2017年春季学期新版新人教版八年级数学下学期18.1、平行四边形导学案2
八年级数学下册第18章平行四边形18.1平行四边形18.1.2平行四边形的判定教案1(新版)新人教版

18.1.2平行四边形的判定一、教学目标知识技能:1、通过探索平行四边形常用判定条件的过程,掌握平行四边形的两种常用的判定方法。
2、理解平行四边形的两种判定方法,并学会简单运用。
过程与方法:经历平行四边形判定条件的探索过程,在有关活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法。
情感态度:在操作活动和观察、分析过程中发展学生的主动探索、质疑和独立思考的习惯。
数学思考:解决一个数学问题,常要通过“动手实践”-----“猜想” -----“验证猜想(证明)”-----“得出结论”二、教学重难点:重点:平行四边形的判定定理难点:平行四边形的判定定理的证明方法和应用。
三、教学过程:1、生活中的图片导入,复习平行四边形的定义和性质。
设计意图:通过生活图片让学生感受数学就在身边,通过复习提问,可以为本节课的顺利进行做好铺垫,自然引出本节课题。
2、通过动手用纸条拼平行四边形,猜想平行四边形的一种判定方法,并对猜想加以证明。
设计意图:让学生借助学具动手探究平行四边形的判定条件,将动手实践得出的经验归纳成数学猜想,并验证它。
使学生亲身参与数学探究的过程,体会数学探究的乐趣。
第一个判定定理的证明过程由教师给出规范的证明过程的板书,可以起到示范的作用,也在向学生强调要重视数学基本功。
第二个判定定理的证明过程由学生独立完成。
3、练一练。
通过解决问题加深对判定方法的理解。
设计意图:(1)通过“试一试”和“填一填”可以及时巩固得到的平行四边形判定定理。
(2)现实生活提炼的那题可以更加巩固定理,并且体现贯穿本节课的隐线:数学源自于生活运用于生活。
(3)书本例题解法很多,可以锻炼学生的思维能力,更可以将本节课的得出的判定方法逐一加以应用。
4、比一比。
通过和平行四边形性质的对比,让学生进一步体会定理和逆定理的特点,并且引出平行四边形的另一种判定方法的猜想,并交由学生课下自己验证。
设计意图:学生通过对比平行四边形的性质定理和相应的判定定理,不难发现,它们互为逆定理,于是自然的猜想出新的判定方法,但这不是本节课的教学内容,可以让学有余力的学生课下完成证明,可以使课堂学习得到延伸。
八年级数学下册第十八章平行四边形18.1平行四边形18.1.2.1平行四边形的判定(1)导学案新人

八年级数学下册第十八章平行四边形18.1 平行四边形18.1.2.1 平行四边形的判定(1)导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第十八章平行四边形18.1 平行四边形18.1.2.1 平行四边形的判定(1)导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第十八章平行四边形18.1 平行四边形18.1.2.1 平行四边形的判定(1)导学案(新版)新人教版的全部内容。
18。
1。
2。
1 平行四边形的判定(1)导学案学习目标1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证。
一、自学释疑平行四边形的第五种判定方法是什么?二、合作探究探究点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形。
证明:连接AC,在△ABC和△CDA中,∴△ABC_____△CDA(________)。
∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________。
要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.典例精析例1如图,在Rt△MON中,∠MON=90°。
八年级数学下册 第十八章 平行四边形 18.1 平行四边形 18.1.2 三角形的中位线教案 (新版)新人教版

课题名称
三角形中位线
授课时间
教师姓名
学生年级
八年级
课时
考试大纲描述
考纲要求平行四边形的性质和判定为必掌握内容,中考时常与全等、相似及中位线结合,难度较大。
教材内容分析
三角形的中位线定理的探索和证明是对平行四边形性质定理和判定定理的应用。三角形的中位线定理在以后几何部分的学习中有重要的作用。
思
自学课本P47--49内容
1、中位线定义:
2、【探究】在纸上画一个三角形ABC,点D、E分别为AB、AC的中点,连接DE,量一量DE、BC的长度,它们有什么数量关系?并猜想DE、BC的位置关系。你有什么发现?
结论:
你能证明所发现的结论吗?
议
1、一个三角形有几条中位线?三角形的中位线和中线一样吗?
