九年级上册数学一元二次方程单元测试卷

合集下载

九年级上册数学《一元二次方程》单元测试题附答案

九年级上册数学《一元二次方程》单元测试题附答案
2.一元二次方程(x-5)2=x-5的解是()
A. x=5B. x=6C. x=0D. x1=5,x2=6
【答案】D
【解析】
试题解析:方程变形得:(x-5)2-(x-5)=0,
分解因式得:(x-5)(x-5-1)=0,
解得:x1=5,x2=6.
故选D.
3.一元二次方程x2﹣2x+1=0的根的情况为()
A. 有两个相等的实数根B. 有两个不相等的实数根
C. 只有一个实数根D. 没有实数根
4.已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为【】
A. b=﹣1,c=2B. b=1,c=﹣2C. b=1,c=2D. b=﹣1,c=﹣2
5.用配方法解方程 ,配方后可得()
C. 小敏、小聪回答都正确D. 小敏、小聪回答都不正确
【答案】C
【解析】
试题解析:设x1,x2是方程的两根,
∵x1x2=k+1=-4,
∴k=-5,
把k=-5代入原方程可得x2-3x+4=0,
解方程可得x1=-1,x2=4.
即小敏,小聪回答都正确.
故选C.
7.输入一组数据,按下列程序进行计算,输出结果如表:
【答案】18
【解析】
试题解析:设该班有名x学生,则有x(x-1)=306,
解之,得:x1=18,x2=-17(舍去).
故该班有18名学生.
点睛:每位同学向本班的其他同学赠送自己制作的小礼物1件,则x位同学时,每位同学赠送(x-1)件.
15.在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.设金色纸边的宽为x分米,请根据题意列出方程:.

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。

人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案

人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案

人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中是一元二次方程的是()A.x+y2=2B.x+4=2C.x2+4x=2D.x2+1x=22.如果x=2是一元二次方程x2+bx+2=0的一个根,则b的值是()A.2 B.-2 C.3 D.−33.一元二次方程x2−6x+1=0配方后可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=8D.(x+3)2=104.一元二次方程x2+2x−1=0的实数根有()A.1个B.2个C.0个D.无数个5.方程x2−49=0的解为()A.x1=7,x2=−7B.x1=1,x2=7C.x1=x2=7D.x1=x2=−76.已知关于x的一元二次方程ax2+2x−1=0有两个实数根,则a的取值范围是()A.a>−1且a≠0B.a≥−1且a≠0C.a≥−1D.a≤−17.2024年元旦开始,梧州市体育训练基地吹响冬季足球训练“集结号”,该基地组织了一次单循环的足球比赛(每两支队伍之间比赛一场),共进行了36场比赛,设有x支队伍参加了比赛,依题意可列方程为()A.x(x+1)=36B.x(x−1)=36C.x(x+1)2=36D.x(x−1)2=368.设x1,x2是一元二次方程x2−2x−1=0的两根,则1x1+1x2=()A.12B.−12C.2 D.−2二、填空题9.若方程(m−1)x m2+1−x−2=0是一元二次方程,则m的值是.10.将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b 为常数)的形式,则ab=.11.关于x的一元二次方程ax2−2(a−1)x+a=0有实数根.则a的取值范围.12.已知三角形的两边长为1和2,第三边的长是方程x2−5x+6=0的一个根,则这个三角形的周长是.13.若 m,n 是一元二次方程x2−2x−5=0的两个根,则m2n+mn2=.三、计算题14.解方程:(1)x2+1=7x;(2)x2+4x−5=0.四、解答题15.关于x的一元二次方程−x2+2x−k=0.(1)若方程有两个实根,求k的取值范围.(2)若方程的一根为−1,求k的值及另一根.16.已知关于x的方程x2﹣3ax﹣3a﹣6=0(1)求证:方程恒有两不等实根;(2)若x1,x2是该方程的两个实数根,且(x1﹣1)(x2﹣1)=1,求a的值.17.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m2,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.18.第31届世界大学生夏季运动会在成都举办,吉祥物“蓉宝”深受大家的喜爱.某商场从厂家购进了成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品,每个毛绒公仔的进价比每个3D钥匙扣的进价多30元.若购进毛绒公仔4个,3D钥匙扣5个,共需要570元.(1)求毛绒公仔、3D钥匙扣两种商品的每个进价分别是多少元?(2)该商场从厂家购进成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品共60个,所用资金恰好为4200元.在销售时,每个毛绒公仔的售价为100元,要使得这60个商品卖出后获利25%,则每个3D钥匙扣的售价应定为多少元?参考答案1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】-110.【答案】-111.【答案】a≤12且a≠012.【答案】513.【答案】514.【答案】(1)解:原方程可化为x2−7x+1=0b2−4ac=(−7)2−4×1×1=45>0x=7±√452=7±3√52x1=7+3√52(2)解:∵x2+4x−5=0∴(x+5)(x−1)=0∴x+5=0或x−1=0∴x1=−515.【答案】(1)解:∵方程有两个实根∴Δ=22−4×(−1)×(−k)≥0解得k≤1∴k的取值范围为k≤1.(2)解:设方程的另一根为x 2,依题意得{−1+x 2=2−x 2=k解得{x 2=3k =−3∴k 的值为−3,另一根为316.【答案】(1)证明:∵Δ=b 2−4ac =(−3a)2−4×1×(−3a −6)=9a 2+12a +24=(3a +2)2+20>0∴该方程恒有两个不等实根;(2)解:由根与系数的关系x 1+x 2=3a,x 1x 2=−3a −6∵(x 1−1)(x 2−1)=1∴x 1x 2−(x 1+x 2)+1=1∴−3a −6−3a +1=1解得a =−117.【答案】(1)解:(1)设将绿地的长、宽增加xm ,则新的矩形绿地的长为(35+x)m ,宽为(15+x)m 根据题意得:(35+x)(15+x)=800整理得:x 2+50x −275=0解得:x 1=5,x 2=−55(不符合题意,舍去)∴35+x =35+5=40,15+x =15+5=20答:新的矩形绿地的长为40m ,宽为20m(2)设将绿地的长、宽增加ym ,则新的矩形绿地的长为(35+y)m ,宽为(15+y)m 根据题意得:(35+y):(15+y)=5:3即3(35+y)=5(15+y)解得:y =15∴(35+y)(15+y)=(35+15)×(15+15)=1500答:新的矩形绿地面积为1500m 218.【答案】(1)解:设毛绒公仔、3D 钥匙扣两种商品的每个进价分别是(30+x)和x 元,由题意得: 4(30+x)+5x =570,解得x =50答:毛绒公仔、3D 钥匙扣两种商品的每个进价分别是80和50元;(2)解:设毛绒公仔买了x 个,由题意可得:80x +50(60−x)=4200解得x=40设3D钥匙扣的每个售价为y元,由题意得:20x40+20(y−50)=4200×25%解得y=62.5答:每个3D钥匙扣的售价为62.5元。

