七年级下册数学期末考试试卷 含答案 (6)

合集下载

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

(完整版)苏教版七年级下册期末数学试卷精选及答案解析

(完整版)苏教版七年级下册期末数学试卷精选及答案解析

(完整版)苏教版七年级下册期末数学试卷精选及答案解析一、选择题1.下列计算结果正确的是()A.a2+a3=a5B.a6÷a3=a2C.a2×a3=a5D.(a3)2=a5答案:C解析:C【分析】根据合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的运算性质可逐项计算判定求解.【详解】解:A.a2和a3不是同类项,不能合并,故A选项不符合题意;B.a6÷a3=a3,故B项不符合题意;C.a2×a3=a5,故C选项符合题意;D.(a3)2=a6,故D项不符合题意.故选:C.【点睛】本题考查了合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方,掌握以上知识是解题的关键.2.如图,∠1和∠2不是同位角的是()A.B.C.D.答案:D解析:D【分析】根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可.【详解】解:A、∠1和∠2是同位角,故此选项不符合题意;B、∠1和∠2是同位角,故此选项不符合题意;C、∠1和∠2是同位角,故此选项不符合题意;D、∠1和∠2不是同位角,故此选项符合题意;故选:D .【点睛】此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.3.若1,2,x y =⎧⎨=-⎩2,1,x y =-⎧⎨=⎩是方程6mx ny +=的两个解,则m n -的值为( ) A .0 B .-2 C .-12 D .12答案:A解析:A【分析】根据方程的解的定义,得m -2n =6,-2m +n =6,故m =-6,n =-6,进而求得m -n .【详解】解:∵12x y =⎧⎨=-⎩,21x y =-⎧⎨=⎩是方程mx +ny =6的两个解, ∴m -2n =6,-2m +n =6.∴m =-6,n =-6.∴m -n =-6-(-6)=0.故选:A .【点睛】本题主要考查方程的解的定义以及解二元一次方程组,熟练掌握方程的解的定义以及解二元一次方程组是解决本题的关键.4.下列各式中,不能用平方差公式计算的是( )A .(2)(2)x a x a +-B .(12)(12)a a --+C .(5)(5)b c c b +-D .(2)(2)x y x y +-+答案:B解析:B【分析】由题意根据平方差公式即22()()a b a b a b -=+-逐个进行判断即可.【详解】解:A 、能用平方差公式进行计算,故本选项不符合题意;B 、(1-2a )(-1+2a )=-(1-2a )2,不能用平方差公式进行计算,故本选项符合题意;C 、能用平方差公式进行计算,故本选项不符合题意;D 、能用平方差公式进行计算,故本选项不符合题意;故选:B .【点睛】本题考查平方差公式,熟练掌握平方差公式的特点是解答此题的关键.5.若关于x 的不等式组1420x a x -⎧⎨-≤⎩>的解集为x ≥2,则a 的取值范围为( )A .a <2B .a >1C .a ≤1D .a <1答案:D解析:D【分析】先分别解得两个不等式的解集,再根据不等式组的解集是x ≥2得出关于a 的不等式,解之可得答案.【详解】解:解不等式x ﹣a >1,得:x >1+a ,解不等式4﹣2x ≤0,得:x ≥2,∵关于x 的不等式组1420x a x -⎧⎨-≤⎩>的解集为x ≥2, ∴1+a <2,解得:a <1,故选:D .【点睛】主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的值. 6.给出下列4个命题:①对顶角相等;②等角的补角相等;③同旁内角相等,两直线平行;④同位角的平分线平行.其中真命题为 ()A .①④B .①②C .①③④D .①②④ 答案:B解析:B【分析】根据对顶角,平行线等性质进行分析即可.【详解】解:∵对顶角相等,故①正确;∵等角的补角相等,故②正确;∵同旁内角互补,两直线平行,故③错误.∵同位角的平分线不一定平行,故④错误.∴其中正确的有①②,其中正确的个数是2个.故选B .【点睛】考核知识点:真命题.理解相关定理是关键.7.观察等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,77=823543,78=5764801,79=40353607,…,它们的个位数字有什么规律?用你发现的规律写出492021的个位数字是( )A .7B .9C .3D .1答案:B解析:B【分析】观察等式可知:7的幂的个位数字规律为每4个为一个循环,依次为:7,9,3,1;而492021=(72)2021=74042,因此492021的个位数字符合7的幂的个位数字的规律,利用4042÷4=1010余2,说明492021的个位数字与72的个位数字相同,结论可得.【详解】解:观察等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,77=823543,78=5764801,79=40353607,…,它们的个位数字的规律为:每4个为一个循环,依次为:7,9,3,1;∵492021=(72)2021=74042,又4042÷4=1010•••2,∴492021的个位数字与72的个位数字相同,∴492021的个位数字为9.故选B .【点睛】本题主要考查了有理数乘方个位数字的变化,解答时要先通过计算较小的数字得出规律,然后得到相关结果.8.如图,AB ∥CD ,点E 为AB 上方一点,FB ,HG 分别为∠EFG ,∠EHD 的角平分线,若∠E +2∠G =150°,则∠EFG 的度数为( )A .90°B .95°C .100°D .150°答案:C解析:C【分析】如图(见解析),过G 作//GM AB ,先根据平行线的性质、角的和差得出24FGH ∠=∠+∠,再根据角平分线的定义得出22150E EHD ∠+∠+∠=︒,然后根据平行线的性质、三角形的外角性质得出2EHD E ∠=∠-∠,联立求解可得250∠=︒,最后根据角平分线的定义可得22100EFG ∠=∠=︒.【详解】如图,过G 作//GM AB∴25∠=∠∵//AB CD∴//MG CD∴64∠=∠∴5624FGH ∠=∠+∠=∠+∠∵FB 、HG 分别为EFG 、EHD ∠的角平分线∴1122EFG ∠=∠=∠,1342EHD ∠=∠=∠ 2150E FGH ∠+∠=︒2(24)222422150E E E EHD ∴∠+∠+∠=∠+∠+∠=∠+∠+∠=︒∵//AB CD∴EHD ENB ∠=∠1ENB E ∠=∠+∠12EHD E E ∴∠=∠-∠=∠-∠22(2)150E E ∴∠+∠+∠-∠=︒解得250∠=︒22100EFG ∴∠=∠=︒故选:C .【点睛】本题考查了平行线的性质、三角形的外角性质、角平分线的定义等知识点,通过作辅助线,构造平行线是解题关键.二、填空题9.若32ab =-,则5(3)2ab ab -⋅=______.解析:24-【分析】先根据单项式乘以单项式法则进行计算,再根据幂的乘方和积的乘方进行变形,最后代入求出即可.【详解】∵ab 3=−2,∴5(3)2ab ab -⋅=−6a 2b 6=−6(ab 3)2=−6×(−2)2=−24,故答案为:−24.【点睛】本题考查了单项式乘以单项式,幂的乘方和积的乘方等知识点,能正确根据积的乘方和幂的乘方进行变形是解此题的关键.10.命题“如果a b =,那么22a b =”是______命题.(填“真”或“假”)解析:真【分析】根据真假命题的概念直接进行解答即可.