江苏省苏州市2017_2018学年八年级数学下学期3月测试试题苏科版-含答案 师生通用

合集下载

2017-2018学年第二学期初二数学《全等三角形》单元测试题(含答案)【苏科版】

2017-2018学年第二学期初二数学《全等三角形》单元测试题(含答案)【苏科版】

2017-2018学年第二学期初二数学《全等三角形》单元测试题(含答案)【苏科版】2019-2019学年初二数学第二学期单元测试题命题汤志良;知识涵盖:苏科版:全等三角形;试卷分值:130分;一、选择题:(本题共10小题,每小题3分,共30分)1.下列说法正确的是…………………………………………………………………()A.全等三角形是指形状相同的三角形;B.全等三角形是指面积相等的两个三角形;C.全等三角形的周长和面积相等;D.所有等边三角形是全等三角形;2.如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是……………………………………………………………………………………()A.ASA;B. SSS;C. SAS;D. AAS;3.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是……………()A.AC=BD;B.∠CAB=∠DBA;C.∠C=∠D;D.BC=AD;9.如图,AB ∥CD ,CE ∥BF ,A 、E 、F 、D 在一直线上,BC 与AD 交于点O ,且OE=OF ,则图中有全等三角形的对数为……………………………………………………………( )A . 2B . 3C . 4D . 510.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF .给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个二、填空题:(本题共8小题,每小题3分,共24分)11.如图,AC=DC ,BC=EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .12.如图,AB ∥FC ,DE=EF ,AB=15,CF=8,则BD= .13.如图,已知:∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF.(1)若以“ASA ”为依据,还缺条第9第8第件 ;(2)若以“AAS ”为依据,还缺条件 ;(3)若以“SAS ”为依据,还缺条件 ;14. 如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,若BD=4cm ,CE=3cm ,则DE= ㎝.15.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为_________.16.(2019•无锡) 如图,△ABC 中,∠C=30°.将△ABC 绕点A 顺时针旋转60°得到△ADE ,AE 与BC 交于F ,则∠AFB= °.17.如图,在△ACD 和△BCE 中,AC=BC ,AD=BE ,CD=CE ,∠ACE=55°,∠BCD=155°,AD 与BE 相交于点P ,则∠BPD 的度数为 .18.在△ABC 和△DEF 中,已知AB=DE ,∠A=∠D ,若要得到△ABC ≌△DEF ,则还要补充一个条件,在下列补充方法:①AC=DF ;②∠B=∠E ;③∠B=∠F ;④∠C=∠F ⑤BC=EF 中,则错误结论的序第14第12第13第16第第号是 .三、解答题:(本题共8大题,满分共76分)19. (6分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,请在方格纸上按下列要求画图.(1)在图①中画出与△ABC全等且有一个公共顶点的△A′B′C′;(2)在图②中画出与△ABC全等且有一条公共边的△A″B″C″.20.(本题满分6分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.21. (本题满分8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.22. (本题满分8分)(2019.连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.23.(本题满分8分)(2019.镇江)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)若∠ABC=35°,求∠CAO的度数;(2)求证:CO=DO24.(本题满分8分)(2019.常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若∠AEC=∠ACE,求∠DEC的度数.25.(本题满分8分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE 有何特殊位置关系,并证明.26. (本题满分8分)如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:(1)AP=AQ;(2)AP⊥AQ.27.(本题满分7分)在△ABC中,AB=AC,点D 是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)28. (本题满分9分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q 第一次在△ABC的哪条边上相遇?2019-2019学年第二学期《全等三角形》单元测试题参考答案一、选择题:1.C;2.B;3.A;4.B;5.C;6.C;7.B;8.B;9.B;10.A;二、填空题:11.ED=BA;12.7; 13. ∠A=∠D;∠ACB=∠F;BC=EF;14.7;15.3;16.90;17.130;18.③⑤;三、解答题:19.20. 略;21. (1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,AB=BC ∠ABE=∠CBF BE=BF ,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF ,∴∠BEF=∠EFB=45°,∵四边形ABCD 是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°-55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.22.略;23.(1)20°;(2)略;24.(1)略;(2)112.5°;25. (1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+CAD,即∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△BAD ≌△CAE (SAS ).(2)BD 、CE 特殊位置关系为BD ⊥CE .证明如下:由(1)知△BAD ≌△CAE ,∴∠ADB=∠E .∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.26.证明:∵AB ∥DE ,∴∠B=∠DEF .∵BE=CF , ∴BC=EF .∵∠ACB=∠F ,∴B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )22. 证明:(1)∵DE ⊥AC ,BF ⊥AC ,在△ABF 和△CDE 中,AB CD DE BF =⎧⎨=⎩,∴△ABF ≌△CDE(HL ).∴AF=CE .(2)由(1)知∠ACD=∠CAB ,∴AB ∥CD . ∴BD 、CE 特殊位置关系为BD ⊥CE .26. 证明:(1)∵BE 、CF 都是△ABC 的高,∴∠AFC=∠AFQ=∠AEB=90°.∴∠BAC+∠ABE=90°,∠BAC+∠ACF=90°,∴∠ABE=∠ACF .在△ABP 和△QCA 中AB QC ABE ACFBP CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△QCA (ASA ),∴AP=QA ;(2)∵△ABP ≌△QCA ,∴∠BAP=∠CQA .∵∠CQA+∠FAQ=90°,∴∠BAP+∠FAQ=90°,即∠APQ=90°,∴AQ ⊥AQ .(1)证明:在△AOB 和△COD 中∵B C AOB DOCAB DC ∠=∠⎧⎪∠=⎨⎪=⎩,∴△AOB ≌△COD (AAS )(2)∵△AOB ≌△COD (已证),∴AO=DO, ∵E 是AD 的中点, ∴AE=DE ;在△AOE 和△DOE 中∵AO OD AE DEOE OE =⎧⎪=⎨⎪=⎩,∴△AOE ≌△DOE (SSS ), ∴90∠=∠=︒;AEO DEO26.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.27.解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE ,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE ;∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D 在射线BC 的反向延长线上时,α=β. 理由:∵∠DAE=∠BAC ,∴∠DAB=∠EAC ,∵在△ADB 和△AEC 中,AD =AE ∠DAB =∠EAC AB =AC ,∴△ADB ≌△AEC (SAS ),∴∠ABD=∠ACE ,∵∠ABD=∠BAC+∠ACB ,∠ACE=∠BCE+∠ACB ,∴∠BAC=∠BCE ,即α=β.28. 解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D 为AB 的中点,∴BD=5厘米.又∵PC=BC-BP ,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD .又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B CBP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP .(SAS ) ②∵P v ≠Q v ,∴BP ≠CQ ,又∵△BPD ≌△CPQ ,∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t =433BP =秒,∴Qv =515443CQ t ==厘米/秒; (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯解得803x =.∴点P 共运动了803×3=80厘米.∵80=56+24=2×28+24,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇.。

