第4章 直线与平面、平面与平面
第四章 平面上两条直线的位置关系

第四章平面上两条直线的位置关系4.1.1 相交与平行教学目标1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其直线平行关系的传递性的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;重点:理解并掌握平行公理难点:理解并掌握平行公理及其直线平行关系的传递性的内容教学过程一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1.教材P19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)4.1. 2相交直线所成的角教学目标:1.理解相交直线所成的角意义,理解对顶角、同位角、内错角、同旁内角的概念。
第4章 直线与平面、平面与平面的相对位置

4.2 相交问题
【例4-5】 (1)求交点,如图4-9(c)所示。
①在铅垂线的水平投影上标出交点的水平投影k。
②在平面内过K点的水平投影k作辅助线ad,并求出它的正面 a′d′。
③a′d′与m′n′的交点即交点的正面投影k′。
4.2 相交问题
【例4-5】
(2)直线的可见性可利用重影点法来判断。因为直线是铅垂线, 水平投影积聚为一点,故不需要判别其可见性,只需判别直线 正面投影的可见性即可。直线以交点K为分界点,在平面前面 的部分可见,在平面后面的部分不可见。如图4-9(c)所示,选 取m′n′与b′c′的重影点1′和2′来判别。1点在MN上,2点在BC上, 从水平投影看,1点在前可见,2点在后不可见。即k′1′在平面 的前面可见,画成粗实线;其余部分不可见,画成虚线。
4.2 相交问题
3.一般位置平面与特殊位置平面相交
【例4-7】
求一般位置平面ABC与铅垂面P的交线MN及判别平面正面投 影的可见性,如图4-11(a)所示。 【解】分析:如前面所述,把求两个平面交线的问题看成是求 两个共有点的问题。所以欲求图4-11(b)中两个平面的交线,从 对图4-11(a)的分析来看,只要求出交线上的任意两点(如M和N) 即可。因为铅垂面的水平投影有积聚性,所以交线的水平投影 必然位于铅垂面的积聚投影上;交线的正面投影可利用线上定 点的方法求出。 作图步骤如下:
4.1.2 平面与平面平行 条件
若一个平面内的两条相交直线对应 平行于另一个平面内的两条相交直
线,则这两个平面平行。
4.1平行问题
1.两个一般位置平面平行
【例4-3】 过点E作一个平面与平面ABC平行,如图4-6(a)所示。
E ABC 作图步骤如图4-6(b)所示。 (1)过点E作ED∥AB(ed∥ab、e′d′∥a′b′)。 (2)过点E作EF∥AC(ef∥ac、e′f′∥a′c′),则平面DEF 所求。
【高教版中职教材—数学(基础模块)下册电子教案课程】 直线与直线、直线与平面、面与面平行的判定与性质

【高教版中职教材—数学(基础模块)下册电子教案课程】9.2直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】*揭示课题直线与直线、直线与平面、平面与平面平行的判定与性质*创设情境兴趣导入A B与AD所观察图9−13所示的正方体,可以发现:棱11在的直线,既不相交又不平行,它们不同在任何一个平面内.图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?图9 −14(请画出实物图)受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 −15).(1) (2) 图9−15利用铅笔和书本,演示图9−15(2)的异面直线位置关系. 引领 分析仔细分析关键 语句理解 记忆带领 学生 分析5*创设情境 兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢?观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .质疑 引导 分析思考启发 学生思考图9−16BA CD*创设情境兴趣导入将平面 内的四边形ABCD的两条边AD与DC,沿着对角线AC向上折起,将点D折D的位置(如图9−17).此叠到1D四个点不在同一个平面内.时A、B、C、1图9−17图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?