1=b,x2=1
a
C.x1=a,x2=
1
a
D.x1=a2,x2=b2
3.已知x=-1是方程ax2+bx+c=0的根(b≠0)().
A.1 B.-1 C.0 D.2
二、填空题
1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.
2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
3.方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.
三、综合提高题
1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.
3.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(
21
x
x
-
)2-
2x
21
x
x
-
+1=0, 令
21
x
x
-
=y,则有y2-2y+1=0,根据上述变形数学思想(换元法),解决小
明给出的问题:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根.
答案:
一、1.D 2.B 3.A
二、1.9,-9 2.-13 3.-1,
三、1.由已知,得a+b=-3,原式=(a+b)2=(-3)2=9.2.a+c=b,a-b+c=0,把x=-1代入得
ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0,
∴-1必是该方程的一根.
3.设y=x2-1,则y2+y=0,y1=0,y2=-1,
即当x2-1=0,x1=1,x2=-1;
当y2=-1时,x2-1=-1,x2=0,
x3=x4=0,
∴x1=1,x2=-1,x3=x4=0是原方程的根.。

相关文档
最新文档