【详解】由a b =,则有22a b =,所以命题“如果a b =,那么22a b =”是真命题;故答案为:真.【点睛】本题主要考查命题,正确理解真假命题是解题的关键.11.一个正多边形的每个外角都是45°,则这个正多边形是正___边形.解析:八【分析】根据多边形的外角和等于360︒即可得.【详解】解:因为多边形的外角和等于360︒,所以这个正多边形的边数是360458︒÷︒=,即这个正多边形是正八边形,故答案为:八.【点睛】本题考查了多边形的外角和,熟记多边形的外角和等于360︒是解题关键.12.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x 4﹣y 4,因式分解的结果是(x ﹣y )(x +y )(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x +y )=18,(x ﹣y )=0,(x 2+y 2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x 3﹣xy 2,取x =10,y =10时,用上述方法产生的密码是_____(写出一个即可).解析:104020【分析】9x 3-xy 2=x (9x 2-y 2)=x (3x+y )(3x-y ),当x=10,y=10时,密码可以是10、40、20的任意组合即可.【详解】9x 3-xy 2=x (9x 2-y 2)=x (3x+y )(3x-y ),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.【点睛】本题考查的是因式分解,分解后,将变量赋值,按照因式组合即可.13.已知325421x y k x y k +=⎧⎨+=+⎩且y ﹣x <2,则k 的取值范围是_____. 解析:1k <【分析】将方程组中两个方程相减可得y ﹣x =3k ﹣1,结合y ﹣x <2得出关于k 的不等式,解之可得答案.【详解】解:325421x y k x y k +=⎧⎨+=+⎩①②, ①﹣②,得:﹣x +y =3k ﹣1,即y ﹣x =3k ﹣1,∵y ﹣x <2,∴3k ﹣1<2,解得k <1,故答案为:k <1.【点睛】本题考查了一元一次不等式的解法,以及二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.14.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB 的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.答案:A解析:6【分析】连接AQ ,过点D 作DH BC ⊥于H .利用三角形的面积公式求出DH ,由题意得: PB PQ AP PQ AQ +=+≥,求出AQ 的最小值,AQ 最小值是与DH 相等,也就是AQ BC ⊥时,根据面积公式求出DH 的长度即可得到结论.【详解】解:连接AQ ,过点D 作DH BC ⊥于H .∵DBC △面积为18,BC =6, ∴1182BC DH =, ∴6DH =,∵MN 垂直平分线段AB ,∴PA PB =,∴PB PQ AP PQ AQ +=+≥,∴当AQ 的值最小时,PB PQ +的值最小,⊥时,AQ的值最小,根据垂线段最短可知,当AQ BCAD BC,∵//∴AQ=DH=6,∴PB PQ+的最小值为6.故答案为:6.【点睛】本题考查轴对称最短问题,平行线的性质,三角形的面积,线段的垂直平分线的性质等知识,把最短问题转化为垂线段最短是解题关键.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是.答案:1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.解析:1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.16.一副三角板按如图所示叠放在一起,若固定△AOB,将△ACD绕着公共顶点A,按顺时针方向旋转α度(0°<α<180°),当△ACD的一边与△AOB的某一边平行时,相应的旋转角α的值是___.答案:15,30,45,75,105,135,150,165.【分析】要分类讨论,不要漏掉一种情况,也可实际用三角板操作找到它们之间的关系;再计算.【详解】分10种情况讨论:解:(1)如图所示,解析:15,30,45,75,105,135,150,165.【分析】要分类讨论,不要漏掉一种情况,也可实际用三角板操作找到它们之间的关系;再计算.【详解】分10种情况讨论:解:(1)如图所示,当//CD OB 时,453015α︒︒︒=-= ;(2)如图所示,当AD BO ‖ 时,45B α︒=∠= ;(3)如图所示,当AC BO ‖ 时,4590135α︒︒︒=+= ;(4)如图所示,当CD BO ∥ 时,1806045165α︒︒︒︒=-+= ;(5)如图所示,当AD BO ‖ 时,4590135α︒︒︒=+= ;(6)如图所示,当AC BO ‖ 时,45α︒= .(7)DC 边与AB 边平行时α=60°+90°=150°(8)DC 边与AB 边平行时α=180°-60°-90°=30°,(9)DC 边与AO 边平行时α=180°-60°-90°+45°=75°.(10)DC 边与AO 边平行时α=90°+15°=105°故答案为15,30,45,75,105,135,150,165.【点睛】此题考查旋转的性质.解题关键在于掌握旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.17.计算或化简 (1)301202052-⎛⎫--- ⎪⎝⎭; (2)()()23542a a a ÷-; (3)()20192020122⎛⎫⨯- ⎪⎝⎭ .答案:(1)2; (2) ;(3)2【分析】(1)根据负指数幂、零指数幂以及绝对值的性质可以解答本题;(2)先计算幂的乘方,再计算同底数幂的乘除即可;(3)逆用积的乘方把转化成,再运用积的乘方法则解析:(1)2; (2) 7a -;(3)2【分析】(1)根据负指数幂、零指数幂以及绝对值的性质可以解答本题;(2)先计算幂的乘方,再计算同底数幂的乘除即可;(3)逆用积的乘方把()20202-转化成201922⨯,再运用积的乘方法则计算即可.【详解】 (1)301202052-⎛⎫--- ⎪⎝⎭ 815=--2=;(2)()()23542 a a a ÷- 586a a a =-÷586a +-=-7a =-; (3)()20192020122⎛⎫⨯- ⎪⎝⎭201920191222⎛⎫=⨯⨯ ⎪⎝⎭20191222⎛⎫=⨯⨯ ⎪⎝⎭2=.【点睛】本考查了了整式的乘除,负整数指数幂和零指数幂以及积的乘方幂的乘方,解答本题的关键是明确它们各自的计算方法.18.因式分解(1)3263654a a a -+-(2)229()49()a x y b y x -+-答案:(1);(2)【分析】(1)直接提取公因式﹣6a ,再利用完全平方公式分解因式得出答案; (2)直接提取公因式x ﹣y ,再利用平方差公式分解因式即可;【详解】解:(1)原式;(2)原式【解析:(1)()263a a --;(2)()()()3737x y a b a b -+- 【分析】(1)直接提取公因式﹣6a ,再利用完全平方公式分解因式得出答案;(2)直接提取公因式x ﹣y ,再利用平方差公式分解因式即可;【详解】解:(1)原式()2669a a a -=-+()263a a =--;(2)原式()()22949x y a b =-- ()()()3737x y a b a b -+-=【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.19.