如果一条直线与一个平面只有一个公共点,那么就称这条直线与这个平面相交,画直线与平面相交的图形时,要把直线延伸到平行四边形外(如图9−19(2)).如果一条直线与一个平面没有公共点,那么就称这条直线与这个平面平行. 直线l与平面α平行,记作l∥α.画直线与平面平行的图形时,要把直线画在平行四边形外,并与平行四边形的一边平行(如图9−19(3)).ll(1)(2)l(3)这样,直线与平面的位置关系有三种:直线在平面内、直线与平面相交、直线与平面平行.直线与平面相交及直线与平面平行统称为直线在平面外.*创设情境兴趣导入在桌面上放一张白纸,在白纸上画出两条平行直线,沿着其中的一条直线将纸折起(如图9−20).观察发现:在折起的各个位置上,另一条直线始终与桌面保持平行.图9−201为了叙述简便起见,将线段1DD 所在的直线,直接写作直线1DD ,本章教材中都采用这种表述方法.图9−211111ABCD A B C D -中,因为四边形图9−22(请画出实物图) 分析42*动脑思考 探索新知从大量的实验与观察中,归纳出直线与平面平行的性质:如果一条直线与一个平面平行,并且经过这条直线的一个平面和这个平面相交,那么这条直线与交线平行.如图9−23所示,设直线l 为平面α与平面β的交线,直线m 在平面β内且m α∥,则m l ∥.图9-23讲解 说明引领 分析思考 理解 带领 学生 分析45 *巩固知识 典型例题例 3 在如图9−24所示的一块木料中,已知BC ∥平面1111A B C D ,BC ∥11B C ,要经过平面11A C 内的一点P 与棱BC 将木料锯开,应当怎样画线?说明 强调 引领观察 思考通过例题进一步领会铅笔分析 设点P 和棱BC 确定的平面α,则EF 是α与平面1111A B C D 的交线,由于BC ∥平面1111A B C D ,故EF ∥BC ,11B C BC ∥.所以11EF B C ∥.解 画线的方法是:在平面1111A B C D 内,过点P 作直线11B C 的平行线EF ,分别交直线11A B 及直线11D C 与点E 、F ,连接EB 和FC .讲解 说明主动 求解48*运用知识 强化练习1.试举出一个直线和平面平行的例子.2.请在黑板上画一条直线与地面平行,并说出所画的直线与地面平行的理由.3.如果一条直线平行于一个平面,那么这条直线是不是和这个平面内所有的直线都平行?4.说明长方体的上底面各条边与下底面平行的理由. 提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况50 *创设情境 兴趣导入教室中的墙壁与地面相交于一条直线,而天花板与地面,没有公共点.质疑 思考 引导 学生 分析 52 *动脑思考 探索新知如果两个平面没有公共点,那么称这两个平面互相平行.平面α与平面β平行,记做α∥β.画两个互相平行平面的图形时,要使两个平行四边形的对应边分别平行(如图9−25).讲解 说明 引领 分析思考 理解带领 学生 分析图9−25图9−24*创设情境兴趣导入进行乒乓球或台球比赛时,必需要保证台面与地面平行.技术人员利用水准器来进行检测.水准器内的玻璃管装有水,管内的水柱相当于一条直线,水准器内的水泡在中央,表示水准器所在的直线与地平面平行.把水准器在平板上交叉放置两次(如图9−26),如果两次检测,水准器内的水泡都在中央,就表示台面与地面平行,可以进行比赛,否则就需要进行调整.图9−26例4 设平面α内的两条相交直线m ,n 分别平行于另一个平面β内的两条直线k ,l (如图9−27),试判断平面α,β是否平行解 因为m 在β外、l 在β内,且m ∥l ,所以直线m ∥平面β.同理可得 直线n ∥平面β.由于m 、n 是平面α内两条相交直线,故可以判断α∥β. *创设情境 兴趣导入将一本书放在与桌面平行的位置,用作业本靠紧书一边,绕着这条边移动作业本,观察作业本和书的交线与作业本和桌面的交线之间的关系(如图9−28).图9−28(请画出实物图)图9−27Am n桌子 书放到不同位置的本*动脑思考 探索新知由大量的观察和实验得到两个平面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行.如图9−29所示,如果αβ∥,平面γ与α、β都相交,交线分别为m 、n ,那么m ∥n .*运用知识 强化练习1.画出下列各图形:(1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.2.