人教版九年级上册数学 第二十一章 一元二次方程 单元测试卷

人教版九年级上册数学   第二十一章   一元二次方程   单元测试卷

人教版九年级上册数学第二十一章一元二次方程单元测试卷(时间:60分钟,满分:100分)一.选择题(每题3分,共24分)1.一元二次方程x+2x−5=0的根是()A.−2B.5C.2或–5D.−2或5 2.若x=1是一元二次方程x2+3x+a=0的根,则a=()A.−4B.−2C.2D.43.一元二次方程x2−4x+3=0配方后变形为()A.x−42=1B.x−22=1C.x+42=1D.x+22=14.下列方程是一元二次方程的是()A.x+2=2x−1B.ax2+bx+c=0C.2x+4y=5D.x2−1=x 5.已知x1,x2是方程2x2+3x−4=0的两个根,则()A.x1+x2=−32,x1x2=2B.x1+x2=32,x1x2=−2C.x1+x2=−32,x1x2=−2D.x1+x2=32,x1x2=26.若关于x的一元二次方程x2+2x+m=0有实数根,则m的值可以是()A.0B.2C.4D.67.已知一元二次方程x2−3x+1=0的两根为x1,x2,则x12x2+x1x22的值是()A.−3B.3C.−6D.68.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.12x(x+1)=28B.x(x−1)=28C.12x(x−1)=28D.x(x+1)=28二.填空题(每题2分,共10分)9.已知方程x2−6x+q=0可以配方成x−p2=7的形式,那么p−q=.10.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是.11.等腰三角形的底和腰是方程x2−7x+10=0的两根,则这个三角形的周长是.12.已知方程x2−2x−3=0的两个根分别为x1x2,则x1+x2−x1⋅x2的值为.13.关于x的一元二次方程k−1x2−2x−1=0有两个实数根,则k的取值范围是.三.计算题(共20分)14.用适当的方法解下列方程:(1)2x2−3x+1=0;(2)(x+2)2−25=0;(3)x2−2x−3=0;(4)3x(x−2)=4−2x.四.解答题(共46分)15.已知关于x的一元二次方程x2+2(m+1)x+m2−1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1−x2)2=16−2x1x2,求实数m的值.16.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根.(2)若Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求k的值.17.为了提升居民生活质量,完善社区公共区域配套设施,今年平凉市在多个城区实施了旧城改造工程.已知某工程队在开始施工的7月份为某小区翻新道路12000m2,为了在入冬前完成道路翻新工程,之后加快了工程进度,结果9月份为该小区翻新道路14520m2.(1)求这两个月该工程队工作效率的月平均增长率.(2)若10月份该工程队的工作效率按此增长率增长,估计到10月末该工程队能否完成该小区共55000m2的道路翻新任务?18.(1)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地面积为800m2,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.。

数学九年级上册《一元二次方程》单元测试题(含答案)

数学九年级上册《一元二次方程》单元测试题(含答案)

