TC7660IOA中文资料

合集下载

icl7660中文资料_数据手册_参数

icl7660中文资料_数据手册_参数
Intersil ICL7660和ICL7660A是单片式CMO电源电路,ICL7660与以前可用的设备相比具有独特的性能优势。ICL7660在输入范围为+1.5 V 至+10.0 V的情况下进行电源电压转换,产生-1.5 V至-10.0 V的不必要输出电压,而ICL7660A在输入范围为+1.5 V至+12.0 V的情况下进行 相同的转换,产生-1的补充输出电压。5伏至-12.0伏。只有2个非临界外部电容器用于电荷泵和电荷储能器功能。ICL7660和ICL7660A也 可以作为电压倍增器连接,并将通过+10伏输入产生高达+18.6伏的输出电压。芯片上包含一系列直流电源。Y调节器、R振荡器、电压 电平转换器和四个输出功率MOS开关。一个独特的逻辑元件感测装置中的最大电压,并确保输出通道开关源-基板结不会正向偏压。这 保证了无闭锁操作。振荡器在空载时,在输入电源电压为5.0V的情况下,以10 kHz的名义频率振荡。该频率可通过在“OSC”终端上添 加外部电容器来降低,或通过外部时钟来驱动振荡器。t“低压”接线端可接地,以绕过内部串联调节器,改善低压(LV)运行。在中 高压下(对于ICL7660为+3.5 V至+10.0 V,对于ICL7660A为+3.5 V至+12.0 V),lvpin保持浮动状态,以防止设备闭 锁。pinoutsicl7660、ICL7660A(8 ld pdip,soic)顶视图功能•简单地将+5 V逻辑电源转换为±5 V电源•简单的电压倍增器离子 (vout=(-)nvin)•典型开路电压转换效率99.9%•典型功率效率98%•ICL7660宽工作电压范围-ICL7660。1.5V至12.0V•ICL7660A在3V下 100%测试•易于使用-只需要2个外部非临界无源元件•无外部二极管超温。和电压范围•无铅+退火(符合RoHS)应用•动态RAMS板上负 电源•本地化处理器(8080型)负电源•便宜的负电源•数据采集系统其中,v1和v2是泵和传输循环期间c1上的电压。如果与RL值相 比,C1和C2的阻抗在泵频率下相对较高(参见图12),则电压v1和v2会有很大差异。因此,为了达到最大的运行效率,既要使C2尽可 能大地消除输出电压纹波,又要使C1具有相应的大值。不要超过ICL7660最大电源电压。ICL7660电源电压大于3.5V.3时,不要将低压端 子接地。电源电压高于5.5 V时,不要将输出短路到V+电源,但瞬态条件(包括启动)是正常的。当使用极化电容器时,C1的+端必须 连接到ICL7660和ICL7660A的针脚2,而C2的+端必须连接到地上。如果驱动ICL7660和ICL7660A的电压电源具有较大的源阻抗 (25∙-30∙),则可能需要从插脚8到接地的2.2∙fcapacitor,以将输入电压的上升率限制在小于2V/μs.6。用户应确保输出(针脚5)不会比 GND(针脚3)更为正。在这些条件下会发生设备锁定。与C2并联的1N914或类似二极管将防止设备在这种情况下闭锁城-电子元器件采购网,提供一站式配套 ,解决物料烦恼,万联芯城销售电子元器件范围包括IC集成电路 ,电阻电容,二三极管,可进行一站式BOM表配单,BOM配单 整单采购可享优惠价,提交BOM表报价,最快可当天发货,电子元 器件现货销售,满足客户物料需求,万联芯城凭借丰富的电子元 器件供应链体系已在业内打下良好的品牌口碑,点击进入万联芯城。

TL7660中文资料

TL7660中文资料

TL7660 CMOS VOLTAGE CONVERTER
SCAS794 – JUNE 2006
APPLICATIONS
• On-Board Negative Supplies • Data-Acquisition Systems • Portable Electronics
D, DGK, OR P PACKAGE (TOP VIEW)
NC 1 CAP+ 2 GND 3 CAP− 4
8
V CC
7 OSC
6 LV
5
V OUT
NC − No internal connection
DESCRIPTION/ORDERING INFORMATION
The TL7660 is a CMOS switched-capacitor voltage converter that perform supply-voltage conversions from positive to negative. With only two noncritical external capacitors needed for the charge pump and charge reservoir functions, an input voltage within the range from 1.5 V to 10 V is converted to a complementary negative output voltage of –1.5 V to –10 V. The device can also be connected as a voltage doubler to generate output voltages up to 18.6 V with a 10-V input.