如图所示,//αβ,M 在α与β同侧,过M 作直线a 与b ,a 分别与α、β相交于A 、B ,b 分别与、β相交于C 、D .⑴ 判断直线AC 与直线BD 是否平行;⑵ 如果 4M A =cm ,5AB =cm ,3MC =cm ,求MD 的长.*理论升华 整体建构 ba第2题图MAC D B图9−29[0,180]1BC AD 1CBC ∠1DAD ∠AB 1BC AD 1CBC ∠nm onm o*运用知识 强化练习在如图所示的正方体中,求下列各对直线所成的角的度数:(1)1DD 与BC ; (2)1AA 与1BC .ABCD图9−32题图图9−33*动脑思考 探索新知如果直线l 和平面α内的任意一条直线都垂直,那么就称直线l 与平面α垂直,记作α⊥l .直线l 叫做平面α的垂线,垂线l 与平面α的交点叫做垂足.画表示直线l 和平面α垂直的图形时,要把直线l 画成与平行四边形的横边垂直(如图9−34所示),其中交点A 是垂足.图9−34图9−35图9−3642*动脑思考探索新知斜线l与它在平面α内的射影l'的夹角,叫做直线l与平面α所成的角.如图9−37所示,PBA∠就是直线PB与平面α所成的角.规定:当直线与平面垂直时,所成的角是直角;当直线与平面平行或直线在平面内时,所成的角是零角.显然,直线与平面所成角的取值范围是[0,90].【想一想】如果两条直线与一个平面所成的角相等,那么这两条直线一定平行吗?图9−37讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析47*巩固知识典型例题例2 如图9−38所示,等腰∆ABC的顶点A在平面α外,底边BC 在平面α内,已知底边长BC =16,腰长AB =17,又知点A 到平面α的垂线段AD =10.求(1)等腰∆ABC 的高AE 的长; (2)斜线AE 和平面α所成的角的大小(精确到1º).分析 三角形AEB 是直角三角形,知道斜边和一条直角边,利用勾股定理可以求出AE 的长;AED ∠是AE 和平面α所成的角,三角形ADE 是直角三角形,求出AED ∠的正弦值即可求出斜线AE 和平面α所成的角.解 (1) 在等腰∆ABC 中,AE BC ⊥,故由BC =16可得BE =8.在Rt ∆AEB 中,∠AEB =90°,因此222217815AE AB BE =-=-=.(2)联结DE .因为AD 是平面α的垂线,AE 是α的斜线,所以DE 是AE 在α内的射影.因此AED ∠是AE 和平面α所成的角. 在Rt ∆ADE 中,102sin 153AD AED AE ∠===,所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】为什么这三条连线都画成虚线?*运用知识 强化练习图9−381′).练习图*创设情境 兴趣导入在建筑房屋时,有时为了美观和排除雨水的方便,需要考虑屋顶面与地面形成适当的角度(如图9−39(1));在修筑河堤时,为使它经济且坚固耐用,需要考虑河堤的斜坡与地面形成适当的角度(如图9−39(2)).在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察.(2)图9−39(1)角,记作二面角l αβ--(或CD αβ--)(如图9−40).过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角.如图9−41所示,在二面角α−l −β的棱l 上任意选取一点O ,以点O 为垂足,在面α与面β内分别作OM l ⊥、ON l ⊥,则MON ∠就是这个二面角的平面角.,180].平面角是直角的二面角叫做直二面角地面就组成直二面角,此时称两个平面垂直图9−40CD图9−41loNMCD*巩固知识 典型例题例3 在正方体1111ABCD A B C D -中(如图9−42),求二面角1D AD B --的大小.图9−42解 AD 为二面角的棱, 1AA 与AB 是分别在二面角的两个面内并且与棱AD 垂直的射线,所以1A AB ∠为二面角1D AD B --的平面角.因为在正方体1111ABCD A B C D -中,1A AB ∠是直角.所以二面角1D AD B --为90°.*运用知识 强化练习练习题图*理论升华整体建构【教师教学后记】。
2.2.3-2.2.4_直线与平面,平面与平面平行的性质定理-悠

b α
内找出和直线a (2)已知直线 ∥平面 ,如何在平面 内找出和直线 )已知直线a∥平面α,如何在平面α内找出和直线 平行的一条直线? 平行的一条直线?