2、三角形中位线定理的证明方法;
展
1、思中定理的证明
例1:如图所示,在△ABC中,点D、E、F分别为边AB、BC、AC的中点,若△DEF的周长为10,∠A=50°,∠ADE=60°,求(1)∠C的度数;(2)△ABC的周长.
例2:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA中点.
求证:四边形EFGH是平行四边形.
评
1、小结三角形角平分线
2、学生板书情况点评
堂测设计
1、如图,△ABC中,D、E分别是AB、AC中点.
(1)若DE=5,则BC=
(2)若∠B=65°,则∠ADE=
(3)若DE+BC=12ห้องสมุดไป่ตู้则BC=
2、如图,在ABCD中,对角线AC、BD相较于O点,E为CD的中点,若OE=3cm,则AD=( )
3、如图,在△ABC中,点D、E分别是边AB、BC的中点.若△DBE的周长是6,则△ABC的周长是()
八年级数学下册18.1平行四边形18.1.1平行四边形的性质教案(新版)新人教版

⼋年级数学下册18.1平⾏四边形18.1.1平⾏四边形的性质教案(新版)新⼈教版18.1.1 平⾏四边形的性质尊敬的各位评委、⽼师:⼤家好!今天我说课的题⽬是《平⾏四边形的性质》,下⾯我将从五个⽅⾯谈谈对本节课的理解与做法。
⼀、教材及学情分析《平⾏四边形的性质》是在学⽣掌握了平⾏线、三⾓形及简单图形的平移等⼏何知识的基础上学习的。
学习它不仅是对已学知识的综合应⽤和深化,⼜是进⼀步学习矩形、菱形、正⽅形等知识的基础,起着承上启下的作⽤。
⼆、学习⽬标分析学习⽬标:(1)学⽣通过观察、讨论、合作、交流,掌握平⾏四边形的定义及性质,会⽤平⾏四边形的性质解决相关问题(2)让学⽣在探索问题的过程中,体验解决问题的⽅法和乐趣,增强学习兴趣,以提⾼数学语⾔规范表达的能⼒学习重、难点:【重点:】平⾏四边形的定义及性质【难点:】证明平⾏四边形的性质三、前置作业的设计分析前置作业:(⼀)什么是平⾏四边形?请举出⽣活中的例⼦。
你会如何表⽰下⾯这个平⾏四边形?(三)请设计⼀道应⽤你发现的结论能解决的问题,在课堂上考考⼤家!设计说明:⽣本理念下前置作业的基本原则:简单,根本,开放。
简单就是要能照顾到中等⽣、学困⽣;根本就是要直击重难点;开放就是能培养学⽣的创新精神,激发学⽣的学习兴趣。
“简单”原则体现在:问题⼀中“请举出⽣活中的例⼦”,问题⼆中“请动⼿做⼀个平⾏四边形”,设计这两个问题也是基于⼋年级学⽣抽象思维⽇益占主导地位但还有赖于具体形象,和学⽣爱动脑动⼿爱实践的认知特点,这样可以让学⽣从已有的经验出发利⽤剪⼑、直尺、量⾓器等⼯具探究平⾏四边形的边、⾓有怎样的关系”,轻松解决问题。
“根本”原则体现在:如问题⼀中“你会如何表⽰下⾯这个平⾏四边形?”和问题⼆中“并试着证明你发现的结论”。
这两个问题的直接提出让学⽣可了解到本节课的重点,问题的解决可有赖于学⽣⾃学课本后会发现证明的⽅法,或是学⽣在探究平⾏四边形的边、⾓有怎样的关系时也可以发现将四边形连接对⾓线后就转换成了熟悉的三⾓形问题。
原2017春八年级数学下册18平行四边形教案(新版)新人教版

第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的性质(1)理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.重点平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.一、复习导入1.师:我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象.生:平行四边形.师:平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?生:自动伸缩门、挂衣服的简易衣钩等.师:你能总结出平行四边形的定义吗?(小组讨论,教师总结)(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“▱”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.①∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC(性质).2.探究.师:平行四边形是一种特殊的四边形,它除了具有四边形的性质和两组对边分别平行的性质外,还有什么特殊的性质呢?我们一起来探究一下.(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.如图,已知:▱ABCD.求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.由上面的证明可知:∠1=∠3,∠2=∠4,∴∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形的性质1 平行四边形的对边相等.平行四边形的性质2 平行四边形的对角相等.