人教版数学九年级上学期《一元二次方程》单元测试【考试时间:90分钟分数:100分】一.选择题(每题4分,共40分)1.下列方程中,关于x的一元二次方程是( )A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=02.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是( )A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,693.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则( )A.m=±2 B.m=2 C.m=﹣2 D.m≠±24.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽xm应满足的方程是( )A.(40﹣x)(70﹣x)=400 B.(40﹣2x)(70﹣3x)=400C.(40﹣x)(70﹣x)=2400 D.(40﹣2x)(70﹣3x)=24005.一元二次方程4x2﹣2x+=0根的情况是( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为( )A.2019 B.2020 C.2021 D.20227.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×308.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( ) A.50(1﹣x)2=70 B.50(1+x)2=70C.70(1﹣x)2=50 D.70(1+x)2=509.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值是( ) A.0 B.2 C.﹣2 D.2或﹣210.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为( ) A.B.1 C..4 D.3二.填空题(每题4分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是.12.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.13.若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则实数m的取值范围是.14.若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.15.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,这个记号叫做2阶行列式.定义,若,则x=.16.已知关于x方程3x2+2(1﹣a)x﹣a(a+2)=0至少有一实根大于1,则a的取值范围是.三.解答题(每题9分,共36分)17.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).18.关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.19.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?20.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?答案与解析一.选择题1.解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.2.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.3.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.4.解:由图可得,(40﹣2x)(70﹣3x)=40×70×(1﹣),即(40﹣2x)(70﹣3x)=2400,故选:D.5.解:在方程4x2﹣2x+=0中,∵△=b2﹣4ac=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选:C.6.解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m 2﹣m +2020=1+2020=2021. 故选:C .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:2018年的产量为50(1+x ),2019年的产量为50(1+x )(1+x )=50(1+x )2, 即所列的方程为50(1+x )2=70. 故选:B .9.解:∵关于x 的一元二次方程(a ﹣2)x 2+x +a 2﹣4=0的一个根是0, ∴a 2﹣4=0, 解得a =±2, ∵a ﹣2≠0, ∴a ≠2, ∴a =﹣2. 故选:C .10.解:由题意可知:a 、b 是方程x 2﹣4x +1=0的两个不同的实数根, ∴由根与系数的关系可知:ab =1,a +b =4, ∴a 2+1=4a ,b 2+1=4b , ∴原式=+= ==1, 故选:B .二.填空题(共6小题) 11.解:x (x ﹣3)+x ﹣3=0, (x ﹣3)(x +1)=0,x ﹣3=0或x +1=0.所以x 1=3,x 2=﹣1.故答案为x 1=3,x 2=﹣1. 12.解:x 2﹣9x +18=0, (x ﹣3)(x ﹣6)=0,x ﹣3=0或x ﹣6=0, x 1=3,x 2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6, 所以这个三角形的周长为3+6+6=15. 故答案为:15. 13.解:由已知得:△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣m )=16+4m >0, 解得:m >﹣4. 故答案为:m >﹣4.14.解:∵方程x 2﹣3x +2=0的两根是α、β, ∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5. 故答案为:5.15.解:由题意,得:(x +1)(x +1)﹣(x ﹣1)(1﹣x )=6, ∴x 2+2x +1+x 2﹣2x +1=6, ∴2x 2+2=6, ∴x =±.16.解:将方程左边因式分解得:(x ﹣a )(3x +a +2)=0, ∴方程的解为:x 1=a ,x 2=﹣,∵方程3x 2+2(1﹣a )x ﹣a (a +2)=0至少有一实根大于1, ∴a >1或﹣>1,解得:a >1或a <﹣5, 故答案为:a >1或a <﹣5. 三.解答题(共4小题) 17.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3), ∴(x +3)2﹣(2x ﹣1)(x +3)=0, ∴(x +3)(﹣x +4)=0, 则x +3=0或﹣x +4=0, 解得x 1=﹣3,x 2=4.18.解:(1)∵关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实数根, ∴△=(﹣2)2﹣4(m ﹣2)=4﹣4m +8=12﹣4m . ∵12﹣4m ≥0, ∴m ≤3,m ≠2. (2)∵m ≤3且m ≠2, ∴m =1或3,∴当m =1时,原方程为﹣x 2﹣2x +1=0.x 1=﹣1﹣,x 2=﹣1+.当m =3时,原方程为x 2﹣2x +1=0.x 1=x 2=1. 19.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元). 答:每天的销售利润为1600元.(2)设每件工艺品售价为x 元,则每天的销售量是[100﹣2(x ﹣50)]件, 依题意,得:(x ﹣40)[100﹣2(x ﹣50)]=1350, 整理,得:x 2﹣140x +4675=0,解得:x 1=55,x 2=85(不合题意,舍去). 答:每件工艺品售价应为55元. 20.解:(1)设BC =xm ,则AB =(33﹣3x )m , 依题意,得:x (33﹣3x )=90, 解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去. 答:鸡场的长(AB )为15m ,宽(BC )为6m . (2)不能,理由如下: 设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.。

九年级上学期数学《一元二次方程》单元测试题含答案

九年级上学期数学《一元二次方程》单元测试题含答案
(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用A的代数式表示该用户应交水费多少元;
(2)下表是这户居民4月份和5月份的用水量和缴费情况;
月份
用水量(吨)
交水费总金额(元)
4
7
70
5
5
40
根据上表数据,求规定用水量A的值.
(3)结合当地水资源状况,谈谈如何开展水资源环境保护?如何节约用水?
23.为了”绿色出行”,王经理上班出行由自驾车改为乘坐地铁出行,已知他家距上班地点21千米,他用地铁方式平均每小时出行的路程,比用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的 ,求王经理地铁出行方式上班的平均速度.
24.如图,在Rt△A B C中,A C=8Cm,B C=6Cm,P点在B C上,从B点到C点运动(不包括C点),点P运动的速度为1Cm/s;Q点在A C上从C点运动到A点(不包括A点),速度为2Cm/s,若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
故选D.
[点睛]本题考查了一元二次方程 解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
3.已知x=A是方程x2﹣3x﹣5=0的根,则代数式4﹣2A2+6A的值为( )
A.6B.9C.14D.﹣6
[答案]D
[解析]
[分析]
利用一元二次方程解的定义得到A2-3A=5,再把4-2A2+6A变形为4-2(A2-3A),然后利用整体代入的方法计算即可.
(1)求实数k的取值范围.
(2)若方程两实根 满足|x1|+|x2|=x1·x2,求k的值.
17.已知关于x 一元二次方程x2+(m﹣3)x﹣3m=0

九年级上册数学《一元二次方程》单元测试卷(含答案)