思考
如图, 直线A 如图,在长方体 ABCD-A1B1C1D1中,直线 1B1//面CDD1C1. 面
D1 A1
E
C1 由长方体性质,我们知道A1B1 // C1D1.
β b α a
⊂ β.
又因为a 又因为 ∥α, 所以a,b无公共点. 所以 , 无公共点. 无公共点 又因为a β 所以a∥ 又因为 ⊂ ,b ⊂β,所以 ∥b
back
已知平面外的两条平行直线中的一条平行于这个平面, 例 已知平面外的两条平行直线中的一条平行于这个平面, 求证另一条也平行于这个平面. 求证另一条也平行于这个平面.
α
(2)该定理作用:“线面平行⇒线线平行” 该定理作用: 线面平行⇒线线平行” 该定理作用 线面平行性质定理也是找平行线的重要依据. 线面平行性质定理也是找平行线的重要依据 (3)应用该定理,关键是经过直线找平面或作出平面与已知平面相 应用该定理,关键是经过直线找平面或作出平面与已知平面相 应用该定理 并找出两平面的交线. 交,并找出两平面的交线 (4)平面外的两平行线同平行于同一个平面 平面外的两平行线同平行于同一个平面. 平面外的两平行线同平行于同一个平面
O
C1
E
D
在 DBD1中,O为DB的中点,BD1 // OE. 所以点E为DD1的中点.
A
B
练习
三棱柱ABC-A1B1C1中,D是BC上的点,A1B//平面 上的点, 平面ADC1 . 三棱柱 是 上的点 平面 求证:点 为 的中点 的中点. 求证 点D为BC的中点
【道路工程习题集答案】第四章-直线与平面、平面与

•4-4判别直线AB和CD是 否分别与已知平面EFG 平行。 •判别:AB与△EFG平行; CD与△EFG不平行
精品pp
f’ h' e'
X
a'
g' g
e
fa
c' b’ bc
d' O
d
• 分析:判别直线是否与已知平面EFG平行,只要在已知平 面内找到一条直线和判别直线平行,则直线和平面平行, 找不到一条直线和判别直线平行,则直线和平面不平行。 因△EFG是一个铅垂面,要判别一条直线是否平行于一个 铅垂面,即判别该直线的水平投影是否平行于该铅垂面 的水平投影。
精品pp
•4-9求作直线MN与平面 ABCD的交点,并判明 直线MN的可见性。
精品pp
a' m' Pv X
a
m
b' k'
1'
1
n' 2'
c'
d'
d
n
O
c k
2 b
精品pp
• 分析:过MN做一正垂面Pv, 平面P与平面ABCD的交线必属于平 面P 与平面ABCD的交点1,2构成的交线,12与mn的交点K即为直 线MN与平面ABCD的交点。根据MN的H面投影,判断MN在AD线 之前,在BC线之后,即得MN的V面可见性。根据MN的V面投影, 判断MN在CD线之上,在AB线之下,即得MN的H面可见性。
精品pp
•4-6求作直线EF与平面 ABCD的交点K,并判明 EF的可见性。
精品pp
a'
e' X
a
e
d'
•
k' b'
画法几何及土木工程制图第4章直线与平面平面与平面的相对位置

图4-1a是直线与平面平行的立体示意图:直线MN与平面P 上的直线KL平行,则MN∥P。 在图4-1b中,由于mn∥kl、m‘n’∥ k‘l ’,即MN ∥KL,KL是平面 P上的直线,所以MN∥P
P’
P
(a)
(b)
图 4-1 直线与平面平行
求空间上点到直线的距离
空间分析
作图
作图步骤:
(1)过A点作BC线的垂 面 (2)包含BC作辅助铅垂 面 (3)求交 点 (4)求距 离
PH
距离
直线垂直投影面垂直面
(a)
(b)
平面与平面垂直的几何条件
(a)
(b)
(c)
过点S做平面垂直于 ABC所给定的平面
判别两平面是否相互垂直
判断可见:两平面垂直
可见性。
a’
d’
c’
k’ f’
b’
e’
X
O
e
f
a(b)
k
d
c
(二)一般位置平面与特殊位置平面相交
求两平面交线的问题可以看作是 求两个共有点的问题,由于特殊位置 平面的某些投影有积聚性,交线可 直接求出。
例:已知两特殊位置平面相交,求交线的投影
返回
二、 辅助平面法
求作交线的步骤:
(一)直线与一般位置平面相交
交点与交线的性质 B D
PA
K B
KA
L
F
E
C
➢直线与平面相交有交点,交点既在直线上又在平面上
,因而交点是直线与平面的共有点。
➢两平面的交线是直线,它是两个平面的共有线。
➢求线与面交点、面与面交线的实质是求共有点、共有