江苏省苏州市吴中区2017-2018学年八年级数学下学期期中试题 苏科版

江苏省苏州市吴中区2017-2018学年八年级数学下学期期中试题 苏科版

江苏省苏州市吴中区2017-2018学年八年级数学下学期期中试题注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将密封线内的项目填写清楚,所有解答均须写在答题卷上,在本试卷上答题无效. 一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.) 1.下列图形中,中心对称图形是2.若代数式12x +在实数范围内有意义,则实数x 的取值范围是 A.2x =- B.2x ≠- C.2x <- D.2x >- 3.下列式子为最简二次根式的是4.一只不透明的袋子中装有一些白球和红球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.不可能事佚B.必然事件C.确定事件D.随机事件5.去年我市有约7万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是A.这1000名考生是总体的一个样本B.约7万名考生是总体C.每位考生的数学成绩是个体D. 1000名学生是样本容量6.如图,在ABCD Y 中,90ODA ∠=︒,10AC =cm ,6BD = cm ,则AD 的长为 A. 4 cm B. 5 cmC. 6 cmD. 8 cm7.下列性质中,菱形具有而矩形不一定具有的是 A.对角线互相平分 B.对角线互相垂直 C.对边平行且相等 D.对角线相等28.在反比例函数2k y x-=的图像上有两点1122(,),(,)A x y B x y .若120x x >>时,12y y > , 则k 取值范围是A. 2k ≥B. 2k >C. 2k ≤D. 2k <9.如图,矩形纸片ABCD 中,AB =6cm, BC =8cm ,现将其沿AE 对折,使得点B 落在边 AD 上的点1B 处,折痕与边BC 交于点E ,则CE 的长为A. 6cmB. 4cmC. 2cmD. 1 cm10.如图,在ABCD Y 中,2AD AB =, F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,连接,EF CF ,则下列结论中一定成立的是①2BCD DCF ∠=∠;②EF CF =; ③2BEC CEF S S ∆∆=; ④3DFE AEF ∠=∠. A.①②③ B.①③④ C.①②④ D.②③④二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.) 11.化简= . 12.当x = 时,分式211x x -+的值为零. 13.“抛掷图钉实验”的结果如下:由表可知,“针尖不着地的”的概率的估计值是 .(精确到0.01) 14.在ABCD Y 中,220A C ∠+∠=︒,则B ∠= .15.菱形ABCD 的对角线AC =6cm, BD =8cm ,则菱形ABCD 的面积是 cm 2. 16.某物质的密度ρ (kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的函数表达式是ρ= .17.如图,在四边形ABCD 中,P 是对角线BD 的中点,,E F 分别是,AB CD 的中点, ,100AD BC FPE =∠=︒,则PFE ∠= ° .18.如图,正方形ABCD 的边长为4. E 为BC 上一点,1,BE F =为AB 上一点,2,AF = P 为AC 上一点,则PF PE +的最小值为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色,墨水签字笔.) 19.计算:(本题满分8分,每小题4分)(1) 01(3)π-+-; (2) 22111a a aa a ++---.20.解方程: (本题满分8分,每小题4分) (1) 512552x x x +=--; (2) 221x xx x +=-+.21.(本题满分6分) 先化简,再求值: 35(2)242a a a a -÷+---,其中12a =-.22.(本题满分6分)如图所示,在平面直角坐标系中,方格纸中的每个小正方形的边长为1个 单位,己知(1,0),(2,2),(4,1)A B C -----,请按要求画图:(1)以A 点为旋转中心,将ABC ∆绕点A 顺时针旋转90°得11AB C ∆,画出11AB C ∆; (2)作出ABC ∆关于坐标原点O 成中心对称的222A B C ∆.423.(本题满分6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是 度;(3)若全校八年级共有学生900人,估计八年级一周课外阅读时间为6小时的学生有多少人?24.(本题满分6分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,己知小明的速度是小芳速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.25.(本题满分8分)如图,在矩形ABCD 中,,M N 分别是边,AD BC 的中点,,E F 分别是线段,BM CM 的中点.(1)判断四边形MENF 是什么特殊四边形,并证明你的结论; (2)若四边形MENF 是正方形,求:AD AB 的值.26.(本题满分9分)如图,在平面直角坐标系xoy 中,直线2y x =-与y 轴相交于点A ,与反比例函数ky x=在第一象限内的图象相交于点(,2)B m . (1)求该反比例函数关系式; (2)当14x ≤≤时,求ky x=的函数值的取值范围; (3)将直线2y x =-向上平移后与反比例函数在第一象限内的图象相交于点C ,且ABC ∆ 的面积为18,求平移后的直线的函数关系式.627.(本题满分9分)我们宅义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD 是等对角四边形,,60,75A C A B ∠≠∠∠=︒∠=︒, 则: C ∠= ° ,D ∠= °;(2)图①、图②均为4×4的正方形网格,线段,AB BC 的端点均在网点上.按要求在图①、图②中以AB 和BC 为边各画一个等对角四边形ABCD .(要求:四边形ABCD 的顶点D 在格点上,所画的两个四边形不全等)(3)已知:在等对角四边形ABCD 中,60,90,2,1DAB ABC AB CD ∠=︒∠=︒==, 求BC 的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28.(本题满分10分)如图1,已知直线2y x =分别与双曲线8,ky y x x==交于第一象限内,P Q 两点,且OQ PQ =.(1)则P 点坐标是 ; k = . (2)如图2,若点A 是双曲线8y x=在第一象限图像上的动点,//AB x 轴,//AC y 轴, 分别交双曲线ky x=于点,B C ; ①连接BC ,请你探索在点A 运动过程中,ABC ∆的面积是否变化,若不变,请求出ABC ∆的面积;若改变,请说明理由;②若点D 是直线2y x =上的一点,请你进一步探索在点A 运动过程中,以点,,,A B C D 为顶点的四边形能否为平行四边形,若能,求出此时点A 的坐标;若不能,请说明理由.81012。