九年级上册数学《一元二次方程》单元测试卷(含答案)
【答案】D
【解析】
【分析】
一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
【详解】把一个根x=1代入方程得 ,即 ,解得 或m= .
故本题正确答案为D.
【点睛】本题主要考查一元二次方程的基本概念和用因式分解法解一元二次方程,本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.
∴x2-5x+1=0.
故选A.
【点睛】此题考查了一元二次方程的一般形式.此题比较简单,解题需细心,注意一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).
4.方程x2+2x﹣3=0的两根的情况是( )
A.没有实数根B.有两个不相等的实数根
C.有两个相同的实数根D.不能确定
【答案】B
【答案】D
【解析】
【分析】
把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.
【详解】把x=3代入方程得9-3(m+1)+2m=0,
解得m=6,
则原方程为 ,
解得 =3, =4,
因为这个方程的两个根恰好是等腰 的两条边长,
人教版数学九年级上学期
《一元二次方程》单元测试
(满分120分,考试用时120分钟)
一、选择题(共10小题,每小题3分,共30分)
1.关于 方程 的一个根是 ,则 的值是()
A. B. C. D. 或
2.一元二次方程 的解是()
A. B.
C. , D. ,
3.将一元二次方程 化为一般形式为()
A.

九年级上册数学《一元二次方程》单元检测卷带答案

九年级上册数学《一元二次方程》单元检测卷带答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题1.将一元二次方程2316x x +=化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D . 23,6x x -2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .()223x +=B .()223x -=C .()225x +=D .()225x -= 3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣24.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(a 0)++=≠ax bx c 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ). A .a c = B .a b = C .a b = D .a b c == 5.若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一个根为0,则m 的值( ) A .0 B .1或2 C .1 D .26.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( ) A .1 B .-1 C .±1 D .07.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A .2根小分支B .3根小分支C .4根小分支D .5根小分支8.关于x 的方程(m +n )x 2+mn 2-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为12,差为2,则常数项为( )A .18B .12C .116D .149.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根10.若代数式2x 6x 5-+的值是12,则x 的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 11.将一元二次方程2230x x --=用配方法化成()2()0x h k k +=≥的形式为( )A .2 (1)4x -=B .2(1)1x -=C .2 (1)4x +=D .2 (1)1x +=12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣3二、填空题13.若方程2234mx x x +-=是关于x 的一元二次方程,则m 的取值范围是_____.14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____. 15.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.16.已知1x =是一元二次方程220x mx +-=的一根,则该方程的另一个根为_________.三、解答题17.已知:已知关于x 的方程220x mx m ++-=(1)求证:不论m 为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求m 的值及方程的另一个根.18.据统计某市农村2013年人均纯收入是10000元,预计2015年人均纯收入可达到12100元. ()1试求该市农村这两年人均纯收入的平均增长率;() 2按此增长速度2016年该市农村人均纯收入可达到多少元?19.选择适当方法解下列方程:(1)2510x x -+=(用配方法); (2)()()2322x x x -=-;(3)2250x --=;(4)()()22231y y +=-.20.已知关于x 的方程()()22110m x m x m --++=. ()1m 为何值时,此方程是一元一次方程?()2m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.22.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具,且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具()1若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围; ()2在实际销售中,玩具城以()1中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了%a ,从而每天的销售量降低了2%a ,当每天的销售利润为147元时,求a 的值.23.某林场计划修一条长750m ,断面为等腰梯形的渠道,断面面积为21.6m ,上口宽比渠深多2m ,渠底比渠深多0.4m()1渠道的上口宽与渠底宽各是多少?()2如果计划每天挖土348m ,需要多少天才能把这条渠道挖完?24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.参考答案一、选择题1.将一元二次方程化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D .