工程制图第4章 直线与平面、平面与平面的相对位置

m
b k f n
c
l
a O
m
m
k b
f
a l
n
二、辅助平面法
A E
K 1
2
D
C
B 过AB作平面P垂直于H投影面
a
d
2
k 作题步骤: 1、 过AB作铅 垂平面P。 2、求P平面与 ΔCDE的交线 e ⅠⅡ。 O 3、求交线 ⅠⅡ与AB的交 e 点K。
c
1
X
PH
b
a
1
第一节
第二节
平行问题
相交问题
4.2 相交问题
第三节
第四节
垂直问题
综合问题分析及解法
第一节 平行问题
一、直线与平面平行
C P A
D
B
若平面外的一条直线与平面内的一条直线平行,则该直线 与该平面平行。
例1 试判断直线AB是否平行于平面 CDE。
c g d f
e
b
a
X
f d e
O
a
g c
e f d
a
b r
X
c
O
e s
SH
d
a c b
f
结论:两平面平行
r P H
第二节
相交问题
D B
交点与交线的性质
P K A
K
A
B
C
L
E
F
直线与平面、平面与平面不平行则必相交。直线与平面相交 有交点,交点既在直线上又在平面上,因而交点是直线与平面的 共有点。两平面的交线是直线,它是两个平面的共有线。求线与 面交点、面与面交线的实质是求共有点、共有线的投影。
X
m k b
第四章 平面图形及其位置关系单元复习

平面图形及其位置关系知识总结1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论: (1)因为AM =BM =12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM =BM =12AB 或AB =2AM =2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角. 4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.平行线在同一个平面内,不相交的两条直线叫做平行线.平行的关系是相互的,如果AB ∥CD ,则CD ∥AB ,其中符号“∥”读作“平行”. 6.两条直线垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,其交点叫做垂足,•如直线AB •与直线CD 垂直,记作AB ⊥CD .7.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.8.点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.1.直线的性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”.2.线段的性质:两点之间的所有连线中,线段最短.3.与平行线有关的一些性质(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.垂线性质(1)经过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.平面图形及其位置关系经典例题1.考查学生发现问题、解决问题的能力.【例1】(2003年黑龙江)从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()A.4种B.6种C.10种D.12种【例2】(无锡)L1与L2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,n(n为大于1的整数)条直线最多可有_______个交点(用含n的代数式表示).2.线段长度的计算,线段的中点【例3】某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()3.角的度量与换算【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是()A.70°B.75°C.85°D.90°4.七巧板问题在中考中主要考查图形的拼摆.【例5】(2002年济南)如图1,用一块边长为22的正方形ABCD厚纸板,•按照下面做法,做了一套七巧板:作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF 于G,•交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCE沿画出的线剪开.