初中数学三角形(三)常用辅助线作法

合集下载

初中数学三角形中14种辅助线添加方法

初中数学三角形中14种辅助线添加方法

初中数学三角形中14种辅助线添加方法在三角形中,常用的辅助线有中线、高线、中垂线、角平分线等。

下面是三角形中14种辅助线添加方法:1. 三角形中线的添加方法:在三角形的每个顶点上作一条连接对边中点的线段,则这些线段交于一点,且该点到三角形各顶点的距离相等,即为三角形的重心。

2. 三角形中垂线的添加方法:从三角形的顶点向所对边作垂线,垂足分别为A、B、C,则三个垂足所在直线相交于一点,为三角形的垂心。

3. 三角形高线的添加方法:从三角形的顶点向所对边作垂线,垂线所在直线与所对边的交点称为底部端点,连接三个底部端点,则构成一个矩形,其中两个对角线分别为三角形的两个高。

4. 角平分线的添加方法:从角的顶点向其对边作角平分线,将角平分为两个相等的角,且角平分线上的任意一点到两侧边的距离相等。

5. 外接圆的添加方法:三角形三边的中垂线交于一点,则以该点为圆心,三角形三个顶点分别为圆上的三个点的圆称为三角形的外接圆。

6. 内切圆的添加方法:三角形三条边所在直线的交点为内心,以内心为圆心,作内切圆,该圆与三角形的三边相切。

7. 垂直平分线的添加方法:从线段的中点向垂直于该线段的方向作一条线段,则该线段垂直于原线段且平分其长度。

8. 外角平分线的添加方法:从三角形的一顶点作一条射线,使其不在所在直线内,将相邻两个角的外部划分成两个大小相等的角,则这条射线为该顶点所对的角的外角平分线。

9. 旁切圆的添加方法:以三角形的某一边为半径,在其外侧作一条与该边平行的直线,使其与另外两边所在直线相交,其交点则为旁切圆心。

10. 中位线的添加方法:连接三角形任意两个顶点,则连接这两个顶点的中点的线段称为三角形的中位线,三角形三条中位线交于一点,即为三角形重心。

11. 等腰三角形的中线、高线和垂心重合。

12. 等边三角形的中线、高线、垂心和外心重合。

13. 直角三角形的垂心落在斜边上,且斜边上的高线与斜边垂直。

14. 任意三角形的外心到三个顶点的距离相等。

2024八年级上《全等三角形》常见辅助线作法总结

2024八年级上《全等三角形》常见辅助线作法总结

全等三角形是初中数学中的重要概念,掌握全等三角形的判断和性质是解决三角形问题的关键。

常用的辅助线作法可以帮助我们更好地理解和应用全等三角形的知识。

下面将对2024八年级上《全等三角形》常见的辅助线作法进行总结。

一、三角形内部的辅助线作法:1.外切圆:对于一个三角形,可以在它的外面作出三个外接圆,然后通过外接圆的协调定理来判断和证明两个三角形全等。

2.角平分线:对于一个角,可以作出它的角平分线,然后利用角平分线的性质来判断和证明两个三角形全等。

3.中位线:对于一个三角形,可以连接它的两个顶点和中点,得到两条中位线。

根据中位线的性质,可以判断和证明两个三角形全等。

4.高线:对于一个三角形,可以分别作出它的三条高线,然后根据高线的性质来判断和证明两个三角形全等。

5.角高线和中线:对于一个锐角三角形,可以连接其中一个角的顶点和对边的中点,得到一条角高线和一条中线。

根据角高线和中线的性质,可以判断和证明两个三角形全等。

二、三角形外部的辅助线作法:1.外接圆和割线:对于一个三角形,可以通过外接圆和割线的性质来判断和证明两个三角形全等。

2.正弦定理和余弦定理:对于一个三角形,可以通过正弦定理和余弦定理来判断和证明两个三角形全等。

3.对称性和重叠法:对于一个三角形,可以利用对称性和重叠法来判断和证明两个三角形全等。

4.平移法和旋转法:可以通过平移法和旋转法来判断和证明两个三角形全等。

以上仅是2024八年级上《全等三角形》常见的辅助线作法的总结,实际问题中可能还会有其他的辅助线作法。

在解决三角形问题时,选择合适的辅助线作法可以简化问题,提高解题效率。

同时,还需要对全等三角形的基本知识进行深入理解和掌握,不仅要掌握判断全等三角形的条件,还要熟练运用全等三角形的性质和定理。

三角形中常用的辅助线

三角形中常用的辅助线

三角形问题的常用辅助线作法一、由角平分线想到的辅助线 (一)、截取构全等(二)、过角分线上的点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

(三)、作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中线的性质与等腰三角形的三线合一的性质。

(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

(四)、过角平分线上一点作角的另一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。

或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。

如图4-1和图4-2所示。