二、新课教授【例】教材第42页例1师:距离是几何中的重要度量之一,前面我们已经学习了点与点之间的距离、点到直线的距离.在此基础上,我们结合平行四边形的概念和性质,介绍平行线之间的距离.如图1,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.也就是说,两条平行线之间的任何两条平行线段都相等.从上面的结论可以知道,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.如图2,a∥b,A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.三、巩固练习1.▱ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60°B.80°C.100°D.120°【答案】C2.在下列图形的性质中,平行四边形不一定具有的是( )A.对角相等B.对角互补C.邻角互补D.内角和是360°【答案】B3.在▱ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有( )A.4个B.6个C.8个D.9个【答案】D四、课堂小结1.两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:对边平行;对边相等;对角相等我在设计本节课时先让学生看图形,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质.因为本章课标明确要求学生能够规范地写出说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程.第2课时平行四边形的性质(2)理解并掌握平行四边形对角线互相平分的性质.重点平行四边形对角线互相平分的性质以及性质的应用.难点综合运用平行四边形的性质进行有关的论证和计算.一、复习导入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是360°);②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.探究:请学生在纸上画两个全等的平行四边形ABCD和平行四边形EFGH,并连接对角线AC,BD 和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将四边形ABCD绕点O旋转180°,观察它是否还是和四边形EFGH重合.你能从中看出前面所提到的平行四边形的边、角关系吗?你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.二、新课教授【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.证明:在▱ABCD中,AB∥CD,∴∠1=∠2,∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(AAS).∴OE=OF,AE=CF(全等三角形的对应边相等).∵四边形ABCD是平行四边形,∴AB=CD(平行四边形的对边相等).∴AB-AE=CD-CF,即BE=FD.引申:若例1中的条件都不变,将EF转动到图①的位置,那么例1的结论是否成立?若将EF向两边延长与平行四边形的两条对边的延长线分别相交(图②和图③),例1的结论是否成立?说明你的理由.解略.【例2】教材第44页例2三、巩固练习1.▱ABCD中,∠A的余角与∠B的和是120°,则∠A=________,∠B=________.分析:平行四边形的邻角互补.【答案】75°105°2.平行四边形的周长等于56 cm,两邻边的长的比为3∶1,那么这个平行四边形较长的边长为________.分析:平行四边形的对边相等.【答案】21 cm3.▱ABCD的周长为60 cm,对角线交于点O,△AOB的周长比△BOC的周长大8 cm,则AB,BC的长分别是________.分析:平行四边形的对边相等,对角线互相平分.【答案】19 cm,11 cm4.▱ABCD的周长为50 cm,AB=15 cm,∠A=30°,则此平行四边形的面积为________.分析:平行四边形的对边相等,面积等于边与该边上的高的乘积.【答案】75 cm2四、课堂小结定义:两组对边分别平行的四边形是平行四边形.性质:(1)边的性质:对边平行且相等;(2)角的性质:对角相等,邻角互补;(3)对角线的性质:对角线互相平分.课堂中,我通过让学生说一说、找一找等多种活动,在同桌合作、小组合作等活动交流中,让学生充分感知四边形的特征,培养了学生的合作意识、交流的能力和动手操作的能力.在作业方面,让学生以小组为单位,在校园中寻找我们身边的四边形,让学生感受数学在生活中的应用,感受数学真正就在我们身边.18.1.2平行四边形的判定第1课时平行四边形的判定(1)使学生掌握用平行四边形的定义判定一个四边形是否是平行四边形的方法.重点平行四边形的判定方法及应用.难点平行四边形的判定定理与性质定理的灵活应用.