江苏省江阴市华士片宜兴市周铁学区2017_2018学年八年级物理下学期第二次月考试题苏科版-含答案 师生通用

江苏省江阴市华士片宜兴市周铁学区2017_2018学年八年级物理下学期第二次月考试题苏科版-含答案 师生通用

江苏省江阴市华士片、宜兴市周铁学区2017-2018学年八年级物理下学期第二次月考试题一、选择题(本题共14题,每小题2分,共28分。

每小题只有一个选项正确)1、将50mL的水与50mL的酒精混合,所得液体体积小于100mL.下列对此现象的解释合理的是()A.分子间是有空隙的 B.分子是由原子构成的C.分子的质量和体积都很小 D.分子总是在不断运动2、下列有关质量和密度的说法正确的是()A.铁的密度大于棉花的密度,因为铁比棉花重B.由热胀冷缩的现象可知密度与温度有关C.将密闭容器的气体压缩,密度变大,因此其质量增大D.一杯酒精用去一半后剩余酒精的密度变为原来的一半3、如图所示,在斯诺克台球比赛中,由于目标球被障碍球阻挡,有时运动员会用特殊的“扎杆”打法使白球高速旋转打出漂亮的“弧线球”,从而绕过障碍击中目标,则使白球在水平桌面上做曲线运动的施力物体是()A.球杆 B.地球 C.白球 D.桌面4、中央电视台的“三星智力快车”节目介绍说,蜜蜂飞行与空气摩擦产生静电,因此蜜蜂在飞行中就可以吸引带正电的花粉,以下说法正确的是()A.蜜蜂带负电B.蜜蜂带正电C.空气不带电D.空气带负电5、如果没有重力,下列现象不会出现的是()A. 玻璃杯掷到墙上仍完好无损B. 高处的水不会往低处流C.“登天”不再是一件难事了D. 灰尘飞扬后不会落回地面6、农民清除黄豆中夹杂的砂粒时,常把黄豆放在倾斜的桌面上,黄豆就顺着桌面滚下,而砂粒却留在桌面上,这主要是()A.砂粒比黄豆密度大B. 砂粒比黄豆体积小,不易滚下C.砂粒比黄豆对桌面的压力D.砂粒受到的滑动摩擦比黄豆所受滚动摩擦大7、同学们梳理了教材中与压强、浮力相关的知识,以下分析正确的是()A.青藏高原海拔高,所以气压高,沸点低,需要用高压锅才能把饭煮熟B.小明双脚分别站立在水平的沙滩和水平路面上,对沙滩和路面的压强相同C.潜入水中的潜水艇,潜水越深,所受的压强和浮力都变大D.一艘轮船从大海驶向长江,因为液体密度变小,所以浮力变小8、海洋钻井平台水面下的支撑立柱经常受到洋流的冲击.为增强平台的稳定性,我国“南海石油981”钻井平台采用了世界先进的动力定位系统:在立柱上安装可以按需要改变朝向的螺旋桨,螺旋桨高速排水可以保持立柱的平衡.螺旋桨排水的方向应该是()A.顺着洋流方向 B.逆着洋流方向C.与洋流方向垂直 D.竖直向下9、小瓷碗漂浮在水面上,倾斜后能沉人水底,下列分析正确的是 ( )A.小瓷碗能沉人水底是因为它倾斜后的重力变大了B.小瓷碗漂浮时受到的浮力略大于它排开水的重力C.小瓷碗浸没时所受浮力小于漂浮时所受浮力D.小瓷碗浸没后容器底受到水的压强变大了10、将同一压强计的金属盒先后放入甲、乙两种液体中,现象如图所示。