TC7662C

TC7662C
CERDIP)
1 2 3 4 5 6 7 8
符号
NC C+ GND CVOUT NC OSC VDD
说明
无连接。 电荷泵电容正接线端。 接地端。 电荷泵电容负接线端。 输出电压。 无连接。 振荡器控制输入。 利用外部电容旁路来降低振荡器频率。 正电源电压输入。
DS21468B_CN 第4 页
2008 Microchip Technology Inc.
RO ≅ 2(RSW1 + RSW2 + ESRCP) + 2(RSW3 + RSW4 +
ESRCP) +
1 fPUMP x CP
+ ESRCR
(fPUMP
=
fOSC 2
,RSWX
=
MOSFET
开关电阻)
将这四个 RSWX 项合并为 RSW,我们得出:
RO ≅ 2 x RSW +
1 fPUMP x CP
TC7662A
电荷泵 DC-DC 转换器
特性
• 宽工作电压范围 - 3V 至 18V
• 增大的输出电流 (40 mA) • 与 ICL7662/SI7661/TC7660/LTC1044 引脚兼容 • 无需外接二极管 • 低输出阻抗 @ IL = 20 mA
- 40Ω (典型值) • 无需低电压终端器件 • CMOS 结构 • 采用 8 引脚 PDIP 和 8 引脚 CERDIP 封装
8 引脚 CERDIP ....................................... 800 mW 8 引脚 PDIP............................................. 730 mW 封装热阻 CPA 和 EPA θJA ................................... 140 °C/W IJA 和 MJA θJA .................................... 90 °C/W 工作温度范围 C 后缀 ............................................0°C 至 +70°C I 后缀 ...........................................-25°C 至 +85°C E 后缀...........................................-40°C 至 +85°C M 后缀 ........................................-55°C 至 +125°C 储存温度范围 .....................................-65°C 至 +150°C