一、复习导入1.什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2.将以上的性质定理分别用命题的形式叙述出来.(即用“如果……那么……”的形式) 根据平行四边形的定义,我们研究了平行四边形的其他性质,那么如何判定一个四边形是否是平行四边形呢?除了定义,还有什么方法?平行四边形性质定理的逆命题是否成立?可以证明,这些逆命题都成立,于是得到平行四边形的判定定理:平行四边形的判定方法1 两组对边分别相等的四边形是平行四边形.平行四边形的判定方法2 两组对角分别相等的四边形是平行四边形.平行四边形的判定方法3 对角线互相平分的四边形是平行四边形.下面我们以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明.如图,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD,求证:四边形ABCD 是平行四边形.证明:∵OA=OC,OB=OD,∠AOD=∠COB,∴△AOD≌△COB,∴∠OAD=∠OCB,∴AD ∥BC,同理AB∥DC,∴四边形ABCD是平行四边形.二、新课教授【例1】教材第46页例3【例2】已知:如图,E,F分别为平行四边形ABCD的两边AD,BC的中点,连接BE,DF.求证:∠1=∠2.证明:在△ABE和△CDF中,∠A=∠C,AB=CD,AE=CF,∴△ABE≌△CDF,∴BE=DF.又∵DE=BF,∴四边形BFDE是平行四边形,∴∠1=∠2.三、巩固练习1.下列条件中,能判断四边形是平行四边形的是( )A.对角线互相垂直B.对角线相等C.对角线互相垂直且相等D.对角线互相平分【答案】D2.已知:如图,▱ABCD中,点E,F分别在CD,AB上,DF∥BE,EF交BD于点O.求证:EO=OF.【答案】证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴DE∥BF.又DF∥BE,∴四边形DEBF为平行四边形,∴EO=OF.四、课堂小结1.平行四边形的三个判定定理.2.会用四边形的三个判定定理解决简单的问题.在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识.第2课时平行四边形的判定(2)理解并掌握平行四边形的判定定理.重点理解并掌握平行四边形的判定定理,做到熟练应用.难点理解并掌握平行四边形的判定定理,体会几何推理的思维方法.一、复习导入1.平行四边形的定义是什么?2.平行四边形具有哪些性质?3.平行四边形是如何判定的?教师板书,并画出一个平行四边形,如图.(帮助理解)学生活动:踊跃发言,相互讨论,回顾平行四边形的性质与判定定理.二、讲授新课师:通过前面的学习,我们知道,如果一个四边形是平行四边形,那么它的任意一组对边平行且相等.那么反过来,一组对边平行且相等的四边形是平行四边形吗?下面我们就来证明这个结论是否正确.如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:连接AC.∵AB∥CD,∴∠1=∠2.又AB=CD,AC=CA,∴△ABC≌△CDA,∴BC=DA,∴四边形ABCD的两组对边分别相等,它是平行四边形.于是我们又得到平行四边形的一个判定定理:一组对边平行且相等的四边形是平行四边形.三、例题讲解【例1】教材第47页例4【例2】已知:如图,在▱ABCD中,AE,CF分别是∠DAB,∠BCD的平分线.求证:四边形AFCE是平行四边形.证明:∵四边形ABCD是平行四边形,∴∠DAB=∠BCD.∵AE,CF分别平分∠DAB,∠BCD,∴∠DAE=∠BCF.又∵∠D=∠B,AD=BC,∴△DAE ≌△BCF,∴DE=BF,AE=FC,∴EC=AF,∴四边形AFCE是平行四边形.【例3】已知:如图,▱ABCD中,E,F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF.∵BE⊥AC于E,DF⊥AC于F,∴BE∥DF,且∠BEA=∠DFC=90°.∴△ABE≌△CDF(AAS).∴BE=DF.∴四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形).四、巩固练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形.( )(2)两组对角分别相等的四边形是平行四边形.( )(3)一组对边平行,另一组对边相等的四边形是平行四边形.( )(4)一组对边平行且相等的四边形是平行四边形.( )(5)对角线相等的四边形是平行四边形.( )(6)对角线互相平分的四边形是平行四边形.( )【答案】(1)√(2)√(3)×(4)√(5)×(6)√2.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.