江苏省苏州高新区2017-2018学年八年级数学下学期自主检测试题(无答案) 苏科版

江苏省苏州高新区2017-2018学年八年级数学下学期自主检测试题(无答案) 苏科版

江苏省苏州高新区2017-2018学年八年级数学下学期自主检测试题一、选择题(本大题共10小题,每小题2分,共20分)1.下列调查中,适合普查的是().A.中学生最喜欢的电视节目 B.某张试卷上的印刷错误C.质检部门对各厂家生产的电池使用寿命的调查 D.中学生上网情况2.如图图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根 D.无法确定4.菱形对角线不具有的性质是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分5.如图,矩形ABCD中,∠AOB=60°,AB=2,则AC的长为()A.2 B.4 C.2 D.46.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A. B. C.D.7.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为().A.22 B.18 C.14 D.118.如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()A.1 B. C. D.A.①② B.①③ C.①②④ D.①③④第6题图 第7题图 第8题图 第10题图9.已知点A 在双曲线B 在直线y=x ﹣4上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n ) ) A .﹣10 B . ﹣8 C . 6 D . 410.如图,P 为正方形ABCD 的对角线BD 上任一点,过点P 作PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF .给出以下4个结论:①AP=EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE=∠BAP .其中,所有正确的结论是( ).二、填空题(本大题共8小题,每小题3分,共24分)11.若关于x 的方程x 2+mx+2=0的一个根是1,则m 的值为 .12.y=(m-21)22-m x 是反比例函数,且y 随x 的增大而增大,则m=__________________. 13.事件A 发生的概率为120,大量重复做这种试验,事件A 平均每100次发生的次数是 14.如图,四边形ABCD 是菱形,AC=8,DB=6,DH ⊥AB 于点H ,则DH= .15.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x 轴、y 轴的正半轴上,点Q 在对角线OB 上,若OQ=OC ,则点Q 的坐标为 .16.矩形ABCD ,AB=7,BC=10,点E 在BC 的垂直平分线上,∠BEC=90°,则DE= .17.如图,在正方形OABC 中,点A 的坐标是(﹣3,1),点B 的纵坐标是4,则B 点的横坐标是 .18.如图,矩形ABCD 中,AB=1,AD=2,点E 是边AD 上的一个动点,把△BAE 沿BE 折叠,点A 落在A′处,如果A′恰在矩形的对称轴上,则AE 的长为 .第14题图 第15题图 第17题图 第18题图三、解答题19.(每题3分,共12分)解下列方程:(1)x2=﹣7x (2)x2﹣2x﹣2=0;(3)(x﹣1)(x﹣3)=8;(4)x2﹣2x﹣15=0.(公式法)20.(本题5分)如图,在△A BC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.21.(本题5分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?22. (本题6分)如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=﹣x+1的图象的一个交点为A(﹣1,m).(1)求这个反比例函数的表达式;(2)如果一次函数y=﹣x+1的图象与x轴交于点B(n,0),请确定当x<n时,对应的反比例函数y=的值的范围.23.(本题6分)已知:关于x的方程x2﹣4mx+4m2﹣1=0.(1)不解方程:判断方程的根的情况;(2)若△AB C为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.24.(本题6分)3月初某商品价格上涨,每件价格上涨20%,用3000元买到的该商品件数比涨价前少20件.3月下旬该商品开始降价,经过两次降价后,该商品价格为每件19.2元.(1)求3月初该商品上涨后的价格;(2)若该商品两次降价率相同,求该商品价格的平均降价率.25.(本题7分)如图1,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15m,一面利用旧墙,其余三面用篱笆围,篱笆总长为24m,设平行于墙的BC边长为xm.(1)若围成的花圃面积为40m2时,求BC的长;(2)如图2,若计划在花圃中间用一道篱笆隔成两个小矩形,且围成的花圃面积为50m2,请你判断能否成功围成花圃,如果能,求BC的长?如果不能,请说明理由;(3)如图3,若计划在花圃中间用n道篱笆隔成小矩形,且当这些小矩形为正方形时,请列出x、n 满足的关系式.26.(本题9分)如图1,四边形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQM K为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .。

江苏省苏州市2017-2018学年七年级数学下学期3月月考试题-苏科版

江苏省苏州市2017-2018学年七年级数学下学期3月月考试题-苏科版

江苏省苏州市2017-2018学年七年级数学下学期3月月考试题一、选择(每题2分)1、下列图形中,不能通过其中一个四边形平移得到的是: ( )2、a 、b 、c 、d 四根竹签的长分别为2cm 、3cm 、4cm 、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:( )A 、1个B 、2个C 、3个D 、4个3、下列各式(1)55b b •52b = (2) (-2a 2)2=4-4a (3)(1-n a)3=13-n a(4) 963321256454y x y x =⎪⎭⎫⎝⎛,其中计算错误的有 ( ) A.1个 B.2个 C.3个 D.4个4、 在ABC ∆中,1135A B C∠=∠=∠,则ABC ∆是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.无法确定5、 如图画的是△ABC 的边AC 上的高,其中画法正确的是…………………………( )6、若220.3,3a b -=--,231-⎪⎭⎫ ⎝⎛-=c ,051⎪⎭⎫ ⎝⎛-=d ,则( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b21,1==y x ()23320y x x-(A )(B )(C )(D )A.4543--或B.4543或C .43D.45-8、如图,OP∥QR∥ST,则下列各式中正确的是: ( )A、∠1+∠2+∠3=180°B、∠1+∠2-∠3=90°C、∠1-∠2+∠3=90°D、∠2+∠3-∠1=180°9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:( )A、88mm B、96mm C、80mm D、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:( )A、75°B、60°C、65°D、55°二、填空(每题3分)11、如果两条直线被第三条直线所截,一组同旁内角的度数比为3:2,差为36°,那么这两条直线的位置关系是___________,这是因为_____________.12、若2xa=,则3xa= .13、在△ABC中,∠A+∠B=150°,∠C=2∠A,则∠A=_______,∠B=_______.14、如图5所示,AB∥CD,BC∥DE,则∠B+∠D=____.15、如图6所示,在△ABC中,∠A=40°,BP、CP是△ABC的外角平分线,则∠P________.16、如图8所示,∠A+∠B+∠C+∠D+∠E=______.17、如果等式2(21)1aa+-=,则a的值为。