[答案]A[解析][分析]一元二次方程的一般形式是:A x 2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x 2叫二次项,B x 叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.[详解]解化成一元二次方程一般形式是,则它的二次项系数是3,一次项系数是-6. 故选A .[点评]此题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式. 2316x x +=23,6x x -2316x x +=23-610x x +=2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .B .C .D . [答案]C[解析][分析]根据一元二次方程的配方法即可求出答案.[详解]∵x 2+4x-1=0,∴x 2+4x+4=5,∴(x+2)2=5,故选:C .[点评]此题考查一元二次方程,解题关键是熟练运用一元二次方程的解法.3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣2 [答案]B[解析][分析]根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k 的方程即可.[详解]把x=2代入得,4-6+k=0,解得k=2.故答案为:B . ()223x +=()223x -=()225x +=()225x -=2x -3x+k=02x -3x+k=0[点评]本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k 的新方程,通过解新方程来求k 的值是解题的关键.4.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程. 已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .B .C .D .[答案]A[解析] [分析]因为方程有两个相等的实数根,所以根的判别式△=B 2-4A C =0,又A +B +C =0,即B =-A -C ,代入B 2-4AC =0得(-A -C )2-4A C =0,化简即可得到A 与C 的关系.[详解]∵一元二次方程A x 2+B x+C =0(A ≠0)有两个相等的实数根∴△=B 2−4A C =0,又A +B +C =0,即B =−A −C ,代入B 2−4A C =0得(−A −C )2−4A C =0,即(A +C )2−4A C =A 2+2A C +C 2−4A C =A 2−2A C +C 2=(A −C )2=0,∴A =C故选:A[点评]本题考查了一元二次方程根的判别式的应用,根据方程根的情况确定方程中字母系数之间的关系. 5.若关于的一元二次方程有一个根为0,则的值( )A .0B .1或2C .1D .2[答案]D 20(a 0)++=≠ax bx c 0a b c ++=20(a 0)++=≠ax bx c a c =a b =a b =a b c ==x 22(1)5320m x x m m -++-+=m[解析][分析]把x=0代入已知方程得到关于m 的一元二次方程,通过解方程求得m 的值;注意二次项系数不为零,即m-1≠0.[详解]解:根据题意,将x=0代入方程,得:m 2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D .[点评]本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m 的值必须满足:m-1≠0这一条件.6.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( )A .1B .-1C .±1D .0[答案]A[解析][分析]方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于A 的方程,从而求得A 的值,且(A +1)x 2+x +A 2-1=0为一元二次方程,即.[详解]把x=0代入方程得到:A 2-1=0解得:A =±1. (A +1)x 2+x +A 2-1=0为一元二次方程 即.+10a ≠-1a ≠∴+10a ≠-1a ≠综上所述A =1.故选:A .[点评]此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A .2根小分支B .3根小分支C .4根小分支D .5根小分支[答案]B[解析][分析]先设每个支干长出x个分支,则每个分支又长出x个小分支,x个分支共长出x2个小分支;再根据主干有1个,分支有x个,小分支有x2个,列出方程;然后根据一元二次方程的解法求出符合题意的x的值即可. [详解]设每个支干长出x个分支,根据题意得1+x+x•x=13,整理得x2+x-12=0,解得x1=3,x2=-4(不符合题意舍去),即每个支干长出3个分支.故应选B .[点评]此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.关于x 的方程(m +n )x 2+-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为,差为2,则常数项为( )A .B .C .D . [答案]A[解析][分析]二次项系数与一次项系数的和为,差为2列方程组求出m 、n 的值,然后可求出常数项. [详解]由题意得 , 解之得, ∴. 故选A .[点评]本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程.对于一元二次方程A x 2+B x +C =0(A ≠0),其中A 是二次项系数,B 是一次项系数,C 是常数项.本题也考查了二元一次方程组的解法. mn 21218121161412()()()()122m n m n m n m n ⎧+--=⎪⎨⎪++-=⎩114m n =⎧⎪⎨=⎪⎩1114=228mn ⨯=9.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根[答案]B[解析][分析]根据平方根的意义,利用直接开平方法即可进行求解.[详解](x +1)2=0,解: x +1=0,所以x 1=x 2=﹣1,故选B .[点评]本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法.10.若代数式的值是,则的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 [答案]A[解析][分析]首先把方程化为一般形式x 2-6x+5-12=0,即x 2-6x-7=0,用因式分解法求解.[详解]2x 6x 5-+12x 26512,x x -+=265120,x x -+-=2670,x x --=∴解得:故选:A .[点评]考查一元二次方程的解法,掌握一元二次方程的解法是解题的关键.11.将一元二次方程用配方法化成的形式为( ) A .B .C .D .[答案]A[解析] [分析]先移项得,x 2-2x=3,然后在方程的左右两边同时加上1,即可化成(x+h)2=k 的形式.[详解]移项,得x 2-2x=3,配方,得x 2-2x+1=3+1,即(x-1)2=4.