现用它拼出一座桥(如图2),这座桥的阴影部分的面积是().(图1)(图2)A.8 B.6 C.4 D.5平面图形及其位置关系解题方法与技巧方法1:见比设元【例1】如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=9,求线段MC的长.【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】∵AB:BC:CD=2:4:3∴设AB=2K BC=4K CD=3K∴AD=3K+2K+4K=9K∵CD=9∴3K=9 ∴K=3∴AB=6 BC=12 AD=27∵M为AD中点,∴MD=12AD=12×27=13.5∴MC=MD-CD=13.5-9=4.5【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数.方法2:利用线段的和差判断三点共线【例2】判断以下三点A、B、C是否共线.(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;(2)AB=10cm,AC=3cm,CB=9cm.【解】(1)∵AB=10cm,AC=2cm,CB=8cm,∴AB=AC+CB∴A、C、B三点在同一条直线上(2)∵AB=10cm,AC=3cm,CB=9cm,∴AB≠AC+CB∴A、C、B三点不共线方法3:寻找规律(一)数直线条数:过任三点不在同一直线上的n点一共可画(1)2n n-条直线.(二)数n个人两两握手能握(1)2n n-次.(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有(1)2n n-条线段.(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n-.(五)数交点个数:n条直线最多有(1)2n n-个交点.(六)数对顶角对数:n条直线两两相交有n(n-1)对对顶角.(七)数直线分平面的份数:平面内n条直线最多将平面分成1+(1)2n n-个部分.【例3】同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条B.4条C.6条D.1条或4条或6条【例4】一张饼上切七刀,最多可得到几块饼.【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.【解】设一张饼被切n刀,最多分成S部分,如图2-6可知:n=1时S=1+1n=2时S=1+1+2n=3时S=1+1+2+3n=4时S=1+1+2+3+4……则S=1+1+2+3+4+…+n=1+(1)2n n-∴当n=7时,S=1+782⨯=29答:当上张饼上切7切时,最多可得到29块饼.【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.方法4:钟表问题【例5】钟表现在是1点15分,分针再转多少度,时针与分针首次重合.【分析】分针1分钟走(36060)°=6°,时针1分钟走(3060)°=0.5°(分针1小时走一圈,即60分钟走360°,时针1小时走一格,即60分钟走30°).因此,分针速度是时针速度的12倍,故设分针走12x°,时针走x°时时针与分针首次重合,因为从1点整到1点15°,•分针走一圈的14,此时时针走一格的14,因此1点15分时时针与分针夹角(1+34)×30°=52.5°.•列方程可求解.【解】设时针走x°时,时针与分针首次重合.依题意,得:12x-x=360-(74×30)解得:x=61522,∴12x=369011=335511答:分针再转335511度,时针与分针首次重合.方法5:最优策略问题直线上有两点(如图)A1和A2,要在直线上找一点P,使A1、A2到P的距离之和最小,则P点可放在A1、A2之间任意位置(包括A1和A2).此时P A1+P A2=A1A2.直线上有三点A1、A2、A3(如图).要找到一点P,使P A1+P A2+P A3的和最小.