【答案】略五、课堂小结平行四边形性质判定⎩⎪⎨⎪⎧⎩⎪⎨⎪⎧两组对边分别平行两组对边分别相等一组对边平行且相等角——两组对角分别相等对角线——两条对角线互相平分经过这两节课的学习,学生基本掌握了几何证明题的解题方法,能应用平行四边形的性质和判定方法解决问题.在以后的学习过程中最主要的任务是让学生落实到笔头上,要让学生学会反思做完的每一道题.第3课时 平行四边形的判定(3)1.理解并掌握三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线的性质进行有关的证明和计算.重点掌握并运用三角形中位线的性质解决问题. 难点三角形中位线性质的证明.(辅助线的添加方法)一、复习导入创设情境:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的? 二、讲授新课师:在前面学习平行四边形时,常把它分成几个三角形,利用三角形全等的性质研究平行四边形的有关问题.下面我们利用平行四边形来研究三角形的有关问题.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,连接DE ,像DE 这样,连接三角形两边中点的线段,我们称之为三角形的中位线,我们猜想,DE ∥BC ,DE =12BC.下面我们对它进行证明.如图,D ,E 分别是△ABC 的边AB ,AC 的中点.求证:DE∥BC,且DE =12BC.分析:本题既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一条线段长的一半,将DE 延长一倍后,可以将证明DE =12BC 转化为证明延长后的线段与BC 相等.又由于E 是AC 的中点,根据对角线互相平分的四边形是平行四边形构造一个平行四边形,利用平行四边形的性质进行证明.证明:如图,延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF. ∵AE =EC ,DE =EF ,∴四边形ADCF 是平行四边形, ∴CF 綊DA. ∴CF 綊BD∴四边形DBCF 是平行四边形,∴DF 綊BC.又DE =12DF ,∴DE ∥BC ,且DE =12BC.通过上述证明,我们可以得到三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半. 三、例题讲解【例】已知:如图,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点. 求证:四边形EFGH 是平行四边形.证明:连接AC ,在△DAC 中, ∵AH =HD ,CG =GD ,∴HG ∥AC ,HG =12AC(三角形中位线的性质).同理EF∥AC,EF =12AC.∴HG ∥EF ,且HG =EF.∴四边形EFGH 是平行四边形.此题可得结论:顺次连接四边形四条边的中点,所得的四边形是平行四边形. 四、巩固练习1.如图,A ,B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出AC 和BC 的中点M ,N.如果测得MN =20 m ,那么A ,B 两点的距离是________m ,理由是________________________.【答案】40 MN 是△ABC 的中位线2.如图,△ABC 中,D ,E ,F 分别是AB ,AC ,BC 的中点.(1)若EF =5 cm ,则AB =________cm ;若BC =9 cm ,则DE =________cm ; (2)中线AF 与中位线DE 有什么特殊的关系?证明你的猜想. 【答案】(1)10 4.5 (2)AF 与DE 互相平分,证明略 五、课堂小结三角形中位线定理:三角形两边中点的连线是三角形的中位线;三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线是三角形中一条重要的线段,三角形中位线定理在许多计算及证明中都要用到.在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣.在问题情境中引出三角形的中位线,导入本节学习的课题;同时,为证明三角形的中位线定理埋下伏笔,也是有助于用运动的思想来思考数学问题.此时教学体现的是人人都能获得必需的数学.三角形的中位线的性质定理的简单应用,学生都能掌握,这个定理在实际生活中的应用是非常广泛的. 18.2 特殊的平行四边形18.2.1 矩形 第1课时 矩 形(1)掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.重点矩形的性质. 难点矩形的性质的灵活应用.一、复习导入1.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动的过程,如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本节课题及矩形的定义.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如门窗框、书桌面、教科书的封面、地砖等都有矩形的形象.