江苏省无锡市2017-2018年苏科版八年级(下)期末数学试卷(解析版)

江苏省无锡市2017-2018年苏科版八年级(下)期末数学试卷(解析版)

江苏省无锡市2017-2018学年八年级(下)期末数学试卷一、选择题(本题共8个小题,每小题4分,共32分)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.刘翔为了迎战2008年北京奥运会刻苦进行110米栏训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的()A.平均数B.中位数C.众数D.方差3.如图,在△ABC中,D,E分别是边AB,AC的中点,已知BC=10,则DE的长为()A.3B.4C.5D.64.一次函数y=﹣3x+5的图象经过()A.第一、三、四象限B.第二、三、四象限C.第一、二、三象限D.第一、二、四象限5.下列计算结果正确的是()A.+=B.3﹣=3C.×=D.=56.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6B.7,6C.7,8D.6,87.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y28.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.二、填空题(本题共6个小题,每小题3分,共18分)9.函数的自变量x的取值范围是.10.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.11.已知一次函数y=﹣x+b的图象过点(8,2),那么此一次函数的解析式为.12.直角三角形的两边为3和4,则该三角形的第三边为.13.若实数a、b满足,则=.14.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)=(其中n为正整数).三、解答题(本题共9个小题,共70分)15.(8分)计算.(1)9+2﹣+3(2)(2﹣1)(+1)﹣(1﹣2)216.(6分)四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求菱形的面积.17.(6分)如图所示,在平行四边形ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF =3cm,CE=2cm,求平行四边形ABCD的周长.18.(6分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:请你通过计算回答:小东和小华的学期总评成绩谁较高?19.(8分)已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.20.(7分)如图,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=,MB=2MC,求AB的长.21.(9分)已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.22.(8分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.23.(12分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)求自变量x的取值范围;(3)怎样安排生产每天获得的利润最大,最大利润是多少?参考答案与试题解析一、选择题(本题共8个小题,每小题4分,共32分)1.解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选:D.3.解:∵△ABC中,D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,故DE=AD=×10=5.故选:C.4.解:∵一次函数y=﹣3x+5中,k=﹣3<0,b=5>0,∴此一次函数的图象经过一、二、象限.故选:D.5.解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误.故选:C.6.解:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.故选:B.7.解:∵直线y=﹣3x+b,k=﹣3<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.8.解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.二、填空题(本题共6个小题,每小题3分,共18分)9.解:根据题意得:4﹣2x≥0,解得x≤2.10.解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.11.解:把(8,2)代入y=﹣x+b得﹣8+b=2,解得b=10,所以一次函数解析式为y=﹣x+10.故答案为y=﹣x+10.12.解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,所以x=;所以第三边的长为5或.故答案为:5或.13.解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.14.解:(x﹣1)(x n+x n﹣1+…x+1)=x n+1﹣1.故答案为:x n+1﹣1.三、解答题(本题共9个小题,共70分)15.解:(1)9+2﹣+3==10;(2)(2﹣1)(+1)﹣(1﹣2)2=6+﹣1﹣1+4﹣12=﹣8+5.16.解:∵四边形ABCD为菱形,∴AC⊥BD,则OB==3,∴AC=8,BD=6,S=AC•BD=×6×8=24.菱形ABCD17.解:在△AFB中,AF⊥BF,∠A=60°,AF=3cm,∴∠ABF=30°,AB=2AF=6cm,同理在△BEC中,BC=2EC=4cm,在平行四边形ABCD中,AB=CD,AD=BC,∴平行四边形ABCD的周长为=2(AB+BC)=20cm.18.解:小东总评成绩为70×20%+80×30%+90×50%=83(分);小华总评成绩为90×20%+70×30%+80×50%=79(分).∴小东的学期总评成绩高于小华.19.解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.20.解:如图,连接MA,∵M在线段AB的垂直平分线上,∴MA=MB=2MC,∵∠C=90°,∴AC2+CM2=MA2,即3+MC2=4MC2,解得MC=1,∴MB=2MC=2,∴BC=3,在Rt△ABC中,由勾股定理可得AB===2,即AB的长为2.21.解:(1)在y=2x+3中,当x=0时,y=3,即A(0,3);在y=﹣2x﹣1中,当x=0时,y=﹣1,即B(0,﹣1);(2)依题意,得,解得;∴点C的坐标为(﹣1,1);(3)过点C作CD⊥AB交y轴于点D;∴CD=1;∵AB=3﹣(﹣1)=4;∴S=AB•CD=×4×1=2.△ABC22.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.23.解:(1)此车间每天所获利润y(元)与x(人)之间的函数关系式是y=6x•150+5(20﹣x)•260=26000﹣400x.(2)由解得12.5≤x≤20因为x为整数,所以x=13,14,…,20(3)∵y随x的增大而减小,∴当x=13时,y=26000﹣400×13=20800.最大即安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.(2分)。