图4-2图4-1ABC BIG二、由中点想到的辅助线在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。

(一)、中线把原三角形分成两个面积相等的小三角形(二)、由中线应想到延长中线(倍长中线)题目中如果出现了三角形的中线,常延长加倍此线段,再将端点连结,便可得到全等三角形。

(三)、由中点应想到利用三角形的中位线(四)、直角三角形斜边上的中线性质三、全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

常见辅助线的作法有以下几种:(一)、截长补短:具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.(二)、借助角平分线造全等:可自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(三)、倍长中线(线段)造全等:遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.(四)、平移变换:过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”(五)、旋转(六)、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.(七)、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(等面积法)三角形问题的常用辅助线作法一、由角平分线想到的辅助线 (一)截取构全等例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形:1.作底边上的高,构成两个全等的直角三角形2.作一腰上的高; 3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1.垂直于平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.作对角线——把一个平行四边形分成两个三角形3.做高——形内形外都要注意矩形1.对角线2.作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

初中几何常用辅助线做法

初中几何常用辅助线做法

常用辅助线做法➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法常见辅助线的作法总结1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)构造等腰三角形或作等腰三角形的高利用“三线合一”性质。

7)作三角形的中位线。

8)引平行线构造全等三角形。

9)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(等面积法)10)构造三垂直模型。

✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。

(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.✧考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

专题——三角形中常见的辅助线

专题——三角形中常见的辅助线

三角形中常见的辅助线的作法一、斜边中线模型构成:Rt △ABC,∠ACB=090,D 为AB 边的中点 目的:找等量关系,或2倍(1/2)的关系。

结果:AD=CD=BD例 1 已知:△ABC 中,∠A=060,CE ⊥AB,BD ⊥AC 求证:DE=12BC例2、如图,直角三角形ABC 中,∠C=90 ,M 是AB 中点,AM=AN ,MN//AC 求证:MN=AC 例3已知:△ABC 中,CE ⊥AB,BD ⊥AC ,M,N 分别为BC,DE 的中点 求证:MN ⊥ED例4如图,在△ABC 中,∠B=2∠C ,AD ⊥BC 与D,M 为BC 边的中点,AB=10cm,则MD 长为多少?例5如图 ,Rt △ABC 中,∠C=090,CD 平分∠C ,E 为AB 中点,PE ⊥AB,交CD 延长线于P,那么∠PAC+∠PBC 的大小是多少?ADCMABDEC213N CE D B A MN CD BA MNMBCA等腰三角形底边的中线例1、如图所示,在ABC 中,AB=2AC ,AD 平分∠BAC 且AD=BD ,求证:CD ⊥AC例2如图所示,等腰直角三角形ABC ,∠BAC=90︒,点D 是BC 的中点 二、“三线合一”模型“角平分线”+垂线→等腰三角形”构成:OC 为∠A0B 的角平分线,BC ⊥OC 于C 点 目的:构造等腰三角形结果: ⑴[边]:BC=AC,OA=OB →OC 为△OAB 的中线⑵[角]:∠3=∠4,∠ACO=090→ OC 为△ABO 的高线 ⑶[全等]:△ACO ≌△BCO例 1 已知:AD 是△ABC 的∠A 的平分线,CD ⊥AD 于D,BE ⊥AD 于AD 的延长线于E,M 是BC 边上的中点。