探究:在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质: 矩形的性质1 矩形的四个角都是直角. 矩形的性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC ,BD 相交于点O ,由性质2有AO =BO =CO =DO =12AC =12BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.二、新课教授【例1】教材第53页例1【例2】已知:如图,矩形ABCD中,AB长8 cm,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形的四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:设AD=x cm,则对角线长(x+4) cm,在Rt△ABD中,由勾股定理,得x2+82=(x +4)2,解得x=6,即AD=6 cm.由AE·DB=AD·AB,解得AE=4.8 cm.三、巩固练习1.矩形的两条对角线的夹角为60°,对角线的长为15 cm,较短边的长为( )A.12 cm B.10 cmC.7.5 cm D.5 cm【答案】C2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A,∠B的度数.【答案】∠A=60°,∠B=30°四、课堂小结1.掌握矩形的定义及性质.2.会用矩形的性质求相关的角的度数.本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,培养学生的学习能力及运用所学知识解决问题的能力,促进学生发展.第2课时矩形(2)通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的探究过程,掌握矩形的三种判定方法,并会运用它们解决相关问题.重点矩形的判定.难点矩形的判定定理及性质的综合应用.一、复习提问,引入新课师:什么叫做平行四边形?什么叫做矩形?生:两组对边分别平行的四边形叫做平行四边形.有一个角是直角的平行四边形叫做矩形.师:矩形有哪些性质?生:矩形的四个角都是直角,矩形的对角线相等.师:矩形是有一个角是直角的平行四边形,判定一个四边形是不是矩形,首先要看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”来判定是最重要和最基本的判定方法.除此之外,还有其他几种判定矩形的方法,下面我们就来研究这些方法.二、提出疑问,引导探索师:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来了两根长度相同的长木条和两根长度相同的短木条制作.你有什么方法可以检测他做的相框是否为矩形?生:可以用量角器量一下它的一个内角,若是90°,则这个相框为矩形.师:对,这是根据矩形的定义得到的,定义法突出是在平行四边形的基础上添加了一个条件(有一个角是直角),观察矩形和平行四边形,除了角的特性外,边和对角线还有特性吗?生:“边”没有特性,“对角线”是相等的.师:我们是否可以利用这一特性来判定四边形是不是矩形呢?请把这个判定用命题的形式写出来.生:对角线相等的平行四边形是矩形.师:这个命题是否正确?(分析命题的题设和结论,写出已知和结论,分析证明过程) 证明过程由学生板书完成.师(归纳板书):定理:对角线相等的平行四边形是矩形.师:对角线相等的四边形是矩形吗?生:不一定是矩形.师:画出反例,如下图所示的四边形,对角线相等,但它不是矩形(先画两条相等但不互相平分的相交线段,再顺次连接各端点得四边形).师生讨论,归纳矩形的判定方法:定义:有一个角是直角的平行四边形是矩形.定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.(除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.)三、例题讲解【例1】教材第54页例2【例2】如图,在△ABC中,AB=AC,点D是AC的中点,AE∥BC,过点D作直线EF∥AB,分别交AE,BC于E,F.求证:四边形AECF是矩形.证明:∵点D是AC的中点,∴AD=CD.∵AE∥BC,∴∠EAD=∠DCF.∴△ADE≌△CDF,∴AE=FC.∵AE∥BF,AB∥EF.∴四边形ABFE和四边形AFCE是平行四边形,∴AB=EF,又∵AB=AC,∴EF=AC,∴平行四边形AFCE是矩形.四、课堂练习已知:O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,AE =BF=CG=DH.求证:四边形EFGH为矩形.【答案】证明:∵四边形ABCD为矩形,∴AC=BD.∵AC,BD互相平分于O,∴AO=BO=CO=DO.∵AE=BF=CG=DH,∴EO=FO=GO=HO.∴四边形EFGH是平行四边形且HF=EG,∴四边形EFGH为矩形.