解方程组(1)22314x y x y -=⎧⎨+=⎩;(2)()()12341312x y x y ⎧+=⎪⎨⎪-+-=-⎩. 答案:(1);(2).【分析】(1)利用代入消元法解题;(2)先去分母,去括号,将原二元一次方程组化简,再利用加减消元法解题.【详解】解:(1)由①得,③,把③代入②得,把代入③得,解析:(1)42x y =⎧⎨=⎩;(2)89x y =⎧⎨=-⎩. 【分析】(1)利用代入消元法解题;(2)先去分母,去括号,将原二元一次方程组化简,再利用加减消元法解题.【详解】解:(1)22314x y x y -=⎧⎨+=⎩①② 由①得,2+x y =③,把③代入②得,2(2)314y y ++=4514y +=2y ∴=把2y =代入③得,2+2=4x =∴42x y =⎧⎨=⎩; (2)()()12341312x y x y ⎧+=⎪⎨⎪-+-=-⎩①② 由①得,326x y +=③由②得,44332x y -+-=-即435x y +=④③3⨯-④2⨯得981810x x -=-8x ∴=把8x =代入③得2624y =-9y =-89x y =⎧∴⎨=-⎩. 【点睛】本题考查二元一次方程组的解法,是重要考点,掌握相关知识是解题关键.20.解不等式组()2133112x x x +≤⎧⎪⎨+->⎪⎩①② ,并把解集在数轴上表示出来.答案:,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴解析:21x -<≤,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:1x ≤由②得: 2x >-所以不等式组的解为21x -<≤.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握解一元一次不等式.三、解答题21.如图,点D 、E 分别在AB 、BC 上,AF ∥BC ,∠1=∠2,求证:DE ∥AC . 请将证明过程补充完整,并在括号内填写推理的依据:证明:AF ∥BC (已知),∴ = ,( )∵∠1=∠2(已知).∴ = ,( )∴DE ∥AC .( )答案:∠1;∠C;两直线平行,内错角相等;∠2;∠C;等量代换;同位角相等,两直线平行.【分析】依据平行线的性质即可得到∠1=∠C,再根据等量代换即可得出∠2=∠C,进而得到DE∥AC.【详解】证解析:∠1;∠C;两直线平行,内错角相等;∠2;∠C;等量代换;同位角相等,两直线平行.【分析】依据平行线的性质即可得到∠1=∠C,再根据等量代换即可得出∠2=∠C,进而得到DE∥AC.【详解】证明:∵AF∥BC,∴∠1=∠C(两直线平行,内错角相等),∵∠1=∠2,∴∠2=∠C(等量代换),∴DE∥AC(同位角相等,两直线平行).故答案为:∠1;∠C;两直线平行,内错角相等;∠2;∠C;等量代换;同位角相等,两直线平行.【点睛】本题考查了平行线的判定与性质.解题的关键是要明确平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22.某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?答案:(1)60元;(2)215盏【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯列分式方程求解即可;(2)设再购进彩灯a盏,根据利润=售价﹣进解析:(1)60元;(2)215盏【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯列分式方程求解即可;(2)设再购进彩灯a盏,根据利润=售价﹣进价以及要求获得利润不低于15000元的关系列出不等式并解答即可.【详解】解:(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,依题意得:300000.8x=30000x+100,解得x=75,经检验x=75是所列方程的根,则0.8x=0.8×75=60(元).答:该货栈实际购进每盏彩灯为60元;(2)设再购进彩灯a盏,由(1)知,实际购进30000÷60=500(盏),依题意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,解得a≥15007.因为a取正整数,所以a=215.答:至少再购进彩灯215盏.【点睛】本题考查了分式方程和一元一次不等式的应用,设出未知数、根据题意列出分式方程和一元一次不等式是解答本题的关键.23.若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足﹣1≤x ﹣y≤1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因为﹣1≤x﹣y≤1,方程2x﹣1=0与方程y ﹣1=0是“友好方程”.(1)请通过计算判断方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程32y k+y=2k+1是“友好方程”,请你求出k的最大值和最小值.答案:(1)是;(2)k的最小值为﹣,最大值为【分析】(1)分别解出两个方程,得到x ﹣y 的值,即可确定两个方程是“友好方程”; (2)分别解两个方程为x =1,,再由已知可得﹣1≤≤1,求出k 的取值范围解析:(1)是;(2)k 的最小值为﹣23,最大值为83 【分析】 (1)分别解出两个方程,得到x ﹣y 的值,即可确定两个方程是“友好方程”; (2)分别解两个方程为x =1,325k y +=,再由已知可得﹣1≤3215k +-≤1,求出k 的取值范围为即可求解.【详解】解:(1)由2x ﹣9=5x ﹣2,解得x =73-, 由5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y ,解得y =﹣3,∴x ﹣y =23, ∴﹣1≤x ﹣y ≤1,∴方程2x ﹣9=5x ﹣2与方程5(y ﹣1)﹣2(1﹣y )=﹣34﹣2y 是“友好方程”; (2)由3x ﹣3+4(x ﹣1)=0,解得x =1,由3212y k y k ++=+,解得325k y +=, ∵两个方程是“友好方程”,∴﹣1≤x ﹣y ≤1,∴﹣1≤3215k +-≤1, ∴2833k -≤≤ ∴k 的最小值为﹣23,最大值为83. 【点睛】本题主要考查了解一元一次方程和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.24.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒.当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.答案:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠,∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.25.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系. 答案:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M 作MN ∥AB ,由平行线的性质即可求得∠M 的值.(2)延长BA ,DC 交于E ,解析:(1)50°;(2)∠A +∠C =30°+α,理由见解析;(3)∠A -∠DCM =30°+α或30°-α【分析】(1)过M 作MN ∥AB ,由平行线的性质即可求得∠M 的值.(2)延长BA ,DC 交于E ,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.。