TC7660

TC7660

TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERFEATURESs Converts +5V Logic Supply to ±5V Systems Wide Input Voltage Range....................1.5V to 10V s Efficient Voltage Conversion.........................99.9% s Excellent Power Efficiency...............................98% s Low Power Supply...............................80µA @ 5V IN s Low Cost and Easy to Use— Only Two External Capacitors Requireds RS232 Negative Power Supplys Available in Small Outline (SO) Packages Improved ESD Protection.......................Up to 3kV s No Dx Diode Required for High Voltage Operation GENERAL DESCRIPTIONThe TC7660 is a pin-compatible replacement for the Industry standard TC7660 charge pump voltage converter. It converts a +1.5V to +10V input to a corresponding – 1.5V to -10V output using only two low-cost capacitors, eliminat-ing inductors and their associated cost, size and EMI.The on-board oscillator operates at a nominal fre-quency of 10kHz. Operation below 10kHz (for lower supply current applications) is possible by connecting an external capacitor from OSC to ground (with pin 1 open).The TC7660 is available in both 8-pin DIP and 8-pin SOIC packages in commercial and extended temperature ranges.ORDERING INFORMATIONPIN CONFIGURATION (DIP and SOIC)TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERABSOLUTE MAXIMUM RATINGS*Supply Voltage......................................................+10.5V LV and OSC InputsVoltage (Note 1)..........................– 0.3V to (V++0.3V)for V+ < 5.5V(V+ – 5.5V) to (V++0.3V)for V+ > 5.5V Current Into LV (Note 1).....................20 µA for V+ > 3.5V Output Short Duration (V SUPPLY≤ 5.5V)........Continuous Power Dissipation (T A≤ 70°C) (Note 2)CerDIP............................................................800mW Plastic DIP......................................................730mW SOIC...............................................................470mW Operating Temperature RangeC Suffix..................................................0°C to +70°CI Suffix...............................................– 25°C to +85°CE Suffix.............................................– 40°C to +85°CM Suffix...........................................– 55°C to +125°C Storage Temperature Range................– 65°C to +150°C Lead Temperature (Soldering, 10 sec).................+300°C *Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause perma-nent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICS:Specifications Measured Over Operating Temperature Range With,V+ = 5V, C OSC = 0, Test Circuit (Figure 1), unless otherwise indicated. Symbol Parameter Test Conditions Min Typ Max Unit I+Supply Current R L = ∞—80180µA V+H Supply Voltage Range, High Min ≤ T A≤ Max,3—10VR L = 10 kΩ, LV OpenV+L Supply Voltage Range, Low Min ≤ T A≤ Max, 1.5— 3.5VR L = 10 kΩ, LV to GNDR OUT Output Source Resistance I OUT = 20mA, T A = 25°C—70100ΩI OUT = 20mA, 0°C ≤ T A≤ +70°C——120Ω(C Device)I OUT = 20mA, – 40°C ≤ T A≤ +85°C——130Ω(I Device)I OUT = 20mA, –55°C ≤ T A≤ +125°C—104150Ω(M Device)V+ = 2V, I OUT = 3 mA, LV to GND—150300Ω0°C ≤ T A≤ +70°CV+ = 2V, I OUT = 3 mA, LV to GND—160600Ω– 55°C ≤ T A≤ +125°C (Note 3)F OSC Oscillator Frequency Pin 7 open—10—kHz P EFF Power Efficiency R L = 5kΩ9598—%V OUT E FF Voltage Conversion Efficiency R L = ∞9799.9—%Z OSC Oscillator Impedance V+ = 2V—1—MΩV+ = 5V—100—kΩNOTES: 1.Connecting any input terminal to voltages greater than V+ or less than GND may cause destructive latch-up. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the TC7660.2.Derate linearly above 50°C by 5.5 mW/°C.3.TC7660M only.4.The TC7660 can be operated without the Dx diode over full temperature and voltage range.TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERTYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 1)12108642Operating Voltage vs. TemperatureS U P P L Y V O L T A G E (V )010k 1k100ΩO U T P U T S O U R C E R E S I S T A N C E (Ω)Power Conversion Eff. vs. Osc. Freq.TEMPERATURE (°C)OSCILLATOR CAPACITANCE (pF)10k O S C I L L A T O R F R E Q U E N C Y (H z )11k1001010100100010k10ΩTC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERTYPICAL CHARACTERISTICS (Cont.)2Output Voltage vs. Load CurrentO U T P U T V O L T A G E (V )1–1–12345678LOAD CURRENT (mA)LOAD CURRENT (mA)P O W E R C O N V E R S I O N E F F I C I E N C Y (%)10 20 30 40 50 60 70 80 90100 S U P P L Y C U R R E N T (m A ) (N o t e )102030405060P O W E R C O N V E R S I O N E F F I C I E N C Y (%)LOAD CURRENT (mA)0 2468 1012 14 16 1820S U P PL Y C U R R E N T (m A ) (N o t e )OUTPUT CURRENT (mA)O U T P U T V O L T A G E (V )00Output Voltage vs. Output Current–1–2–3–4–5–6–7–8–9–10102030405060708090100LOAD CURRENT (mA)O U T P U T V O L T A G E (V )Output Voltage vs. Load Current1054320–1–2–3–4–51020304050607080TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERFigure 1. TC7660 Test CircuitDetailed DescriptionThe TC7660 contains all the necessary circuitry to implement a voltage inverter, with the exception of two external capacitors, which may be inexpensive 10 µF polar-ized electrolytic capacitors. Operation is best understood by considering Figure 2, which shows an idealized voltage inverter. Capacitor C 1 is charged to a voltage, V +, for the half cycle when switches S 1 and S 3 are closed. (Note: Switches S 2 and S 4 are open during this half cycle.) During the second half