故选A .[点评]本题考查了配方法的应用,将一元二次方程x 2-2x-3=0用配方法化成(x+h)2=k (k≥0)的形式,其关键步骤就是移项后,在方程的左右两边加上一次项系数一半的平方.12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( ) A .﹣3B .3C .±3D .0或﹣3[答案]A ()()710,x x -+=70,x -=10,x +=127, 1.x x ==-2230x x --=()2()0x h k k +=≥2 (1)4x -=2(1)1x -=2 (1)4x +=2 (1)1x +=[解析][分析]把X=0代入方程(m-3)x +3x+m -9=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0[详解]把x=0代入方程(m-3)x +3X+m -9=0中得:m -9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,故选A[点评]此题主要考查一元二次方程的定义,难度不大二、填空题13.若方程是关于的一元二次方程,则的取值范围是_____.[答案][解析][分析]将原方程化为一般式,根据一元二次方程中,二次项系数不能为零求解即可.[详解]原方程可化为:, ∵方程是关于的一元二次方程,∴,即,故答案为:.[点评]本题考查了一元二次方程的定义,掌握二次项系数不能为零这一点是解题关键.222222234mx x x +-=x m 1m ≠()21340m x x -+-=2234mx x x +-=x 10m -≠1m ≠1m ≠14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____.[答案]3或-7[解析]据题意得,∵(x+2)*5=(x+2)2-52∴x 2+4x-21=0,∴(x-3)(x+7)=0,∴x=3或x=-7.15.若方程的两根,则的值为__________.[答案]5[解析][分析]根据根与系数的关系求出,代入即可求解.[详解]∵是方程的两根∴=-=4,==1 ∴===4+1=5,故答案为:5.[点评]此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用. 16.已知是一元二次方程的一根,则该方程的另一个根为_________.[答案]-2[解析][分析]由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.[详解]2410x x -+=12,x x 122(1)x x x 12x x +12x x ⋅12,x x 2410x x -+=12x x +b a 12x x ⋅c a122(1)x x x 1122x x x x ++1212x x x x ++12x x +b a 12x x ⋅c a1x =220x mx +-=设方程的另一根为x 1,由根与系数的关系可得:1×x 1=-2, ∴x 1=-2.故答案为:-2.[点评]本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.三、解答题17.已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.[答案](1)见解析;(2),方程的另一个根是. [解析][分析](1)由方程的各系数 结合根的判别式可得出△>0,由此即可得出结论(2)将x=1代入原方程,得出关于m 的一元一次方程,解方程求出m 的值,将其代入原方程得出关于x 的一元二次方程,结合根与系数的关系得出方程的另一个解.[详解]解:(1)证明:∵在关于x 的方程中, ,所以不论为何值,方程总有两个不相等的实数根;(2)将x=1代入方程中得出:1+m+m-2=0解得:, x 220x mx m ++-=m m 12m =32-220x mx m ++-=()()22412240m m m =-⨯⨯-=-+>m 1m 2=∴原方程为: ∴ ∵∴ ∴,方程的另一个根是. [点评]本题考查的知识点是根的判别式以及根与系数的关系,熟记每个公式是解题的关键.18.据统计某市农村年人均纯收入是元,预计年人均纯收入可达到元. 试求该市农村这两年人均纯收入的平均增长率;按此增长速度年该市农村人均纯收入可达到多少元?[答案](1);年该市农村人均纯收入可达到元.[解析][详解](1)设该市农村这两年人均纯收入的平均增长率为x,根据题意得:10000(1+x)2=12100,解得:x=0.1或x=﹣2.1(舍去),故该市农村这两年人均纯收入的平均增长率为;(元),答:年该市农村人均纯收入可达到元.[点评]本题主要考查一元二次方程的应用,解此题的关键在于先设出未知数x,再根据题意列出方程求解即可. 213022x x +-=1212b x x a +=-=-11x =232x =-12m =32-201310000201512100()1() 220161?0%()220161331010%()()212100110%13310⨯+=20161331019.选择适当方法解下列方程:(1)(用配方法);(2);(3); (4). [答案](1),;(2),;(3),;(4),.[解析][分析][详解]解:,移项得:,配方得:,即,∴,∴,;,移项,得 ,,或, 2510x x -+=()()2322x x x -=-2250x --=()()22231y y +=-152x +=252x =12x =23x=1x=22x =132y =214y =-()21510x x -+=251x x -=-225255144x x -+=-+2521()24x -=52x -=152x=252x =()()223(2)2x x x -=-()23(2)20x x x ---=()()2360x x x ---=20x -=260x -=,;; , ∵,,∴,∴, ∴,; ; .,,或,,. [点评]掌握一元二次方程的求根方法是解题的关键.20.已知关于的方程. 为何值时,此方程是一元一次方程?为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.[答案](1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;[解析]12x =23x =()23250x --=2a=b =-5c =-()842548=-⨯⨯-=x ==12x =22x =()224(2)(31)y y +=-()231y y +=±-231y y +=-()231y y +=--132y =214y =-x ()()22110m x m x m --++=()1m ()2m 1m =1m ≠±21m -()1m -+m试题分析:(1)根据一元一次方程的定义可得=0,且m+1≠0,解得m 的值;(2)根据一元二次方程的定义可得≠0,可得m 的取值范围,然后写出一元二次方程的二次项系数、一次项系数及常数项.试题解析:解:(1)=0,且m+1≠0,解得m=1,答:当m=1时,此方程是一元一次方程;(2)≠0,解得m≠±1,答:当m≠±1时,此方程是一元二次方程,其二次项系数为,一次项系数为-(m+1),常数项为m . 