江苏省苏州吴中区2017-2018学年七年级数学下学期3月月考试题 苏科版

江苏省苏州吴中区2017-2018学年七年级数学下学期3月月考试题 苏科版

江苏省苏州吴中区2017-2018学年七年级数学下学期3月月考试题一.选择题(每小题2分,共20分)1.下列现象:①电梯的升降运动;②飞机在地面上沿直线滑行;③风车的转动;④钟摆的摆动.其中属于平移的是( )A. ①③B.①②C.②③D.③④ 2.下列运算正确的是( ) A .2a a a =+B .632a a a =⋅ C .4224)2(a a =-D .4)2(22-=-a a3.若一个三角形三个内角度数的比为3:4:11,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形4.下列各式中,不能用平方差公式计算的是( )A. ()()x y x y ---B.()()x y x y +-+C. ()()x y x y -+--D. ()()x y x y --+ 5.下列各组数中,不可能成为一个三角形三边长的是( )A. 3,5,9B.4,9,9C.6,8,10D.7,3,86.若20.3a =-,23b -=-,21()3c -=-,01()3d =-,则( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b 7.下列叙述:①内错角相等②同旁内角互补③对顶角相等④同位角相等,其中正确的有( )A . 0个B . 1个C . 2 个D . 3个8.等腰三角形的两边长分别为4、8,则该三角形的周长为( )A 、16或20B 、16C 、20D 、129.一个多边形的边数每增加一条,这个多边形的( ) A .内角和增加360°B.外角和增加360° C .对角线增加一条D .内角和增加180°10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( ) A .4mcm B .4(m ﹣n )cm C .4ncm D .2(m +n )cm二.填空题(每小题2分,共20分)11.计算: 23x x ⋅=;12.已知一粒大米的质量约为0.000021kg ,用科学记数法表示为kg. 13.若a +b = -5,ab = 4,则(a +2)(b +2)=. 14.如果一个三角形的三条高线的交点在这个三角形的一个顶点上,则此三角形是_______三角形.(填“锐角”、“钝角”或“直角”)15..如图,AB∥CD ,∠E =38°,∠C =20°,则∠EAB 的度数为.16.如图,△DEF 是由△ABC 通过平移得到,且点B ,E ,C ,F 在同一条直线上,若BF=14,EC=4,则BE 的长度是.17.若224a kab b ++是完全平方式,则常数k =.18.在2(1)(21)x x ax +++的运算结果中2x 的系数是-5,那么a 的值是.19.如右下图,小明在操场上从A 点出发,沿直线前进45米后左转45°,再沿直线前进45米后又向左转45°,照这样走下去,他第一次回到出发地A 点时,一共走了米. 20.题目:如果55432123456(1)x a x a x a x a x a x a -=+++++,求6a 的值.解这类题目时,可根据等式的性质,取x 的特殊值,如0x =,1,1-……代入等式两边即可求得3有关代数式的值.如:当0x =时,56(01)a -=,即6-1a =则12345a a a a a -+-+=.三.解答题(共60分) 21.计算(每小题4分,共16分)(1)32(4)x x x -+- (2)235225()()()a a a ⋅÷-(3)0-298112018+323⨯()—()(4)853()()()p q q p q p -÷---22.(6分)已知22,8mn a b ==,求:(1)42m的值;(2)432m n-的值.23.(6分)如果一个n 边形的内角都相等,且它的每一个外角与内角的比为2:5,求这个多边形的边数n .24. (8分)已知3a b -=,2ab =,求(1)2()a b +;(2)226a ab b -+的值25.(6分)如图,BD 是ABC ∠的平分线,//DE CB ,交AB 于点E ,150BED ∠=︒,60BDC ∠=︒,求A ∠的度数.26(8分).如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45(1)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON=30°,如图②,MN 与CD 相交于点E ,求∠CEN 的度数;(2)将图①中的三角尺OMN 绕点O 按每秒30°的速度沿逆时针方向旋转一周,在旋转的过程中,在第 秒时,边MN 恰好与边CD 平行;在第 秒时,直线MN 恰好与直线CD 垂直.(直接写出结果)27. (10分)你能求999897(1)(1)x x x x x -+++++…的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值. ①2(1)(1)1x x x -+=- ②23(1)(1)1x x x x -++=- ③324(1)(1)1x x x x x -+++=- ……5由此我们可以得到:999897(1)(1)x x x x x -+++++=… 请你利用上面的结论,再完成下面两题的计算: (1)504948(2)(2)(2)(2)1-+-+-++-+…(2)若3210x x x +++=,求2016x 的值.2017-2018学年第二学期3月份教学质量情况调查试卷 初一数学答题卷 一.选择题二.填空题11.x 5;12.2.1×10-5kg.13.-2.14.580_15..直角.16. 5 .17.± 4.18.-7.19.360米.20.-31. 三.解答题 21.计算(1)32(4)x x x -+-(2)235225()()()a a a ⋅÷-=(3)0-298112018+323⨯()—()(4)853()()()p q q p q p -÷---22.(1)(2)23.853'33''()[()]()2()()304p q p q p q p q p q =-÷--+-=--+-=K K K K K K 61010'6'34a a a a =⋅÷=K K K K 32'33'3'162163154x x x x x x =-+⋅=-+=K K K K K K ''1+4-3324==K K K K 422'2'2(2)23m m a ==K K K K 4343'4'2'22212823m n m n m n a b-=÷=÷=K K K K K K 00'00'00'''3602=18011805=9002(2)180********n n ÷⨯-⋅==K K K K K K K K K K 答:边数是724.(1)(2)25.26 (1)222'22'2''()21(2)42()4398417a b a ab b a ab b ab a b ab +=++=-++=-+=+=K K K K K K K K 2222'2'''-6(2)-41()-429-8314a ab b a ab b ab a b ab +=-+=-==K K K K K K K K 00''0'00'0000'0000'150301//21536018041806015105518010530456BED AED DE BCAED ABC BD ABE DBC BDC C BDC DBC A C ∠=∴∠=∴∠=∠∠∴∠=∠=∴∠=-∠-∠=--=∠=--=Q K K Q K K Q K K Q K K K K K K 证明:平分0'0'0'030//11802453135N NOB MN AB DCO CEN DCO CEN ∠=∠=∴∴∠+∠=∠=∴∠=Q K K K K Q K K证明:(2)2.5或8.5 秒;第 5.5或11.5 秒28. :999897(1)(1)x x x x x -+++++=…100'12x -K K (1)504948(2)(2)(2)(2)1-+-+-++-+…=1(2)若3210x x x +++=,求2016x 的值.50494851''50494851'51504948'(1)(1)=1122(2)(2)(2)1](2)1321(2)(2)(2)143x x x x x x x -+++++-∴=-+-+-++-+=--+∴+-+-++-+=Q K K K K L K K L K K …当时即(-2-1)[(-2)(-2)324'4'20164504'(1)(1)=1213()14x x x x x x x x -+++-∴=∴==Q K K K K K K。