求证:ME=MD例2已知:△ABC 为等腰直角三角形,∠A=090,∠1=∠2,CE ⊥BE求证:BD=2CE例3 已知:△ABC 中,CE 平分∠ACB ,且AE ⊥CE,∠AED+∠CAE=1800(∠3+∠4=1800)求证:DE ∥BC例4 已知:在△ABC 的两边AB 、AC 上分别取BD=CE ,F 、G 分别为DE 、BC 的中点,∠A 的平分线AT 交BC 于T 求证:FG ∥AT4321C BAO 654321MGFE D CB A 4321FE D BA54321F EDCBA MK N L FE DA例5、如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点 (1)求证:AF ⊥CD(2)在你连接BE 后,还能得出什么新结论?三、三角形中位线模型构成:△ABC 中,D 为AB 边中点目的:找中位线,构造:①2倍关系②相似三角形结果:①DE ∥BC,DE=12BC ②△ADE ∽△ABC例1 已知:在△ABC 中,AB=AC,AD ⊥BC 于D,DE ⊥AC 于E,F 为DE 中点 求证:AF ⊥BE例2 已知 BD 、CE 为△ABC 的角平分线,AF ⊥CE 于F,AG ⊥CE 于F,AG ⊥BD 于G求证:①FG ∥BC ② FG=12(AB+AC-BC)例3 已知 ,如图在ABCD 中,P 为CD 中点,AP 延长线交BC 延长线于E,PQ ∥CE 交DE 于Q求证:PQ=12BC例4 已知:梯形ABCD 中,AB=DC,AC ⊥BD,E 、F 为腰上中点,DL ⊥BC,M 为DL 与EF 的交点 求证:EF=DLA BCD E GFED HCB A4321G F N ME CD B AL MK HFEDCBAQ PED CBAOF DC BA108054321ECBAD例 5 已知:锐角△ABC 中,以AB 、AC 为斜边向外作等腰直角△ADB ,△AEC,M 为 BC 中点,连结DM 、ME四“补长截短”模型(1) 截长法: 构成:线段a,b,c目的:确定一线段,找令一线段的等量关系结果:→ a-b '=c ⇒a=b+c , b=b ' (2)补短法: 构成:线段a,b,c目的:构造一等长线段,再找等量关系结果:c=c ',b+c '=a ⇒a=b+c例1 已知:△ABC 中,AD 平分∠BAC求:(1)若∠B=2∠C,则AB+BD=AC (2) 若AB+BD=AC,则∠B=2∠C例2:在ABC 中,∠C=2∠B ,AD ⊥BCY 于D ,求证BD=AC+CD例3如图所示,等腰直角ABC 中,∠BAC=90︒过点A 做直线DE ,BD ⊥DE 于D ,CE ⊥DE 于E ,求证:DE=BD+CE例4已知:等腰△ABC 中,AB=AC, ∠A=0108,BD 平分∠ABC求证:BC=AB+DC7654321MG F EDCBAc ab c4321E BDCACD B ACBEDA54321GMFE D CB A例6、已知如图所示,在ABC 中,AB=AC ∠A=100︒,BD 平分∠ABC 交AC 于D求证:BC=AD+BD例 7 已知:在正方形ABCD 中,M 是CD 的中点,E 是CD 上一点,且∠BAE=2∠DAM求证:AE=BC+CE例 8已知:在正方形ABCD 中,E 为BC 上任一点,∠EAD 的平分线交DC 于F 求证:BE+DF=AE构造等边三角形、等腰三角形例9、如图,已知∠ABD=∠ACD=60︒∠ADB=90︒-12∠BDC 且∠BAC=20︒求:∠ACB 的度数。

(完整版)全等三角形常用辅助线做法

(完整版)全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。

求证: CD=AD+BC。

思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧及典型例题Document number:NOCG-YUNOO-BUYTT-UU986-1986UT三角形中做辅助线的技巧口诀:三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