七年级下学期期末考试数学试卷(附含答案)

七年级下学期期末考试数学试卷(附含答案)

第5题图第9题图七年级下学期期末考试数学试卷(附含答案)一 选择题(每小题4分,共40分) 1. 9的平方根是( )A.3±B. 3C. 81D.81± 2.在平在直角坐标系中,点M (3,-2)位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.下列调查中适合采用全面调查的是( )A.了解凯里市“停课不停学”期间全市七年级学生的听课情况B.了解新冠肺炎疫情期间某校七(1)班学生的每日体温C.了解疫情期间某省生产的所有口罩的合格率D.了解全国各地七年级学生对新冠状病毒相关知识的了解情况 4.下列运动属于平移的是( )A. 荡秋千B. 地球绕太阳转C. 风车的转动D.急刹车时,汽车在地面上的滑动5. 如图,在下列条件中,不能判定AB ∥DF 的是( )A. ∠A+∠AFD=180°B.∠A=∠CFDC. ∠BED=∠EDFD. ∠A=∠BED 6. 已知二元一次方程432=-y x ,用含x 的代数式表示y ,正确的是( ) A.342+=x y B. 342-=x y C. 234y x += D. 234yx -= 7. 已知b a >,下列不等式中错误的是( )A. 11+>+b aB. 22->-b aC. b a 22>D. b a 44->-8. 下列命题是真命题的是( )A.若||||b a =,则b a =B.经过直线外一点有且只有一条直线与已知直线平行C.同位角相等D.在同一平面内,如果b a ⊥,c b ⊥,那么c a ⊥ 9.如图,数轴上与40对应的点是( ) A.点A B.点B C.点C D.点D 10. 某种服装的进价为200元,出售时标价为300元; 由于换季,商店准备对该服装打折销售,但要保持利 润不低于20%,那么最多打( )A. 6折B. 7折C. 8折D. 9折 二 填空题(每小题4分,共32分) 11. 在实数①21,②11,③1415926.3,④16,⑤π,⑥ 2020020002.0(相邻两个2之间依次多一个0)中,无理数有 (填写序号).12. 如图,要在河岸l 上建立一水泵房引水到C 处,做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 . 13. 已知⎩⎨⎧=-=13y x 是方程7=+y mx 的解,则m .14.如图,直线a ∥b ,点B 在a 上,点A 与点C 在b 上; 且AB ⊥BC.若∠1=034,则∠2= .第12题图第14题图15. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为18,第三组的频率为0.2,则第四组的频率为 . 16.一个正数b 有两个不同的平方根1+a 和72-a ,则b a -21的立方根是 . 17.若关于x 的不等式组⎪⎩⎪⎨⎧<->-2210x a x 的所有整数解之和等于9,则a 的取值范围是 .18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上 向右 向下 向右的方向依次不断移动,每次移动1个单位,移动的路线如图所示。

沪科版七年级下册数学期末试题试卷含答案精选全文

沪科版七年级下册数学期末试题试卷含答案精选全文

可编辑修改精选全文完整版沪科版七年级下册数学期末试题试卷含答案上海科技版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.实数中,无理数的个数是()。