五、课堂小结⎭⎪⎬⎪⎫一个角是直角的平行四边形对角线相等的平行四边形有三个角是直角的四边形是矩形本节课在引入时,我先提出一个实际生活问题,激发学生的求知欲望,再引导学生逆向思考问题,从而让学生提出“对角线相等的平行四边形是矩形”这一结论,最后通过逻辑推理证明命题的正确性,为以后学习其他特殊的四边形的判定打下了基础. 18.2.2 菱 形第1课时 菱 形(1)1.探索并掌握菱形的概念和它所具有的特殊性质,会进行简单的推理和运算. 2.能推导出菱形的面积等于它的两条对角线长的积的一半的性质.重点菱形的概念及性质. 难点菱形性质的灵活应用.一、创设情境,导入新课 活动:(四人一个小组)将一张硬纸片对折后再对折,然后剪成一个三角形,打开观察并讨论. 师:这是一个什么样的图形?为什么?(学生独立操作,教师演示) 生:是平行四边形,因为它的对角线是互相平分的.师:再观察一下,这个平行四边形的邻边之间有什么关系?为什么? 生:是相等的,因为它们是重合的.师(板书):菱形的定义:我们把有一组邻边相等的平行四边形叫做菱形.(强调菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等)二、探索研究,归纳性质活动:菱形具有什么性质呢?你能发现吗?1.折叠:上下对折,左右对折,你有什么发现? 2.旋转.结合学生探索、讨论、交流的情况,必要时教师对知识做适当梳理,板书菱形的性质. 菱形的性质1:菱形的四条边都相等.菱形的性质2:菱形的对角线互相垂直,并且每条对角线平分一组对角. 菱形是轴对称图形,两条对角线所在的直线都是它的对称轴.师:这些性质我们是通过折叠、旋转观察得到的.如何用逻辑推理的方法证明它呢?已知:如图,在菱形ABCD 中,AC ,BD 相交于O. 求证:AC⊥BD,AC 平分∠BAD 和∠BCD. 证明:∵AB=AD ,BO =OD ,∴AC ⊥BD ,AC 平分∠BAD(等腰三角形三线合一). 同理:AC 平分∠BCD,BD 平分∠ABC 和∠ADC. 三、继续探索,深化提高师:菱形的对角线将菱形分成几个三角形?它们都是什么三角形?有什么关系? 生:是四个全等的直角三角形.师:如果已知菱形的对角线的长度,能求出一个三角形的面积吗? 生:可以求出.师:进而就可以求出菱形的面积.试说明菱形的面积等于它的两条对角线线长的积的一半.已知:在菱形ABCD 中,对角线AC ,BD 相交于O 点.求证:在菱形ABCD 中,S 四边形ABCD =12AC×BD.证明:在菱形ABCD 中,AC ,BD 是对角线,∴AC ⊥BD ,OB =OD =12BD ,S 四边形ABCD =S △ABC +S △ACD =12AC×OB+12AC×OD =12AC×(OB+OD) =12AC×BD. 即菱形的面积等于它的两条对角线长的积的一半.师:菱形是特殊的平行四边形,所以它的面积公式有两个. 菱形的面积=底×高;菱形的面积=12ab(a ,b 是两条对角线的长度).四、例题讲解【例1】菱形ABCD 的两条对角线AC ,BD 的长度分别为4 cm ,3 cm ,求菱形ABCD 的面积和周长.分析:用勾股定理可求得边长,进而求得周长.解:如图,由题可知AO =2,BO =32,∴AB =AO 2+BO 2=52,∴菱形ABCD 的周长为4×52。
人教版数学八年级下册18.1.2《平行四边形的判定》(第2课时)教案

人教版数学八年级下册18.1.2《平行四边形的判定》(第2课时)教案一. 教材分析《平行四边形的判定》是人教版数学八年级下册第18章的一部分,主要让学生了解并掌握平行四边形的判定方法。
这一节内容是学生在学习了三角形、四边形的基础上进行的,对于学生来说,掌握平行四边形的判定方法,不仅可以丰富他们的几何知识体系,也为后续学习其他多边形打下基础。
二. 学情分析学生在八年级上学期已经学习了三角形、四边形的性质,对多边形有了一定的了解。
但是,对于平行四边形的判定,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已知的三角形、四边形性质出发,逐步过渡到平行四边形的判定。
三. 教学目标1.让学生了解平行四边形的判定方法,并能够运用这些方法判断一个四边形是否为平行四边形。
2.培养学生的逻辑思维能力,提高他们解决几何问题的能力。
3.激发学生学习数学的兴趣,培养他们的数学素养。
四. 教学重难点1.重难点:平行四边形的判定方法及其应用。
2.难点:如何引导学生从已知的三角形、四边形性质出发,推导出平行四边形的判定方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现并总结平行四边形的判定方法。
2.运用多媒体辅助教学,展示平行四边形的判定过程,增强学生的直观感受。
3.采用小组合作学习,让学生在讨论中加深对平行四边形判定方法的理解。
六. 教学准备1.多媒体教学设备。
2.平行四边形的判定相关课件。
3.练习题及答案。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平行四边形,如电梯、窗户等,引导学生关注平行四边形的特征,激发他们的学习兴趣。