考点:一元一次方程的定义;一元二次方程的定义.21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.[答案](1);(2)5. [解析][分析](1)根据题中的解法即可得到答案;(2)同理(1).[详解] 21m -21m -21m -21m -21m -34(1)m 2+m+1=m 2+m++=(m+)2+≥, 则m 2+m+1的最小值是; (2)4﹣x 2+2x=﹣x 2+2x ﹣1+5=﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值是5.[点评]本题主要考查了配方法与偶次方的非负性,解此题的关键在于利用配方法得到完全平方式,再利用非负数的性质即可得解.22.一玩具城以元/个的价格购进某种玩具进行销售,并预计当售价为元/个时,每天能售出个玩具,且在一定范围内,当每个玩具的售价平均每提高元时,每天就会少售出个玩具若玩具售价不超过元/个,每天售出玩具总成本不高于元,预计每个玩具售价的取值范围; 在实际销售中,玩具城以中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了,从而每天的销售量降低了,当每天的销售利润为元时,求的值.[答案]预计每个玩具售价的取值范围是; 或.[解析][分析]根据题意列不等式组即可得到结论;; 由知最低销售价为元/个,对应销售量为,根据题意列方程即可得到结论. [详解] 解:每个玩具售价元/个,根据题意得, 解得:, 1434123434344950500.53()160686()2()1%a 2%a 147a ()15660x ≤≤()225a =12.5a =()1()2()1565650503140.5--⨯=个()1x 6050495036860.5x x ≤⎧⎪-⎨⎛⎫-⨯≤ ⎪⎪⎝⎭⎩5660x ≤≤答:预计每个玩具售价的取值范围是;由知最低销售价为元/个,对应销售量为, 由题意得:,令,整理得:,解得:,, ∴或.[点评]考查一元二次方程的应用,解决问题的关键是读懂题意,根据题意列出方程和不等式进行求解即可. 23.某林场计划修一条长,断面为等腰梯形的渠道,断面面积为,上口宽比渠深多,渠底比渠深多渠道的上口宽与渠底宽各是多少?如果计划每天挖土,需要多少天才能把这条渠道挖完?[答案]渠道的上口与渠底宽各是米和米; 需要天才能把这条渠道的土挖完.[解析][分析](1)设渠道深x 米,则上口的宽度是(x+2)米,渠底宽(x+0.4)米,根据断面面积为1.6平方米,列出方程,求解即可;(2)根据渠道的长为750米,求出渠道的体积,再根据每天挖土48立方米,即可求出需要的天数.[详解]设渠道深米,则上口的宽度是米,渠底宽米,根据题意得:, 5660x ≤≤()2()1565650503140.5--⨯=个()()561%491412%147a a ⎡⎤+-⨯⨯-=⎣⎦%t a =2321210t t -==114t =218t =25a =12.5a =750m 21.6m 2m 0.4m ()1()2348m ()1 2.8 1.2()225()1x ()2x +()0.4x +()()120.4 1.62x x x ⎡⎤+++=⎣⎦解得:(舍去),,则渠道的上口宽是:(米),渠底宽是(米);答:渠道的上口与渠底宽各是米和米;∵渠道的长为米,∴渠道的体积为(立方米),∵每天挖土立方米,∴需要的天数是:(天),答:需要天才能把这条渠道的土挖完.[点评]考查了一元二次方程的应用,解题的关键是读懂题目,设出未知数,找出等量关系,列方程求解. 24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.[答案]x 1=﹣0.5,x 2=1[解析]12x =-20.8x =0.82 2.8+=0.80.4 1.2+= 2.8 1.2()2750750 1.61200⨯=4812004825÷=25[分析]解方程x2﹣|x﹣1|﹣1=0.方程中|x﹣1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x ﹣1≥0时,求解;另一种情况是当x﹣1<0时,求解.[详解]解:当x﹣1≥0,即x≥1时,原方程可化为x2﹣x(x﹣1)﹣1=0即x﹣1=0,解得x=1当x﹣1<0,即x<1时,原方程可化为x2﹣x(1﹣x)﹣1=0即2x2﹣x﹣1=0,解得x1=﹣0.5,x2=1(不合题意.舍去)∴原方程的解为x1=﹣0.5,x2=1[点评]本题考查了解一元二次方程的应用,易出错的地方是要分情况而解,所以学生容易出现漏解的现象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册一元二次方程单元测试卷1一、填空题(★写批注)姓名:日期:1.(3分)一元二次方程2x2﹣13=7x的二次项系数为:,一次项系数为:.2.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于.3.(3分)已知方程(x+a)(x﹣3)=0和方程x2﹣2x﹣3=0的解相同,则a=.4.(3分)一元二次方程x2﹣x+4=0的解是.5.(3分)已知关于x的方程是一元二次方程,则m的值为.6.(3分)若关于x的一元二次方程(k﹣1)x2+3x﹣1=0有实数根,则k的取值范围是.7.(3分)关于x的一元二次方程(m+3)x2+5x+m2+2m﹣3=0有一个根为0,则m=.8.(3分)已知实数x满足=0,那么的值为.9.(3分)我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒60元调至52元,若设每次平均降价的百分率为x,则由题意可列方程为.10.(3分)等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为.11.(3分)已知x2+3x+5的值为11,则代数式3x2+9x+12的值为.12.(3分)方程:y(y﹣5)=y﹣5的解为:.13.(3分)在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,求方程(x﹣2)﹡1=0的解为.二、选择题(★写批注)14.(3分)若x1、x2是一元二次方程2x2﹣3x+1=0的两个根,则x12+x22的值是()A.B.C.D.715.(3分)若的值为0,则x的值是()A.2或﹣3 B.3或﹣2 C.2 D.﹣316.(3分)一元二次方程x2﹣1=0的根为()A.x=1 B.x=﹣1 C.x1=1,x2=﹣1 D.x1=0,x2=117.(3分)将方程2x2﹣4x﹣3=0配方后所得的方程正确的是()A.(2x﹣1)2=0 B.(2x﹣1)2=4 C.2(x﹣1)2=1 D.2(x﹣1)2=518.(3分)关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤B.k≥﹣且k≠0C.k≥﹣D.k>﹣且k≠0第22题图19.(3分)若2x2+1与4x2﹣2x﹣5的值互为相反数,则x的值是()A.﹣1或B.1或C.1或D.1或20.(3分)如果关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0C.k<1且k≠0D.k>121.