A。

1 B。

2 C。

3 D。

42.估计√2+1的值在()之间。

A。

2到3之间 B。

3到4之间 C。

4到5之间 D。

5到6之间3.若a<b,则下列各式中,错误的是()。

A。

a-3<b-3 B。

-a<-b C。

-2a>-2b D。

a<b4.计算(-3a^2)^2的结果是()。

A。

3a^4 B。

-3a^4 C。

9a^4 D。

-9a^45.下列多项式在实数范围内不能因式分解的是()。

A。

x^3+2x B。

a^2+b^2 C。

D。

m^2-4n^26.不等式4-x≤2(3-x)的正整数解有()个。

A。

1个 B。

2个 C。

3个 D。

无数个7.若a^2=9,则a的值为()。

A。

-5 B。

-11 C。

-3或3 D。

±3或±58.把分式中的x和y都扩大3倍,分式的值()。

A。

不变 B。

扩大3倍 C。

缩小3倍 D。

扩大9倍9.多项式12ab^3c+8a^3b的各项公因式是()。

A。

4ab^2 B。

4abc C。

2ab^2 D。

4ab10.若(x^2+px+q)(x-2)展开后不含x的一次项,则p 与q的关系是()。

A。

p=2q B。

q=2p C。

p+2q=0 D。

q+2p=0二、填空题(每小题5分,共20分)11.分解因式:4a^2-25b^2=()。

12.分式的值为1/3,那么x的值为()。

13.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()°。

14.若关于x的分式方程(x+1)/(x-2)+1=1有增根,则m=()。

三、解答题(每小题8分,共16分)15.解不等式组:(略)16.解分式方程:(略)四、计算题(每小题8分,共16分)17.先化简,再求值:(a+1)^2-(a+3)(a-3),其中a=-3.(略)18.如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.1)在网格中画出三角形A1B1C1.2)三角形A1B1C1的面积为()。

广东省深圳市光明区2023-2024学年七年级下学期期末数学试题(含答案)

广东省深圳市光明区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年下学期学业水平调研测试七年级数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.全卷共6页.考试时间90分钟,满分100分.3.作答选择题1-10,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.下列图形不是轴对称图形的是()A .B .C .D .2.如图,已知直线,,则( )A .40°B .50°C .60°D .130°3.下列各组边长能组成三角形的是( )A .7,8,15B .5,5,11C .3,4,5D .2,9,124.下列各式计算正确的是( )A .B .C .D .5.对某品种的麦粒在相同条件下进行发芽试验,结果如下表所示:试验的麦粒数n 200500100020005000发芽的粒数m 19147395419064748发芽的频率0.9550.9460.9540.9530.9496根据上表,在这批麦粒中任取一粒,估计它能发芽的概率为( )A .0.92B .0.95C .0.97D .0.986.如图,已知,,添加下列哪个条件不一定能使得的是()a b 150∠=︒2∠=23a a a -⋅=-()2236b b =824y y y ÷=()326x x -=m nAB AD =BAD CAE ∠=∠ABC ADE ≌△△A .B .C .D .7.如图,可以近似地刻画下列哪种实际情境中的变化关系()A .一杯越晾越凉的水(水温与时间的关系)B .一面冉冉上升的旗子(高度与时间的关系)C .足球守门员大脚开出去的球(高度与时间的关系)D .匀速行驶的汽车(速度与时间的关系)8.下列说法正确的是( )A .相等的角是对顶角B .三角分别相等的两个三角形全等C .角是轴对称图形,角的平分线是它的对称轴D .若满足,则是锐角三角形9.如图,在中,点D 是BC 边上的中点,若和的周长分别为16和11,则的值为()A .5B .11C .16D .2710.如图,在等腰三角形ABC 中,,,点D 为垂足,E 、F 分别是AD 、AB 上的动点.若,的面积为12,则的最小值是()A .2B .4C .6D .8第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11.数据0.000012可用科学记数法表示为________.B D ∠=∠C E ∠=∠AC AE =BC DE=ABC △::3:4:5A B C ∠∠∠=ABC △ABC △ABD △ACD △AB AC -AB AC =AD BC ⊥6AB =ABC △BE EF +12.已知,,则.13.如图,当时要保持弯形管道所在直线AB 和CD 平行,________°.14.如图,在中,,利用尺规作图,得到直线DE 和射线AF .若,则________°.15.如图,在中,,过点B 作,且使得,连接AD .若,则的面积为________.三、解答题(本大题共7小题,共55分)16.(8分)计算:(1);(2).17.(6分)先化简再求值:,其中,.18.(6分)某路口南北方向红绿灯的设置时间为:红灯30秒,绿灯若干秒,黄灯3秒.小明的爸爸随机地由南往北开车到达该路口.(1)如果绿灯时长为70秒,那么他遇到绿灯的概率________遇到红灯的概率(填“>”“<”或“=”);(2)若他遇到红灯的概率为,求每次绿灯时长为多少秒?19.(7分)如图,在中,BC 边上的高是定值.当三角形的顶点C 沿底边所在直线由点B 向右运动时,三角形的面积随之发生变化.设底边长,三角形面积为,变化情况如下表所示:102m =103n =10________m n+=60BCD ∠=︒ABC ∠=ABC △56C ∠=︒22EAF ∠=︒B ∠=Rt ABC △90BAC ∠=︒BD BC ⊥BD BC =4AB =ABD △()()220240113π2-⎛⎫+--- ⎪⎝⎭()()2x y x y +-()()()22x y y x y x y ⎡⎤-+-+÷⎣⎦1x =-1y =1031ABC △cm BC x =2cm y底边长x (cm )12三角形面积36(1)在这个变化过程中,自变量是________,因变量是________;(2)由上表可知,BC 边上的高为________cm ;(3)y 与x 的关系式可以表示为________;(4)当底边长由3cm 变化到12cm 时,三角形的面积从________变化到________.20.(9分)如图,点B ,D ,C ,F 在同一直线上,,,,求证:.请将下面的证明过程补充完整:证明:因为(已知),所以(①).因为(已知),所以,即.在与中,因为所以( ⑥ ),所以( ⑧),所以( ⑨ ).21.(9分)阅读理解:整体思想是一种重要的数学思想,它是通过观察和分析问题的整体结构,发现其整体结构特征并把握它们之间的联系,然后把某些式子或图形看成一个整体,从而达到简化问题,解决问题的目的.在《整式的乘除》一章中,我们学习了完全平方公式:,它可以恒等变换()2cmy 2cm 2cm ABEF AB EF =BD FC =AC ED ABEF B F ∠=∠BD FC =BD FC +=+②③BC FD =ABC △EFD △,B FBC FD =⎧⎪∠=∠⎨⎪=⎩④⑤ABC EFD ≌△△ACB ∠=⑦ACED ()2222a b a ab b ±=±+为:,等.我们可以利用它解决一些问题,例如:已知,求的值.解:令,,则,.所以,即.所以.问题1:已知,请你仿照上例,求的值;问题2:已知,求的值;问题3:如图,已知长方形ABCD 的面积为3,延长BC 到点P ,使得,以CP 为边向上作正方形CPMN ,再分别以BC 、CD 为边作正方形BCGH 、正方形CDEF .若,则阴影部分的面积是多少?22.(10分)在学习《生活中的轴对称》时,我们探究了两个重要结论:结论1:线段垂直平分线上的点到这条线段两个端点的距离相等.如图,当,时,则有:.结论2:角平分线上的点到这个角的两边的距离相等.如图,当OC 平分∠AOB ,,时,则有:.请利用上述结论,解决下列问题:如图1,在中,,,BD 是∠ABC 的平分线,,垂足为点E ,点P 为线段BD 上一动点.(1)若,则PC =________;(2)①若点P 为线段BC 的垂直平分线与BD 的交点,求∠CPE 的度数;②如图2,连接CE ,若点P 为∠BCE 的平分线与BD 的交点,则________°;(3)若为等腰三角形,则________.()2222a b a b ab +=+-()2222a b a b ab +=-+()()321x x +-=()()2232x x ++-3a x =+2b x =-1ab =5a b -=()225a b -=22225a b ab +-=()()22223225227x x a b ab ++-=+=+=()()213x x +-=()()2221x x ++-()()9202420172m m --+=()()2220242017m m -+-+5BP =1DN =AO BO =CO AB ⊥CA CB =CD OA ⊥CE OB ⊥CD CE =Rt ABC △90ACB ∠=︒50A ∠=︒DE AB ⊥5PE =CPE ∠=PED △BEP ∠=2023-2024学年下学期期末学业水平调研测试七年级数学 参考答案与评分标准一、选择题(本大题共10小题,每小题3分,共30分。