一、由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线D段、角相等创造了条件。

如图1-2,AB2AC2AC3 CAC 。

3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AE=21(AB+AD ).求证:∠D+∠B=180。

4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。

求证:AF=AD+CF 。

已知:如图2-7,在Rt △ABC 中,∠ACB=90,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH 21证:BD=2CE 。

分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学三角形(三)常用辅助线作法
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
2
常用辅助线作法
姓名 时间
与中点有关的辅助线常用作法:
一、有中线时可倍长中线,构造全等三角形.
例1.已知:如图,AD 为ABC ∆的中线,AE=EF.求证:
例2. 如图,AB=CD
,E 为BC 的中点,∠
BAC=∠BCA ,求证:AD=2AE 。

二、有以线段中点为端点的线段时,倍长该线段,构造全等三角形.
例3.已知:如图,在ABC ∆中,︒=∠90C ,M 为AB 中点,P 、Q 分别在AC 、BC 上,且
QM PM ⊥
于M.求证:222BQ AP PQ +=.
A
B
E C D
3
三、有中点时,可再取中点,构造中位线.
例4.如图,ABC ∆中,D 、E 分别为AB 、AC 上点,且BD=CE ,M 、N 为BE 、CD 中点,连MN
交AB 、AC 于
P 、Q ,求证:AP=AQ .
四、等腰三角形有底边中点, 连中中点,利用三线合一.
例5.已知:如图,在ABC Rt ∆中,︒=∠90BAC ,AB=AC ,D 为BC 边中点,P 为BC 上一点,AB PF ⊥ 于F ,AC PE ⊥于E.求证:DF=DE.
与角平分线有关的辅助线常用作法:
一、出现线段的和、差关系时,通常考虑截长补短.
例6.已知:四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4,求证:BC=AB +CD .
A D P
B C Q E M N
A
B C
D
E
1 2
3 4
4
例7.如图,AC 平分∠BAD ,CE ⊥AB ,且∠B+∠D=180°,求证:AE=AD+BE 。

二、有角平分线时,利用对称性,在较长边上截取跟较短边相等的线段,构造全等.
例8.如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。

例9.如图,BC>BA ,BD 平分∠ABC
,且AD=CD ,求证:∠A+∠C=180。

三.角平分线上的点向角一边做垂线时,就过这点向另一边做垂线,利用角平分线定理来解题。

例10.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD
1 2
A
C D
B
B
D
C
A
B
C
E
A
B C
D
5
四.有和角平分线垂直的线段时,把它延长构造等腰三角形.
例11.如图,ABC ∆中,AM 平分A ∠,BD 垂直于AM 的延长线于点D ,DE ∥CA 交AB 于E .求
证:AE=BE .
五.有角平分线时,作与角平分线平行的直线构造等腰三角形.
例12.已知:如图,)(AC AB ABC ≠∆中,D 、E 在BC 上,且DE=EC ,过D 作DF ∥AB,交AE
于点F ,DF=AC.求证:AE 平分BAC ∠.
【巩固练习】
1.如图,AB=6,AC=8,D 为BC 的中点,求AD
2.如图,∠A=100°,AB=AC ,BD 平分∠ABC ,求证:BC=AD+BD 。

M
D
B
E
A C
A
C
A
6
3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD
【作业】日期 姓名 完成时间 成绩
1.已知:如图,AB=2AC ,∠1=∠2,DA=DB ,求证:DC ⊥AC
2.已知:如图,梯形ABCD 中,BC ∥AD ,E 为CD 的中点,AB=AD+BC . 求证:(1)BE AE ⊥;(2)AE 平分BAD ∠.
A B D
C
1 2
B
C
E
D A
A
E
B D C
7
3.已知:如图,∠1=∠2,AB ﹥AC ,CD ⊥AD 于D ,H 是BC 中点,求证:DH=2
1
(AB -AC ).。

相关文档
最新文档