(3分)如果方程x2+2x+m=0有两个同号的实数根,m的取值范围是()A.m<1 B.0<m≤1C.0≤m<1 D.m>022.(3分)如图,菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于x的方程x2+(2m ﹣1)x+m2+3=0的根,则m的值为()A.﹣3 B.5 C.5或﹣3 D.﹣5或323.(3分)若方程(m﹣1)x2+x﹣1=0是关于x的一元二次方程,则m的取值范围是()A.m=0 B.m≠1C.m≥0且m≠1D.m为任意实数24.(3分)如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE 的长度为()A.B.C.D.第24题图三、解下列方程(每题4分,共16分)25.(4分)x2﹣4x+1=0(用配方法)26.(4分)2x2+5x﹣1=0.27.(4分)x2+2x﹣99=0.28.(4分)7x(5x+2)=6(5x+2)四、解答题:29.(9分)己知a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,求这个直角三角形的斜边长.30.(9分)已知关于x的方程是否存在正数m,使方程的两个实数根的平方和等于224?若存在,求出满足条件的m的值.31.(9分)已知关于x的方程x2+2(2﹣m)x+3﹣6m=0.(1)求证:无论m取什么实数,方程总有实数根;(2)如果方程的两个实数根x1、x2满足x1=3x2,求实数m的值.32.(8分)阅读例题:解方程:x2﹣|x|﹣2=0解:(1)当x≥0时,得x2﹣x﹣2=0,(2)当x<0时,得x2+x﹣2=0,解得x1=2,x2=﹣1<0(舍去).解得x1=1(舍去),x2=﹣2.∴原方程的根为解得x1=2,x2=﹣2.请参照例题的方法解方程x2﹣|x﹣1|﹣1=0.33.(7分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?34.(10分)某电脑公司2010年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2012年经营总收入要达到2160万元,且计划从2010年到2012年每年经营总收入的年增长率相同,问2011年预计经营总收入为多少万元?35.(10分)如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向C点以2cm/s的速度移动.(1)如果点P,Q分别从A,B同时出发,经过几秒钟后,△PBQ的面积等于8cm2;(2)如果点P,Q分别从A,B同时出发,并且点P到B点后又继续在BC边上前进,点Q到点C后又继续在CA边上前进,则经过几秒钟后,△PCQ的面积等于12.6cm2.九年级上册一元二次方程单元测试卷1参考答案与试题解析一、填空题(★写批注)1.2,﹣7.2.1.3.a=1.4.无实数解.5.﹣1.6.k≥﹣且k≠1.7.18..9.60(1﹣x)2=52.10.10.11.3x2+9x+12=3(x2+3x)+12=30.12.y1=1,y2=5.13.x1=1,x2=3.二、选择题(★写批注)14.A.15.D.16.C.17.D.18.C.19.B.20.C.21.B.22.A.23.C.24.C.三、解下列方程(每题4分,共16分)25.(4分),.26.(4分)x1=,x2=.27.(4分)x1=﹣11,x2=9.28.(4分)x1=,x2=﹣.四、解答题:29.(9分)解:∵a,b是一个直角三角形两条直角边的长,∴根据勾股定理得:c2=a2+b2,已知等式化为c2(c2+1)=12,即c4+c2﹣12=0,因式分解得:(c2﹣3)(c2+4)=0,可得c2=3或c2=﹣4(舍去),解得:c=或c=﹣(舍去),则斜边为.30.(9分)解:假设存在,则有x12+x22=224.∵x1+x2=4m﹣8,x1x2=4m2,∴(x1+x2)2﹣2x1x2=224.即(4m﹣8)2﹣2×4m2=224,∴m2﹣8m﹣20=0,(m﹣10)(m+2)=0,∴m1=10,m2=﹣2.∵△=(m﹣2)2﹣m2=4﹣4m≥0,∴0<m≤1,∴m1=10,m2=﹣2都不符合题意,故不存在正数m,使方程的两个实数根的平方和等于224.31.(9分)解:(1)证明:∵关于x的方程x2+2(2﹣m)x+3﹣6m=0中,△=4(2﹣m)2﹣4(3﹣6m)=4(m+1)2≥0,∴无论m取什么实数,方程总有实数根.(2)如果方程的两个实数根x1,x2满足x1=3x2,则x1+x2=4x2=﹣2(2﹣m)=2m﹣4∴x2=﹣1 ①∵x1?x2=3x22=3﹣6m,∴x22=1﹣2m②,把①代入②得m(m+4)=0,即m=0,或m=﹣4.答:实数m的值是0或﹣432.(8分)解:(1)当x﹣1≥0,即x≥1时,|x﹣1|=x﹣1,方程化为x2﹣(x﹣1)﹣1=0,即x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得x1=0(舍去),x2=1;(2)当x﹣1<0,即x<1时,|x﹣1|=1﹣x,方程化为x2+(x﹣1)﹣1=0,即x2+x﹣2=0,分解因式得:(x﹣1)(x+2)=0,可得x﹣1=0或x+2=0,解得:x3=﹣2,x4=1>0(舍去),则原方程的解为x1=1,x3=﹣2.33.(7分)解:设每千克水果应涨价x元,依题意得方程:(500﹣20x)(10+x)=6000,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克水果应涨价5元.34.(10分)解:2010年的经营总收入为600÷40%=1500(万元).设年增长率为x(x>0),依题意得,1500(1+x)2=2160,解得:x1=0.2,x2=﹣2.2,∵x>0∴x2=﹣2.2不合题意,∴只取x1=0.2.1500(1+x)=1500×1.2=1800(万元).答:2011年预计经营总收入为1800万元.35.(10分)解:(1)设经过x秒后,△PBQ的面积等于8cm2.×(6﹣x)×2x=8,解得x1=2 x2=4,答:经过2或4秒后,△PBQ的面积等于8cm2.(2)设经过y秒后,△PCQ的面积等于12.6cm2.①0<y≤4(Q在BC上,P在AB上)时,如图:(1)连接PC,则CQ=8﹣2y,PB=6﹣y,∵S△PQC=CQ×PB,∴×(8﹣2y)×(6﹣y)=12.6,解得y1=5+>4(不合题意,舍去),y2=5﹣;②4<y≤6(Q在CA上,P在AB上),如图(2)过点P作PM⊥AC,交AC于点M,由题意可知CQ=2y﹣8,AP=y,在直角三角形ABC中,sinA==,在直角三角形APM中,sinA=,即=,∴PM=y,∵S△PCQ=CQ×PM,∴×(2y﹣8)×y=12.6,解得y1=2+>6(舍去),y2=2﹣<0(负值舍去);③6<y≤9(Q在CA上,P在BC上),如图(3),过点Q作QD⊥BC,交BC于点D,∵∠B=90°,∴QD∥AB,∴,即=,∴QD=,∵S△CQP=×CP×QD,∴×(14﹣y)×=12.6解得:y1=7,y2=11(不合题意,舍去)答:当(5﹣)秒或7秒后,△PCQ的面积等于12.6cm2。

相关文档
最新文档