cycle of operation, switches S 2 and S 4 are closed, with S 1 and S 3 open, thereby shifting capacitor C 1 negatively by V + volts. Charge is then transferred from C 1 to C 2, such that the voltage on C 2 is exactly V +, assuming ideal switches and no load on C 2.Figure 2. Idealized Charge Pump InverterThe four switches in Figure 2 are MOS power switches;S 1 is a P-channel device, and S 2, S 3 and S 4 are N-channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of S 3 and S 4 must always remain reverse-biased with respect to their sources,but not so much as to degrade their ON resistances. In addition, at circuit start-up, and under output short circuit conditions (V OUT = V +), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this will result in high power losses and probable device latch-up.This problem is eliminated in the TC7660 by a logic network which senses the output voltage (V OUT ) together with the level translators, and switches the substrates of S 3and S 4 to the correct level to maintain necessary reverse bias.The voltage regulator portion of the TC7660 is an integral part of the anti-latch-up circuitry. Its inherent voltage drop can, however, degrade operation at low voltages. To improve low-voltage operation, the LV pin should be connected to GND, disabling the regulator. For supply voltages greater than 3.5V, the LV terminal must be left open to ensure latch-up-proof operation and prevent device damage.Theoretical Power Efficiency ConsiderationsIn theory, a capacitive charge pump can approach 100% efficiency if certain conditions are met:(1)The drive circuitry consumes minimal power.(2)The output switches have extremely low ONresistance and virtually no offset.(3)The impedances of the pump and reservoircapacitors are negligible at the pump frequency.TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERThe TC7660 approaches these conditions for negative voltage multiplication if large values of C1 and C2 are used. Energy is lost only in the transfer of charge between capacitors if a change in voltage occurs. The energy lost is defined by:E = 1/2 C1 (V12– V22)V1 and V2 are the voltages on C1 during the pump and transfer cycles. If the impedances of C1 and C2 are relatively high at the pump frequency (refer to Figure 2), compared to the value of R L, there will be a substantial difference in voltages V1 and V2. Therefore, it is not only desirable to make C2 as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C1 in order to achieve maximum efficiency of operation. Dos and Don'ts•Do not exceed maximum supply voltages.•Do not connect LV terminal to GND for supply voltages greater than 3.5V.•Do not short circuit the output to V+ supply for voltages above 5.5V for extended periods; however, transient conditions including start-up are okay.•When using polarized capacitors in the inverting mode,the + terminal of C1 must be connected to pin 2 of the TC7660 and the + terminal of C2 must be connected to GND Pin 3.Simple Negative Voltage ConverterFigure 3 shows typical connections to provide a nega-tive supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of +1.5V to +10V, keeping in mind that pin 6 (LV) is tied to the supply negative (GND) only for supply voltages below 3.5V.Figure 3. Simple Negative ConverterParalleling DevicesAny number of TC7660 voltage converters may be paralleled to reduce output resistance (Figure 4). The reser-voir capacitor, C2, serves all devices, while each device requires its own pump capacitor, C1. The resultant output resistance would be approximately:R OUT (of TC7660)n (number of devices)R OUT =22πf C1The output characteristics of the circuit in Figure 3 are those of a nearly ideal voltage source in series with 70Ω. Thus, for a load current of –10mA and a supply voltage of +5V, the output voltage would be – 4.3V.The dynamic output impedance of the TC7660 is due, primarily, to capacitive reactance of the charge transfer capacitor (C1). Since this capacitor is connected to the output for only 1/2 of the cycle, the equation is:X C = = 3.18Ω,where f = 10kHz and C1 = 10µF.TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERFigure 5. Increased Output Voltage by Cascading DevicesTC7660CHARGE PUMP DC-TO-DCVOLTAGE CONVERTER Figure 6. External ClockingFigure 7. Lowering Oscillator FrequencyPositive Voltage MultiplicationThe TC7660 may be employed to achieve positive voltage multiplication using the circuit shown in Figure 8. In this application, the pump inverter switches of the TC7660 are used to charge C1 to a voltage level of V+– V F (where V+ is the supply voltage and V F is the forward voltage drop of diode D1). On the transfer cycle, the voltage on C1 plus the supply voltage (V+) is applied through diode D2 to capacitor C2. The voltage thus created on C2 becomes (2 V+) – (2 V F), or twice the supply voltage minus the combined forward voltage drops of diodes D1 and D2.The source impedance of the output (V OUT) will depend on the output current, but for V+ = 5V and an output current of 10 mA, it will be approximately 60Ω.Figure 8. Positive Voltage Multiplier Combined Negative Voltage Conversionand Positive Supply MultiplicationFigure 9 combines the functions shown in Figures 3 and 8 to provide negative voltage conversion and positive volt-age multiplication simultaneously. This approach would be, for example, suitable for generating +9V and – 