不妨设P在A1、A2之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A2、A3之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A1上,则P A1+P A2+P A3=A1A3+A1A2;若P在A2上,则P A1+P A2+P A3=A1A3.若P在A3上,则P A1+P A2+P A3=A1A3+A2+A3结论:当P选在A2点时P A2+P A2+P A3的和最小,其最小值为A1A3.不难发现,当直线上有四个点时,如图所示.P点选在A2A3上(包括端点).•可使P 到A1、A2、A3、A4的距离之和最小.其最小值为A1A4+A2A3.当直线上有五个点时,如图所示P点选在A3上,可使P到A1、A2、A3、A4、A5的距离之和最小,其最小值为A1A5+A2A4.【规律总结】当直线上有偶数个点时,P应选在最中间两点之间(可与这两点重合);当直线上有奇数个点时,P点与最中间的点重合,可使P到各点距离之和最小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h f
n
2
5、连接KH,KH即 为所求。
§4-3 直线与平面、平面与平面垂直
4. 3 垂直问题
4.3.1 直线与平面垂直 4.3.2 平面与平面垂直
4.3.1 直线与平面垂直
V C E B
A
D
几何条件:若一直线垂直于一平面,则必垂直于属于该 平面的一切直线。
n
V
a A C E
k d
e
k
a l
k b
f n
c H n
4.2.2
A E
辅助平面法
K
1
2
D
C
B
过AB作平面P垂直于H投影面
例7 直线AB与平面ΔCDE相交,判别可见性。1)求交点
a
d
2
k 作题步骤: 1、 过AB作铅 垂平面P。 2、求P平面与 ΔCDE的交线 ⅠⅡ。 e O 3、求交线 ⅠⅡ与AB的交 点K。 e
d 作图过程 a
1
k 2
c X c
b
e O
b 1 k d
所求距离
a
2 e
例21已知菱形ABCD的一边AD在直线AE上,另一边AB平行 于三角形LMN,点B在直线FG上,求作该菱形的两面投影。
c‘
l′
b’
g′
d‘
e′
f′
n′ n
m′
a′ a
m
d
e g
l
b c
f
c′ l′ b′ f′
3. 垂直问题
掌握线面垂直、面面垂直的投影特性及作图方法。
4. 综合问题分析及解法
(1)熟练掌握点、线、面的基本作图方法; (2)能对一般画法几何综合题进行空间分析,了解综合题的一般解 题步骤和方法。
例10 平面由 BDF给定,试过定点M作平面的垂线。
n
f c a
d f a d m b m
c
b n
例11 求点K到平面的距离 。
k’
f
2‘
1.过点K作直线垂直于平面(KM);
c
o’
2.求KM与平面交点-垂足(O); 3.求垂线段KO实长。
a d
a d
1 1‘
b
m’ m 2
m
P
b f n k l a
c
X m
O k b a l
f
l
H
c
n 求两平面交线的问题可以看作是求两个共有点的问题, 由于特殊位置平面的某些投影有积聚性,交线可直接求出。
平面可见性的判别
V M B K F m L X m n c m f
b k
l a a l
O
N C c
f
例3
试判断两平面是否平行
a b n m c r f s e
X c n m a
d e
O
d
s
r
f b
结论:两平面平行
例4 已知定平面由平行两直线AB和CD给定。试过点K 作一平面平行于已知平面 。 a s
d m b
X
n
c c n r
f
k
e
O
r e k d a f s
c
b
X
B
a k e d
O
D
c
b
n 定理1:若一直线垂直于一平面、则直线的水平投影必垂 直于属于该平面的水平线的水平投影;直线的正面投影必垂直 于属于该平面的正平线的正面投影。
V
f
n
A
C E B D
c
a b f a c b n
k
d X d
k
O
定理2(逆):若一直线垂直于属于平面的水平线的水平 投影;直线的正面投影垂直于属于平面的正平线的正面投影、 则直线必垂直于该平面。
a
c f
n
例14 试过点N作一平面,使该平面与V面的夹角为60 °,与H 面的夹角为45 °。
n X n O
分析 平面的法线与平面的最大斜度线对同一投影面的夹
角互为补角
A
C
D
E
B
作图过程? m
k
|zM-zN| n
mn
|yM-yN|
h
X O
mn n k |yM-yN| m h