2.呈现(10分钟)呈现平行四边形的判定方法,引导学生从已知的三角形、四边形性质出发,推导出平行四边形的判定方法。
3.操练(10分钟)让学生分组讨论,每组设计一个判定平行四边形的实验,并展示实验过程和结果。
4.巩固(10分钟)让学生独立完成一些判断平行四边形的练习题,检验他们对平行四边形判定方法的理解。
人教版八年级下册18.1平行四边形导学案

人教版初中数学八年级下册学案第十八章 平行四边形18.1.1 平行四边形的性质【观察】画一个 ABCD ,通过观察和度量,猜想□ABCD 的有关性质。
除了“两组对边分别平行”外,它的边之间还有什么关系?它的角之间有什么关系?它的对角线之间有什么关系?通过度量,观察图1,可以发现平行四边形的对边相等,平行四边形的对角相等;观察图2,可以发现平行四边形的对角线互相平分。
那么对于上述观察到的结果,如何进行证明?我们利用三角形全等得出全等三角形的对应边、对应角都相等。
通过添加辅助线,构造两个三角形,通过全等三角形进行证明平行四边形的对应边相等、对应角相等。
证明:如图3,连接AC . ∵AD ∵BC ,AB ∵CD , ∵∵1=∵2,∵3=∵4.我们利用三角形全等得出全等三角形的对应边、对应角都相等。
通过添加辅助线,构造两个三角形,通过全等三角形和平行四边形的对应边相等进行证明平行四边形的对角线互相平分。
证明:如图4,连接AC ,BD . ∵AD ∵BC ,AB ∵CD ,又∵AC是∵ABC和∵CDA的公共边,∵∵ABC∵∵CDA(ASA).∵AD=CB,AB=CD,∵B=∵D.同理可证∵BAD=∵DCB.∵∵1=∵2,∵3=∵4.又∵AD=BC,∵∵AOD∵∵COB(ASA).∵OA=OC,OB=OD.思考1:不添加辅助线,你能否直接运用平行四边形的定义,证明其对角相等?答:能。
根据两条直线平行,同旁内角互补,同一个角的同旁内角相等即可证明。
思考2:已知平行四边形一个内角的度数,你能确定其他内角的度数吗?答:能。
利用平行四边形对角相等和平行四边形的性质,可以确定其他三个角的度数。
思考3:什么是两条平行线之间的距离?答:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。
(任何两条平行线之间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度)思考4:两条平行线之间的距离和点与点之间的距离、点到直线的距离有何关系与区别?答:点与点之间的距离是定义点到直线的距离、两条平行线之间距离的基础,他们本质上都是点与点之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的边、角特征
一、明确目标:
1、理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。了解两平行线
之间的距离的概念。
2、会用平行四边形的性质解决有关平行四边形的计算问题,并会进行有关的论证。
教学重、难点
重点:平行四边形的概念和对边对角相等的性质。
难点:平行四边形的性质(对边、对角的性质)的应用。
教学过程:
二、自主预习:
自学:自学课本41—43页,理解平行四边形的概念和平行四边形的性质,完成填空。
归纳:1、___________________________叫做平行四边形。
2、平行四边形的对边_______,对角_______。
3、两条平行线中,一条直线上任意一点到另一条直线的_______,叫做这两条平行线之
间的距离。
4、如图,□ABCD中,∠A=120°,则∠1=________.
第4题图 第5题图
5、如图,在□ABCD中,AB=5,AD=8,∠BAD,∠ADC的平分线分别交BC于点E,F,则
EF=________.
三、合作探究:
1、“平行四边形的对边相等,对角相等”。
2、探究课本P42例1。
3、“两条平行线之间的距离处处相等”。
四、当堂反馈:
1、如图,在□ABCD中,点E为AD的中点,CE交BA的延长线于点F,若BC=2AB,
∠FBC=70°,求∠EBC的度数。
2、如图,直线a∥b,点A,D在直线a上,点B,C在直线b上,若
S△ABC=5cm2,则S△BCD=__________.
五、拓展提升:
如图,已知□ABCD中,∠EAD=∠BAF.
(1)试证明:△CEF是等腰三角形。
(2)猜测CE与CF的和与□ABCD的周长之间的关系,并说明理由。
六、课后检测:
1、如图,已知□ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E,
求证:AB=BE.
2、如图,在□ABCD中,对角线AC与AB垂直,∠B=72°,BC=7,AC=3.
(1)求∠BCD,∠D的度数;
(2)求AB的长及□ABCD的周长。
3、如图,分别延长□ABCD的边BA,DC到点E,H,使得AE=AB,CH=CD,连接EH,分别
交AD,BC于点F,G。
求证:△AEF≌△CHG.