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)

2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。

广西壮族自治区北海市2023-2024学年七年级下学期7月期末考试数学试卷(含答案)

广西壮族自治区北海市2023-2024学年七年级下学期7月期末考试数学试卷(含答案)

北海市2024年春季学期期末教学质量检测七年级数学(考试时间:120分钟满分:120分)注意事项:1.答题前,考生务必将姓名、准考证号、座位号填写在试卷和答题卡上。

2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算结果正确的是()A.B.C.D.3.下列方程组中,是二元一次方程组的是()A.B.C.D.4.下列各式从左到右变形是因式分解,并分解正确的是()A.B.C.D.5.如图,直线a,b被直线c所截,下列说法中不正确的是()A.∠1与∠2是对顶角B.∠1与∠4是同位角C.∠2与∠5是同旁内角D.∠2与∠4是内错角6.如图,如果∠1=∠3,∠4=140°,那么∠2的度数为()A.140°B.130°C.80°D.40°7.如图,三角形OCD是由三角形OAB绕点O顺时针旋转40°后得到的图形,∠AOB=60°,则∠COB的度数是()A.60°B.40°C.20°D.10°8.某校篮球数比排球数的3倍多5个,篮球数与排球数的差是15个,若设篮球有x个,排球有y个,则可得方程组()A.B.C.D.9.在元旦晚会的校园歌唱比赛中,21名参赛同学的成绩各不相同,按照成绩取前10名进入决赛.如果小庆知道了自己的比赛成绩,要判断能否进入决赛,小庆需要知道这21名同学成绩的()A.中位数B.众数C.平均数D.方差10.同时满足二元一次方程和的x,y的值为()A.B.C.D.11.一组数据6,1,6,3,4,6的众数是()A.6B.1C.3D.412.如图,在三角形ABC中,∠ABC=90°,将三角形ABC沿BC方向平移得到三角形DEF,其中AB=7,BE=3,DM=2,则阴影部分的面积是()A.15B.18C.21D.不确定二、填空题(本大题共6小题,每小题2分,共12分)13.把方程写成用含有x的代数式表示y的形式 .14.计算: .15.因式分解: .16.将一个长方形纸片按如图方式折叠,若∠1=55°,则∠2= °.17.甲、乙两位同学10次数学测试的成绩的平均分是相同的,甲同学成绩的方差为,乙同学成绩的方差为,则两位同学的数学测试成绩比较稳定的是.(填“甲”或“乙”)18.如图,AD∥BC,BC=6,且三角形ABC的面积为12,则点C到AD的距离为 .三、解答题(本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤)(1)计算:;(2)计算:;(3)因式分解:.20.(本题满分8分,每小题4分)解下列二元一次方程组:(1)(2)21.(本题满分7分)先化简,再求值:,其中,.22.(本题满分9分)如图,在平面直角坐标系中,点A的坐标为,点B的坐标为,点C的坐标为.(1)画出将△ABC向下平移5个单位长度得到的,写出的坐标;(2)画出将△ABC绕原点O逆时针旋转90°后得到的.23.(本题满分9分)如图,已知直线AB和CD相交于O点,∠DOE是直角,OF平分∠AOE,∠BOD=36°,求∠COF的度数.24.(本题满分9分)某班七年级第二学期数学一共进行四次测试,小丽和小明的成绩如表所示:学生单元测验1期中考试单元测验2期末考试小丽80709080小明60908090(1)求小丽和小明的成绩平均数.(2)若老师计算学生的学期总评成绩按照事下的标准:单元测验1占10%,期中考试占30%,单元测验2占20%,期末考试占40%.请你通过计算,比较谁的学期总评成绩高?25.(本题满分9分)某同学在某家超市发现他看中的随身听和书包,随身听和书包单价之和是435元,且随身听的单价比书包单价的4倍少10元.求该同学看中的随身听和书包单价各是多少元?26.(本题满分9分)如图,在△ABC中,E、G分别是AB、AC上的点,E、D是BC上的点,连接EF、AD、DG,AD∥EF,∠1+∠2=180°.(1)求证:AB∥DG;(2)若DG是∠ADC的平分线,∠2=4∠B-20°,求∠B的度数.北海市2024年春季学期期末教学质量检测·七年级数学参考答案、提示及评分细则一、选择题1.C2.A3.B4.A5.C6.D7.C8.B9.A10.D11.A12.B二、填空题13.14.15.16.7017.乙18.4三、解答题19.解:(1)(2);(3).20.解:(1)①代入②得,,解得,,把代入①得,,∴原方程组的解为:;(2)①×2-②得,,解得,把代入①得,,解得,,∴原方程组的解为21.解:原式,当,时,原式.22.解:(1)如图所示:即为所求作的图;的坐标;(2)如图所示:即为所求作的图.23.解:∵∠DOE是直角,∴∠DOE=90°∴∠COE=180°-∠DOE=180°-90°=90°,又∵∠AOC=∠BOD=36°,∴∠AOE=∠AOC+∠COE=90°+36°=126°,又∵OF平分∠AOE,∴,∴∠COF=∠AOF-∠AOC=63°-36°=27°.24.解:(1)小丽的成绩平均数为:,小明的成绩平均数为:,答:小丽和小明的成绩平均数都是80;(2)小丽的学期总评成绩为:80×10%+70×30%+90×20%+80×40%=79,小明的学期总评成绩为:60×10%+90×30%+80×20%+90×40%=85,答:小明的学期总评成绩高.25.解:设随身听和书包的单价分别为x元,y元.由题意可得,解得,答:随身听和书包的单价分别为346元,89元.26.(1)证明:∵AD∥EF,∴∠BAD+∠2=180°,又∵∠1+∠2=180°,∴∠BAD=∠1,∴AB∥DG.(2)解:∵DG是∠ADC的平分线,∴∠1=∠GDC,∵AB∥DG,∴∠GDC=∠B,又∵∠1=∠GDC,∴∠1=∠GDC=∠B,∵∠2=4∠B-20°,∠1+∠2=180°.∴180°-∠1=4∠B-20°,∴180°-∠B=4∠B-20°,∴∠B=40°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1.的算术平方根是()A. B.C.±D.2.已知m,n满足方程组,则m+n的值为()A.3 B.﹣3 C.﹣2 D.23.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数4.已知不等式组,其解集正确的是()A.﹣1≤x<3 B.﹣1<x≤3 C.x>3 D.x≤﹣15.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有6.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a7.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间8.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.510.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°二、填空题(本大题共6小题,每小题3分,共18分)11.=.12.方程组的解是.13.(3分)x的与12的差不小于6,用不等式表示为.14.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是.15.