例2 过点K作一水平线AB平行于已知平面 ΔCDE。 c f e b k a
d X e k d b f c O a
直线与特殊位置平面平行
•
4.1.2
平面与平面平行
P S B A
E
D F C
若平面内的两相交直线对应地平行于另一平面内的两相交 直线,则这两个平面平行。(提示:还有别的判据)
a
d X f
k c b h g
O
a
d
例16 试判断 ABC与相交两直线KG和KH所给定的平面 是否垂直。
h c
g k
f b
d
a
c
X
g
O
f k 结论:两平面不垂直。 b
d
4. 4 综合问题分析及解法
4.4.1 空间几何元素定位问题 4.4.2 空间几何元素度量问题
说明
平行、相交、及垂直等问题侧重于探求 每一个单个问题的投影特性、作图原理与方 法。而实际问题是综合性的,涉及多项内容 ,需要多种作图方法才能解决。 求解综合问题主要包括:空间几何元素 的定位问题(交点、交线)和空间几何元素 的度量问题(如距离、角度)。 综合问题解题的一般步骤: 1. 分析题意 2. 明确所求结果,找出解题方法 3. 拟定解题步骤
b
c
k
分析 K F
C
H A
E
B 过已知点K作平面P平行于 ABC;直线EF与平面P交于 H;连接KH,KH即为所求。
作图步骤
c
PV m a
f1 2 n
k
1、过点K作平面 KMN// ABC平面。
h
b a b c k m 1
e e
2、过直线EF作正垂 平面P。 3、求平面P与平面 KMN的交线ⅠⅡ。 4、求交线ⅠⅡ 与 EF的交点H。
g′ d′
e′
n′ n
m′
a′ a
m
d e g b c f
l
本章小结
1. 平行问题
(1)熟悉线、面平行,面、面平行的几何条件; (2)熟练掌握线、国平行,面、面平行的投影特性及作图方法。
2. 相交问题
(1)熟练掌握特殊位置线、面相交(其中直线或平面的投影具有积 聚性)交点的求法和作两个面的交线(其中一平面的投影具有积聚性)。 (2)熟练掌握一般位置线、面相交求交点的方法;掌握一般位置面 、面相交求交线的作图方法。 (3)掌握利用重影点判别投影可见性的方法。
30° 45° NM
直径任取mnຫໍສະໝຸດ |zM-zN|4.3.2
两平面垂直
A
P
B
几何条件:若一直线垂直于一定平面,则包含这条直线 的所有平面都垂直于该平面。
A A
Ⅰ Ⅱ
B
Ⅰ
B
Ⅱ
两平面垂直 两平面不垂直
反之,两平面相互垂直,则由属于第一个平面的任意一 点向第二个平面作的垂线必属于第一个平面。
例15 平面由 BDF给定,试过定点K作已知平面的垂面 h f c g k b
2
1
c e
两一般位置平面相交求交线的方法 B 利用求一般位 置线面交点的方法 找出交线上的两个 点,将其连线即为 两平面的交线。
F
A K
L
E C
D
例8 两平面相交,判别可见性
作题步骤
c k
PV e b
2
d QV
1
X f
l
a
1、用直线与 平面求交点 的方法求出 两平面的两 个共有点K、 L。 2、连接两个 共有点,画 出交线KL。
第四章 直线与平面、平面与平面的相对位置
§4-1 直线与平面、平面与平面平行
§
4.1.1
直线与平面平行
P
C
A
D
B
若平面外的一条直线与平面内的一条直线平行,则该直线 与该平面平行。
例1 试判断直线AB是否平行于平面 CDE。
c g d f a
b
e
X
e f
O
d
a g b
c
结论:直线AB不平行于定平面
作图过程 h 3
d
k
g
c X
e 4 a
2
f
b
1 l l a 3
O
b d
2 f
g
4 h c
e 1
k
4.4.2
空间几何元素度量问题
例20 求点C到直线AB的距离。 a
c X c
b O
b
a
分析
A
K C
P
B 过C点作直线AB的垂线CK一定在过C点并且与AB垂直 的平面P内,过C点作一平面与直线AB垂直,求出该平面与 AB的交点K,最后求出垂线CK的实长即为所求。
c X c
b
1 g a h g 1 a h d f 2 f
PV
k k
2
O
b
e
例18 试过定点A作直线与已知直线EF正交。 f
e X e
a O a
f
分析 A
E
K F
过已知点A作平面与已知直线EF交于点K,连接AK,AK即为所求。
作图过程
2
f
k
2
f
1
e
a
PV
1
e
a
e
e
2
a
2
k
a
f
f
1
1
例19 求点C到直线AB的距离。 a