江苏省苏州市高新区2017-2018学年八年级数学下学期学业质量测试(期末)试题(无答案) 苏科版

江苏省苏州市高新区2017-2018学年八年级数学下学期学业质量测试(期末)试题(无答案) 苏科版

江苏省苏州市高新区2017-2018学年八年级数学下学期学业质量测试(期末)试题本试卷由选择题、填空题和解答题三大题组成.共28小题,满分100分,考试时间100分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号、考试号填涂在答题卡相应的位置上;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.某汽车制造厂为了使顾客了解一种新车的耗油量,公布了调查20辆该车每辆行驶100千米的耗油量,在这个问题中总体是A.所有该种新车的100千米耗油量B. 20辆该种新车的100千米耗油量C.所有该种新车D. 20辆汽车2.下列标志图中,既是轴对称图形,又是中心对称图形的是3.下列说法正确的是A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B.某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%C.“明天我市会下雨”是随机事件D.若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖4.一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分率是A. 1 %B. 10%C. 1.9%D. 19%5.如图,ABC ∆中,//,//DE BC EF AB ,要判定四边形DBFE是菱形,还需要添加的条件是A.BE 平分ABC ∠B.AD BD =C. BE AC ⊥D. AB AC =6.己知四边形ABCD 是平行四边形,下列结论中不正确的是A.当AB BC =时,它是菱形B.当AC BD ⊥时,它是菱形C.当90ABC ∠=︒时,它是矩形D.当AC BD =时,它是正方形7.若关于x 的一元二次方程2210kx x +-=有实数根,则k 的取值范围是A. 1k ≥-且0k ≠B. 1k ≥-C. 1k >-D. 1k >-且0k ≠8.己知反比例函数12m y x-=的图像上两点1122(,),(,)A x y B x y ,当120x x <<时,有12y y <,则m 的取值范围是A. 0m >B. 12m >C. 0m <D. 12m < 9.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于 A. 4.5米 B. 6米 C . 7.2米 D. 8米10.如图,四边形AOBC 和四边形CDEF 都是正方形,边AO 在x 轴上,边OB 在y 轴上,点D 在边BC 上,反比例函数8y x=-在第二象限的图像经过点E ,则正方形AOBC 和正方形CDEF 的面积之差为A. 12B. 10C. 8D. 6二、填空题:本大题共8小题,每小题2分,共16分,把答案直接填写在答题卡相应位置上,11.某校对1200名女生的身高进行了测量,身高在1.58m-1.63m 这一小组的频率为0.25,则该组共有 人.12.在一个不透明的口袋中,装有4个红球和1个白球,这些球除颜色之外其余都相同,那么摸出1个球是红球的概率为 .11.如果反比例函数k y x=的图像经过点(1,3),则k = . 14.己知关于x 的方程230x x m -+=的一个根是2,则它的另一个根是 .15.如图,平行四边形ABCD 中,E 为AD 的中点,连接CE ,若平行四边形ABCD 的面积为24cm 2,则CDE ∆的面积为 cm 2. 16.如图,在四边形ABCD 中,P 是对角线BD 的中点,,E F 分别是,AB CD 的中点,AD BC =,100FPE ∠=︒,则PFE ∠的度数是 .17.如图,在平面直角坐标系中,点(,)A a b 为第一象限内一点,且a b <.连接OA ,并以点A 为旋转中心把OA 逆时针转90°后得线段BA .若点,AB 恰好都在同一反比例函数的图像上,则b a的值等于 . 18.如图,在ABC ∆中,90ABC ∠=︒, BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接,BG DF .若13,6AG CF ==,则BG = .三、解答题:本大题共10小题,共64分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分6分,每小题3分)解方程:(1) 22510x x -+= ; (2) 3(2)2(2)x x x -=-.20. (本题满分4分)先化简,再求值: 222444(1)42x x x x x x -++-÷--+,其中22150x x +-=. 21.(本题满分5分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别(1,3),(2,1),(4,2)A B C ,以坐标原点为位似中心,在第三象限画出与ABC ∆位似的三角形,使相似比为2:1,并写出所画三角形的顶点坐标.22.(本题满分5分)随着移动终端设备的升级换代,手机己经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E. 其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如右表格(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中,m n 的值:(3)若该中学有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?23.(本题满分6分)一个容器盛满纯药液63L ,第一次倒出一部分纯药液后,用水加满;第二次又倒出同样多的药液,若此时容器内剩下的纯药液是28L ,则每次倒出的液体是多少?24.(本题满分6分)在矩形纸片ABCD 中,6,8AB BC ==.将矩形纸片折叠,使点B 与点D 重合,求折痕GH 的长.25.(本题满分6分)如图,反比例函数1k y x =的图像与一次函数214y x =的图像交于点,A B ,点B 的横坐标是4,点(1,)P m 在反比例函数1k y x =的图像上. (1)求反比例函数的表达式;(2)观察图像回答:当x 为何值时,12y y >.26.(本题满分8分)如图,Rt ABC ∆中90C ∠=︒且,AC CD E D =为CB 的三等分点.(1)求证: ADE BDA ∆∆;(2)证明: ADC AEC B ∠=∠+∠;(3)若点P 为线段AB 上一动点,连接PE 则使线段PE 的长度为整数的点的个数有 个.(直接写答案无需说明理由)27.(本题满分8分)如图,AM 是ABC ∆的中线,D 是线段AM 上一点(不与点A 重合).//DE AB 交AC 于点F , //CE AM 连结AE .(1)如图1,当点D 与D 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与D 重合时,(1)中的结论还成立吗?请说明理由;(3)如图3,延长BD 交AC 于点H ,若BH AC ⊥,且BH AM =,求CAM ∠的度数.28.(本题满分10分)如图,在平面直角坐标系中,直线210y x =-+与x 轴、x 轴分别交于,A B 两点.(1)反比例函数1k y x=的图像与直线AB 交于第一象限内的,C D 两点(BD BC <),当 4AD DB =时,求1k 的值;(2)设线段AB 的中点为P ,过P 作x 轴的垂线,垂足为点M ,交反比例函数2k y x =的图像于点Q ,连接,OP OQ ,当以,,P O Q 为顶点的三角形与以,,O B P 为顶点的三角形相似时,求2k 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