5V from an existing +5V supply. In this instance, capacitors C1 and C3 perform the pump and reservoir functions, respectively, for the generation of the negative voltage, while capacitors C2 and C4 are pump and reservoir, respectively, for the multi-plied positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.Figure 9. Combined Negative Converter and Positive Multiplier Efficient Positive VoltageMultiplication/ConversionSince the switches that allow the charge pumping op-eration are bidirectional, the charge transfer can be per-formed backwards as easily as forwards. Figure 10 shows a TC7660 transforming – 5V to +5V (or +5V to +10V, etc.). The only problem here is that the internal clock and switch-drive section will not operate until some positive voltage has been generated. An initial inefficient pump, as shown in Figure 9, could be used to start this circuit up, after which it will bypass the other (D1 and D2 in Figure 9 would never turn on), or else the diode and resistor shown dotted in Figure 10 can be used to "force" the internal regulator on.TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTERFigure 11. Splitting a Supply in HalfTC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER11TC7660CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER© 2001 Microchip Technology Inc. DS21465ATC7660-7 9/30/96PACKAGE DIMENSIONS (CONT.)12© 2001 Microchip Technology Inc. DS21465ATC7660-7 9/30/96Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip ís products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01Printed on recycled paper.AMERICASCorporate Office2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7200 Fax: 480-792-7277Technical Support: 480-792-7627Web Address: Rocky Mountain2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7966 Fax: 480-792-7456Atlanta500 Sugar Mill Road, Suite 200B Atlanta, GA 30350Tel: 770-640-0034 Fax: 770-640-0307AustinAnalog Product Sales8303 MoPac Expressway North Suite A-201Austin, TX 78759Tel: 512-345-2030 Fax: 512-345-6085Boston2 Lan Drive, Suite 120Westford, MA 01886Tel: 978-692-3848 Fax: 978-692-3821BostonAnalog Product SalesUnit A-8-1 Millbrook Tarry Condominium 97 Lowell RoadConcord, MA 01742Tel: 978-371-6400 Fax: 978-371-0050Chicago333 Pierce Road, Suite 180Itasca, IL 60143Tel: 630-285-0071 Fax: 630-285-0075Dallas4570 Westgrove Drive, Suite 160Addison, TX 75001Tel: 972-818-7423 Fax: 972-818-2924DaytonTwo Prestige Place, Suite 130Miamisburg, OH 45342Tel: 937-291-1654 Fax: 937-291-9175DetroitTri-Atria Office Building32255 Northwestern Highway, Suite 190Farmington Hills, MI 48334Tel: 248-538-2250 Fax: 248-538-2260Los Angeles18201 Von Karman, Suite 1090Irvine, CA 92612Tel: 949-263-1888 Fax: 949-263-1338Mountain ViewAnalog Product Sales 1300 Terra Bella AvenueMountain View, CA 94043-1836Tel: 650-968-9241 Fax: 650-967-1590New York150 Motor Parkway, Suite 202Hauppauge, NY 11788Tel: 631-273-5305 Fax: 631-273-5335San JoseMicrochip Technology Inc.2107 North First Street, Suite 590San Jose, CA 95131Tel: 408-436-7950 Fax: 408-436-7955Toronto6285 Northam Drive, Suite 108Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509ASIA/PACIFICChina - BeijingMicrochip Technology Beijing Office Unit 915New China Hong Kong Manhattan Bldg.No. 6 Chaoyangmen Beidajie Beijing, 100027, No. ChinaTel: 86-10-85282100 Fax: 86-10-85282104China - ShanghaiMicrochip Technology Shanghai Office Room 701, Bldg. BFar East International Plaza No. 317 Xian Xia Road Shanghai, 200051Tel: 86-21-6275-5700 Fax: 86-21-6275-5060Hong KongMicrochip Asia PacificRM 2101, Tower 2, Metroplaza 223 Hing Fong RoadKwai Fong, N.T., Hong KongTel: 852-2401-1200 Fax: 852-2401-3431IndiaMicrochip Technology Inc.India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4)No. 11, O íShaugnessey Road Bangalore, 560 025, IndiaTel: 91-80-2290061 Fax: 91-80-2290062JapanMicrochip Technology Intl. Inc.Benex S-1 6F3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, JapanTel: 81-45-471- 6166 Fax: 81-45-471-6122KoreaMicrochip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, KoreaTel: 82-2-554-7200 Fax: 82-2-558-5934ASIA/PACIFIC (continued)SingaporeMicrochip Technology Singapore Pte Ltd.200 Middle Road #07-02 Prime Centre Singapore, 188980Tel: 65-334-8870 Fax: 65-334-8850TaiwanMicrochip Technology Taiwan 11F-3, No. 207Tung Hua North Road Taipei, 105, TaiwanTel: 886-2-2717-7175 Fax: 886-2-2545-0139EUROPEAustraliaMicrochip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW AustraliaTel: 61-2-9868-6733 Fax: 61-2-9868-6755DenmarkMicrochip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3Ballerup DK-2750 DenmarkTel: 45 4420 9895 Fax: 45 4420 9910FranceArizona Microchip Technology SARL Parc d íActivite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, FranceTel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79GermanyArizona Microchip Technology GmbH Gustav-Heinemann Ring 125D-81739 Munich, GermanyTel: 49-89-627-144 0 Fax: 49-89-627-144-44GermanyAnalog Product Sales Lochhamer Strasse 13D-82152 Martinsried, GermanyTel: 49-89-895650-0 Fax: 49-89-895650-22ItalyArizona Microchip Technology SRL Centro Direzionale ColleoniPalazzo Taurus 1 V. Le Colleoni 120041 Agrate Brianza Milan, ItalyTel: 39-039-65791-1 Fax: 39-039-6899883United KingdomArizona Microchip Technology Ltd.505 Eskdale Road Winnersh Triangle WokinghamBerkshire, England RG41 5TUTel: 44 118 921 5869Fax: 44-118 921-582001/09/01。