如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少20°,则较大角的度数为.16.已知关于x的不等式组的整数解共有5个,则a的取值范围是.三、解答题(本大题共9小题,共72分)17.(6分)解方程组:.18.(6分)根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A. B. C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.19.(7分)解不等式组,并将解集在数轴上表示出来.20.(7分)解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?21.(7分)完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴(同角的补角相等)①∴(内错角相等,两直线平行)②∴∠ADE=∠3()③∵∠3=∠B()④∴(等量代换)⑤∴DE∥BC()⑥∴∠AED=∠C()⑦22.(8分)如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b 于点E,已知∠1=25°,求∠2的度数.23.(10分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)24.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.25.(11分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/个)售价(元/个)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50个,且电饭煲的数量不少于23个,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.的算术平方根是()A. B.C.±D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故选:B.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.已知m,n满足方程组,则m+n的值为()A.3 B.﹣3 C.﹣2 D.2【分析】应用代入法,求出方程组的解,即可求出m+n的值为多少.【解答】解:由②,可得:n=3m﹣2③,把③代入①,解得m=,∴n=3×﹣2=,∴原方程组的解是,∴m+n=+=3故选:A.【点评】此题主要考查了解二元一次方程组问题,要熟练掌握,注意代入法和加减法的应用.3.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数【分析】求出不等式的解集,即可作出判断.【解答】解:由a>2a,移项得:0>2a﹣a,合并得:a<0,则a是负数,故选B【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.4.已知不等式组,其解集正确的是()A.﹣1≤x<3 B.﹣1<x≤3 C.x>3 D.x≤﹣1【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x>3,由②得:x≥﹣1,则不等式组的解集为x>3,故选C【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.6.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a【分析】方程组中两方程相减消去x求出y的值即可.【解答】解:,②﹣①得:y=5,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤力的情况,由于破坏性强,适合抽样调查,故选项错误;B、了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故选项错误;C、全面人口普查,适合全面调查,故选项正确;D、全市学生每天参加体育锻炼的时间,适合抽样调查,故选项错误.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)9.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°【分析】由对顶角求得∠AEC=10°,由角平分线的定义求得∠2=85°,根据平行线的性质即可求得结果.【解答】解:∵∠3=10°,∴∠AEC=10°,∴∠BEC=180°﹣10°=170°,∵EN平分∠CEB,∴∠2=85°,∵FM∥AB,∴∠F=∠2=85°,故选D.【点评】本题主要考查了对顶角的定义,角平分线的性质,平行线的性质,熟练掌握平行线的性质是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.=﹣2.【分析】因为﹣2的立方是﹣8,所以的值为﹣2.【解答】解:=﹣2.故答案为:﹣2.【点评】此题考查了立方根的意义.注意负数的立方根是负数.12.方程组的解是.【分析】根据观察用加减消元法较好,①+②消去y,解出x的值,再把x的值代入①,解出y.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点评】此题考查的是解二元一次方程组,解题的关键是用加减消元法求解.13.x的与12的差不小于6,用不等式表示为x﹣12≥6.【分析】理解:差不小于6,即是最后算的差应大于或等于6.【解答】解:根据题意,得x﹣12≥6.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是(2,﹣1).【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以可得点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.15.如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少20°,则较大角的度数为140°.【分析】由题可知两个角不相等,结图形可知这两个角互补,列出方程,可求得较大的角.【解答】解:∵两个角不相等,∴这两个角的情况如图所示,AB∥DE,AF∥CD,∴∠A=∠BCD,∠D+∠BCD=180°,∴∠A+∠D=180°,即这两个角互补,设一个角为x°,则另一个角为(4x﹣20)°,则有x+4x﹣20=180,解得x=40,即一个角为40°,则另一个角为140°,∴较大角的度数为140°,故答案为:140°.【点评】本题考查两个角的两边分别平行,这两个角相等或互补,而本题中这两个角只能互补,需要注意要求的是较大的角.16.已知关于x的不等式组的整数解共有5个,则a的取值范围是﹣3<a≤﹣2.【分析】将a看做已知数,求出不等式组的解集,根据解集中整数解有5个,即可确定出a的范围.【解答】解:不等式组解得:a≤x≤2,∵不等式组的整数解有5个为2,1,0,﹣1,﹣2,∴﹣3<a≤﹣2.故答案为:﹣3<a≤﹣2.【点评】此题考查了一元一次不等式组的整数解,弄清题意是解本题的关键.三、解答题(本大题共9小题,共72分)17.