做题破万卷,下笔如有神
天才出于勤奋
江苏省苏州市2017-2018学年八年级数学下学期3月测试试题
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符
合题目要求的,把正确答案填在答题卡相应的位置上)
1.下列汽车标志中,是中心对称图形的是( )

A. B. C. D.
2.下面调查中,适合采用普查的是 ( )
A.调查你所在的班级同学的身高情况
B.调查全国中学生心理健康现状
C.调查我市食品合格情况
D.调查中央电视台《少儿节目》收视率

3.若代数式2x在实数范围内有意义,则x的取值范围是( )
A.2x B.2x C.2x D.2x
4.菱形对角线不.具有的性质是( )

A.对角线互相垂直 B. 对角线所在直线是对称轴
C.对角线相等 D. 对角线互相平分
5.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,
则四边形ABCD只需要满足一个条件是( )
A.四边形ABCD是梯形 B.四边形ABCD是菱形
C 对角线AC=BD D.AD=BC

6.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )
A. 35° B. 30° C. 25° D.20°

7.如图,在ABC中,BF平分ABC,AFBF于点F,D为AB的中点,连接DF延长交
AC于点E.若10AB,16BC
,则线段EF的长为( )

A. 2 B. 3 C. 4 D. 5
8.如图,菱形ABCD中,4AB,120A,点P、Q、K分别为线段BC、CD、BD上
做题破万卷,下笔如有神
天才出于勤奋
的任意一点,则PKQK的最小值为( )
A.4 B.25 C.433 D.23

(第6题) (第7题) (第8题)
二、填空题(本大题共8小题,每小题3分,共24分)
9.已知3ab,则2abab的值是 .
10.已知:四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,需添加一个条件是:
(只需填一个你认为正确的条件即可)。
11.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为_______.

12.平行四边形ABCD的周长是30,AC,BD相交于点O,OAB的周长比OBC的周长大3,
则AB .

13.关于x的方程122xaxx有增根,则a的值为 .
14.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分
别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为 .

15.已知关于x的分式方程211ax的解是非正数,则以的取值范围是
做题破万卷,下笔如有神

天才出于勤奋
16.已知菱形ABCD中,AC=6 cm,BD=4 cm.若以BD为边作正方形BDEF,则AF= cm.
三、解答题(本大题共52分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应
的位置上)

17.(本题10分)化简(1) 2xxyxy

(2)2321()22xxxxxx
18.(本题5分)解方程:224124xxx

19.(本题6分)24.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF
∥BC交BE的延长线于F,连接CF.
(1)求证:AD=AF;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.

20.(本题5分)某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考
试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结
合图中所给的信息解答下列问题
(说明:测试总人数的前30%考生为A等级,前30%至前70%为B等级,前70%至前90%为C等级,
90%以后为D等级)
(1)抽取了______名学生成绩;
(2)请把频数分布直方图补充完整;
(3)扇形统计图中A等级所在的扇形的圆心角度数是______;
(4)若测试总人数前90%为合格,该校初二年级有900名学生,求全年级生物合格的学生共约多少
人.
做题破万卷,下笔如有神
天才出于勤奋
21.(本题8分)如图,在□ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,
AE与BF相交于点O,连接EF

(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=52,求□ABCD的面积.

22.(本题8分)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程
队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数
的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用
为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预
算多少万元?请给出你的判断并说明理由

23.(本题10分)
如图,平行四边形ABCD的顶点A、B在x轴上,顶点D在y轴上,已知3OA,5OB,

O
E

D

C
F
A

B
做题破万卷,下笔如有神

天才出于勤奋
4OD
.

(1)平行四边形ABCD的面积为 ;
(2)如图1,点E是BC边上的一点,若ABE的面积是平行四边形ABCD14,求点E 的坐
标;
(3)如图2,将AOD绕点O顺时针旋转,旋转得11AOD,在整个旋转过程中,能否使以点O、

1A、1D、B为顶点的四边形是平行四边形?若能,求点1
A
的坐标;若不能,请说明理由;
做题破万卷,下笔如有神

天才出于勤奋

相关文档
最新文档