ICL7660中文资料

ICL7660中文资料

ICL中文资料小功率极性反转电源转换器ICL7660ICL7660是Maxim公司生产的小功率极性反转电源转换器。

该集成电路与TC7662ACPA MAX1044的内部电路及引脚功能完全一致,可以直接替换。

(1)特性ICL7660的静态电流典型值为170μA,输入电压范围为1.5-10V,(Intersil公司ICL7660A输入电压范围为1.5-12)工作频率为10 kHz只需外接10 kHz的小体积电容,只需外接10μF的小体积电容效率高达98%合输出功率可达700mW(以DIP 封装为例),符合输出100mA的要求。

(2)内部电路与引脚功能ICL7660提供DIP、SO,μMAX TO-99等封装形式。

.图1 ICL7660引脚图引脚号引脚符号引脚功能1 N.C 空脚2 CAP+ 储能电容正极3 GND 接地4 CAP- 储能电容负极5 VOUT 负电压输出端6 LV 输入低压电压控制端,输入电压低于3.5V时,该脚接地,输入电压高于5V时,该脚必须悬空。

7 OSC 工作时钟输入端8 V+ 电源输入端ICL7660主要应用在需要从十5V逻辑电源产生一5V电源的设备中,如数据采集、手持式仪表(PDA、掌上电脑)、运算放大器电源、便携式电话等。

ICL7660有两种工作模式:转换器、分压器。

‘作为转换器时,该器件可将1.5-10V范围内的输人电压转换为相应的负电压;在分压模式下工作时,它将输入电压一分为二。

ICL7660作为分压器时的应用电路如图7所示。

图2 基本负电压转换器图3 负电压升压转换器和低压连接图4 负电压转换器,增强型图5 电压倍增器图6 ICL7660外部时钟电路图7 ICL7660 分压器【ICL7660工作原理及典型电路介绍】ICL7660 采用DIP-8封装,引脚排列如下图()所示,CAP+、CAP-分别为外接电容C1的正、负端。

Uo为负压输出端,接电容C2。

LV是低电压端,当UDD﹥3.5V时此端开路,UDD﹤3.5V时接地,以改善低压工作性能。

LM7660中文资料

LM7660中文资料
引脚配置
封装形式 8-Pin DIP 和 8-Pin SOIC 小体积封装
1(11)
引脚说明 引脚号 1
2 3 4 5 6 7 8
符号 NC
CAP+ GND CAPVout Low Voltage OSC
V+
功能块框图
引脚描述 无连接
外接电容+ 接地
外接电容输出
低电压选择 振荡器外接电容
输入电压
ME 7660
负载电流(mA)
4(11)
100 90 80 70 60 50 40 30 20 10 0 5
电源效率vs.负载电流(V+=+5V)
ME 7660
Ver 00
10
15
20
25
30
负载电流(mA)
电源效率(%)
测试电路
5(11)
详细说明
ME 7660
Ver 00
如图 ME7660 与两个的电解电容 C1 C2 一起构成了完负压电路 工作原理如下 在脉冲的前半周期 开关 1 3 闭合时 此时 开关 2 4 断开 电容 C1 被充电至 V+ 在脉冲的后半周期 开关 1 3 断开而 2 4 闭合 于是向 C2 充电 在输出端得到负压 -V+
Ver 00
绝对最大额定值
电源电压 LV 与 OSC 脚输入电压
+10.5V -0.3V (V++0.3V) 当 V+<5.5V 时 (V+-5.5V) (V++0.3V) 当 V+>5.5V 时
LV 脚输入电流
20µA 当 V+>3.5V 时
输出端短路持续时间(电源电压 5.5V)