(6分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②×3﹣①得:11y=22,即y=2,把y=2代入②得:x=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6分)根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A. B. C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为x=y;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【分析】(1)分别求出三个方程组的解即可;(2)观察三个方程组的解,找出x与y的关系即可;(3)仿照以上外形特征写出方程组,并写出解即可.【解答】解:(1)方程组A的解为,方程组B的解为,方程组C的解为;故答案为:(1);;;(2)以上每个方程组的解中,x值与y值的大小关系是x=y;故答案为:x=y;(3)根据题意举例为:,其解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)解不等式组,并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x<3,由②得,x≥﹣1,故不等式组的解集为:﹣1≤x<3.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(7分)解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?【分析】(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.【解答】解(1)调查人数为20÷10%=200,喜欢动画的比例为(1﹣46%﹣24%﹣10%)=20%,喜欢动画的人数为200×20%=40人;(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).【点评】此题考查了条形统计图与扇形统计图的知识.注意掌握条形统计图与扇形统计图各量的对应关系是解此题的关键.21.(7分)完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴∠EFD=∠2(同角的补角相等)①∴AB∥EF(内错角相等,两直线平行)②∴∠ADE=∠3(两直线平行,内错角相等)③∵∠3=∠B(已知)④∴∠ADE=∠B(等量代换)⑤∴DE∥BC(同位角相等,两直线平行)⑥∴∠AED=∠C(两直线平行,同位角相等)⑦【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【解答】解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴∠EFD=∠2(同角的补角相等)①∴AB∥EF(内错角相等,两直线平行)②∴∠ADE=∠3(两直线平行,内错角相等)③∵∠3=∠B(已知)④∴∠ADE=∠B(等量代换)⑤∴DE∥BC(同位角相等,两直线平行)⑥∴∠AED=∠C(两直线平行,同位角相等)⑦.故答案为:∠EFD=∠2;AB∥EF;两直线平行,内错角相等;已知;∠ADE=∠B;同位角相等,两直线平行;两直线平行,同位角相等.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.22.(8分)如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b 于点E,已知∠1=25°,求∠2的度数.【分析】先过点D作DG∥b,根据平行线的性质求得∠CDG和∠GDE的度数,再相加即可求得∠CDE的度数.【解答】解:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.【点评】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用平行线的性质进行求解.本题也可以延长CD(或延长ED),利用三角形外角性质求解.23.(10分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)【分析】(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.【解答】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.【点评】此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.24.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可;(2)根据平面直角坐标写出坐标即可;(3)设P(0,y),再根据三角形的面积公式得×4×|h|=6,进而可得y的值.【解答】解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(0,y),再根据三角形的面积公式得:S△PBC=×4×|h|=6,解得|h|=3,求出y的值为(0,1)或(0,﹣5).【点评】此题主要考查了作图﹣﹣平移变换,关键是掌握图形是有点组成的,平移图形时,只要找出组成图形的关键点平移后的位置即可.25.(11分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/个)售价(元/个)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50个,且电饭煲的数量不少于23个,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据橱具店购进这两种电器共30台且用去了5600元,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据总利润=单个利润×购进数量即可得出结论;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50个且电饭煲的数量不少于23个,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由此即可得出各进货方案;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润,比较后即可得出结论.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,根据题意得:,解得:,∴20×(250﹣200)+10×(200﹣160)=1400(元).答:橱具店在该买卖中赚了1400元.(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据题意得:,解得:23≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①购买电饭煲23台,购买电压锅27台;②购买电饭煲24台,购买电压锅26台;③购买电饭煲25台,购买电压锅25台.(3)设橱具店赚钱数额为w元,当a=23时,w=23×50+27×40=2230;当a=24时,w=24×50+26×40=2240;当a=25时,w=25×50+25×40=2250;综上所述,当a=25时,w最大,即购进电饭煲、电压锅各25台时,橱具店赚钱最多.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据数量关系,列出关于a的一元一次不等式组;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润.21。

相关文档
最新文档