ICL7660_Datasheet汉语译文

ICL7660_Datasheet汉语译文

ICL7660_DATASHEETCMOS 电压转换Intersil(英特锡尔)ICL7660或者ICL7660A是单晶体CMOS电源供电电路芯片,相比先前的器件有着独特优势。

………………Features·+5V逻辑供电简易转换至±5V$·简易电压倍增(Vout=(-)nVin)·典型开环电路电压转换效率为%·典型电能转换效率98%·宽操作电压范围-ICL7660. . . . . . . . . . . . . . . . . . to 10V-ICL7660A. . . . . . . . . . . . . . . . . . to 12V·ICL7660 100% 在3V条件下测试的·容易使用——仅需要两个外部非重要的无源元件·没有任何外部二极管超过全温度,和电压范围·无铅并且退火可用(RoHS兼容)《Application·为DRAM板级供电·为本地微型处理器(8080型)供负电·便宜的负电源·数据采集系统Pinouts、Ordering Information(订购需知)Absolute Maximum Ratings(绝对最大参数)供电电压-ICL7660.. .. .. .. .. .. .. .. .. .. .. .. +-ICL7660A.. .. .. .. .. .. .. .. .. .. .. ..+LV 和OSC 输入电压 .. .. to (V+ + for V+ <(Note 2) . . . . . (V+ to (V+ + for V+ >'Current into LV (Note 2) . . . . . . . 20µA for V+ >Output Short Duration (VSUPPLY≤ . . . . . . .ContinuousOperating Conditions(操作条件)温度范围ICL7660C, ICL7660AC. . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C ICL7660AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to 85°C热阻抗 (典型值, Note 1) θJA(°C/W)θJC(°C/W)PDIP Package* . . . . . . . . . . . . . . . . . . 110 N/A^SOIC Package . . . . . . . . . . . . . . . . . . . 160 N/AMaximum Storage Temperature Range . . . . . . . . . . . -65°C to 150°C Maximum Lead Temperature (Soldering, 10s). . . . . . . . . . . . . 300°C (SOIC - Lead Tips Only)Electrical Specifications(电气特性)ICL7660 and ICL7660A, V+ = 5V, T A= 25°C, C OSC= 0, Test Circuit Figure 11 Unless Otherwise Specified@Functional Block Diagram(功能模块原理图)图、ICL7660A测试电路:注意:在C osc >1000pF时,C1和C2也相应增加到100UfDetailed Description(细节描述)ICL7660和ICL7660A包含所有必要的电路实现负电压变换器,在外部还需要两个并不贵的10uF的极性电容。

ICL7660SCBAZ中文资料

ICL7660SCBAZ中文资料

Features
• Guaranteed Lower Max Supply Current for All Temperature Ranges • Wide Operating Voltage Range 1.5V to 12V • 100% Tested at 3V • No External Diode Over Full Temperature and Voltage Range • Boost Pin (Pin 1) for Higher Switching Frequency • Guaranteed Minimum Power Efficiency of 96% • Improved Minimum Open Circuit Voltage Conversion Efficiency of 99% • Improved SCR Latchup Protection • Simple Conversion of +5V Logic Supply to ±5V Supplies • Simple Voltage Multiplication VOUT = (-)nVIN • Easy to Use - Requires Only 2 External Non-Critical Passive Components • Improved Direct Replacement for Industry Standard ICL7660 and Other Second Source Devices • Pb-Free Plus Anneal Available (RoHS Compliant)
元器件交易网
ICL7660S Ordering Information
PART NUMBER ICL7660SCBA ICL7660SCBA-T ICL7660SCBAZ (Note 1) PART MARKING 7660SCBA 7660SCBA 7660SCBAZ TEMP. RANGE (°C) 0 to 70 0 to 70 PACKAGE PKG. DWG. # 8 Ld SOIC (N) M8.15 8 Ld SOIC (N) M8.15 (Pb-free)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I+
V+H V L
+
ROUT
fOSC PEFF VOUTEFF ZOSC
— 95 97 — —
Note 1: Destructive latch-up may occur if voltages greater than V + or less than GND are supplied to any input pin.
3 GND
Logic Network
2002 Microchip Technology Inc.
DS21465B-page 1
元器件交易网
TC7660
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings*
Supply Voltage .............................................................+10.5V LV and OSC Inputs Voltage: (Note 1) .............................................. -0.3V to VSS for V+ < 5.5V .....................................(V+ – 5.5V) to (V+) for V+ > 5.5V Current into LV ......................................... 20 µA for V+ > 3.5V Output Short Duration (VSUPPLY ≤ 5.5V)...............Continuous Package Power Dissipation: (TA ≤ 70°C) 8-Pin CERDIP ....................................................800 mW 8-Pin PDIP .........................................................730 mW 8-Pin SOIC .........................................................470 mW Operating Temperature Range: C Suffix.......................................................0°C to +70°C I Suffix .....................................................-25°C to +85°C E Suffix ....................................................-40°C to +85°C M Suffix .................................................-55°C to +125°C Storage Temperature Range.........................-65°C to +160°C ESD protection on all pins (HBM) ................... ..............≥ 3 kV Maximum Junction Temperature ........... ....................... 150°C * Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. IS IL V+ (+5V) RL VOUT C2 + 10 µF
Applications
• • • • RS-232 Negative Power Supply Simple Conversion of +5V to ±5V Supplies Voltage Multiplication VOUT = ± n V+ Negative Supplies for Data Acquisition Systems and Instrumentation
1 C1 + 10 µF 2 3 4 TC7660
8 7 6 5 COSC
FIGURE 1-1:
TC7660 Test Circuit.
ELECTRICAL SPECIFICATIONS
Electrical Characteristics: Unless otherwise noted, specifications measured over operating temperature range with V+ = 5V, COSC = 0, refer to test circuit in Figure 1-1. Parameters Supply Current Supply Voltage Range, High Supply Voltage Range, Low Output Source Resistance Sym Min — 3.0 1.5 — — — — — — Oscillator Frequency Power Efficiency Voltage Conversion Efficiency Oscillator Impedance Typ 80 — — 70 — — 104 150 160 10 98 99.9 1.0 100 Max 180 10 3.5 100 120 130 150 300 600 — — — — — kHz % % MΩ kΩ Units µA V V Ω RL = ∞ Min ≤ TA ≤ Max, R L = 10 kΩ, LV Open Min ≤ TA ≤ Max, R L = 10 kΩ, LV to GND IOUT=20 mA, TA = +25°C IOUT=20 mA, TA ≤ +70°C (C Device) IOUT=20 mA, TA ≤ +85°C (E and I Device) IOUT=20 mA, TA ≤ +125°C (M Device) V + = 2V, IOUT = 3 mA, LV to GND 0°C ≤ TA ≤ +70°C V + = 2V, IOUT = 3 mA, LV to GND -55°C ≤ TA ≤ +125°C (M Device) Pin 7 open RL = 5 k Ω RL = ∞ V+ = 2V V + = 5V Conditions
DS21465B-page 2
2002 Microchip Technology Inc.
元器件交易网
TC7660
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
TC76பைடு நூலகம்0
Package Types
PDIP/CERDIP/SOIC
NC CAP+ GND CAP 1 2 3 4 8 V+ OSC LOW VOLTAGE (LV) VOUT
Charge Pump DC-to-DC Voltage Converter
TC7660
7 6 5
General Description
The TC7660 is a pin-compatible replacement for the industry standard 7660 charge pump voltage converter. It converts a +1.5V to +10V input to a corresponding -1.5V to -10V output using only two low cost capacitors, eliminating inductors and their associated cost, size and electromagnetic interference (EMI). The on-board oscillator operates at a nominal frequency of 10 kHz. Operation below 10 kHz (for lower supply current applications) is possible by connecting an external capacitor from OSC to ground. The TC7660 is available in 8-Pin PDIP, 8-Pin Small Outline (SOIC) and 8-Pin CERDIP packages in commercial and extended temperature ranges.
相关文档
最新文档