新人教版 七年级数学上册 第一章 有理数 全册教学设计
新课标人教版七年级数学上册教案 第一章

新课标人教版七年级数学上册教案第一章
新课标人教版七年级数学上册教案
第一章有理数
1.1正数和负数
★目标预设
一、知识与能力
借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量
二、过程与方法
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用
★教学重难点
一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量
二、难点:负数的意义,理解具有相反意义的量。
★教学准备
带有负数的实例若干
★预习导学
在生活、生产、科研中,经常遇到数的表示与数的运算的问题。
例如,。
唐河县一中七年级数学上册 第一章 有理数 1.2 有理数1.2.1 有理数教案 新人教版

1.2有理数【知识与技能】1.了解有理数的意义,并能把有理数按要求分类.2.会把给出的有理数填入集合内.【过程与方法】1.从直观认识到理性认识,从而建立有理数概念.2.通过学习有理数概念,体会对应的思想,数的分类的思想.【情感态度】通过有理数意义、分类的学习,体会数的分类、归纳思想方法.【教学重点】有理数的概念.【教学难点】从直观认识到理性认识,从而建立有理数概念.一、情境导入,初步认识问题现在,我们已经知道除了小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数?学生列举:3,5.7,-7,-9,-10,0,1/3,2/5,-536,-7.4,5.2,……议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.【教学说明】我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?【教学说明】以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.我们把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合?二、典例精析,掌握新知例1 把下列各数填入相应的集合内:12/7,-3.1416,0,2004,-8/5,-0.23456,10%,10.1,0.67,-89.【答案】【教学说明】以上是对数进行分类,教师应让学生上台板演,并接着做教材第6~7页的练习,以巩固知识.例2以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.【教学说明】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视.例3如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【教学说明】此题开放性较强.同时,要求学生能用分类的思想对a全面认识.例4观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.2/3,3/4,4/5,,6/7,……,你的答案是 .【分析】找出各项数的特点是本题关键所在,第一个数为2/3,后一个数是前一个数的分子、分母都加1所得的数.【答案】5/6三、运用新知,深化理解1.把下列各数填入相应的大括号内:-7,0.125,1/2,-31/2,3,0,50%,-0.3.(1)整数集合{ ……}(2)分数集合{ ……}(3)负分数集合{ ……}(4)非负数集合{ ……}(5)有理数集合{ ……}2.下列说法正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2千克),(25±0.3)千克的字样,其中任选两袋,它们质量相差最大的是千克.4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?6.若向东走8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【教学说明】这几道题均较简单,可由学生独立自主完成.【答案】四、师生互动,课堂小结今天你获得了哪些知识?【教学说明】由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.1.布置作业:从教材习题1.2中选取.2.完成练习册中本课时的练习.本课时是在引入负数概念的基础上对所学过的数按照一定的标准进行分类,再提出有理数的概念.教学中应让学生了解分类是解决数学问题的常用方法,通过本节课的学习要认识分类的思想并能对事物用已知的数学知识进行简单的分类.教学时可为学生设置不同情境,引领学生自主参与学习与探寻,体验获取新知的过程,学生间互相交流和评价,以减少“分类”给学习带来的困难.近似数知识点 1 近似数的意义1.下列各数中,属于准确数的是( )A.月球与地球之间的距离约为38万千米B.一只没有洗干净的手,约带各种细菌4亿个C.七年级共有802名学生D.张华身高约为170 cm2.成年人行走时的步长大约是( )A.0.5 cm B.5 m C.50 cm D.50 m3.下列结果不能用四舍五入法取的有( )①每4人一组,9人可分几组;②2米布做一套服装,3.99米布可做几套服装;③一车可装运货物10吨,装11吨货物需几辆车;④300本笔记本要分给110人,每人应分几本.A.1个 B.2个 C.3个 D.4个知识点 2 近似数的精确度及表示4.2017·苏州小亮用天平称得一瓶罐头的质量为2.026 kgA.2 B.2.0 C.2.02 D.2.035.下列由四舍五入得到的近似数,各精确到哪一位?(1)7.3080;(2)0.060;(3)72.0万;(4)3.50×104.6.用四舍五入法按要求取近似值.(1)0.5876(精确到0.01);(2)572900(精确到千位).7.2017·宜昌5月18日,新华社电讯:我国利用世界唯一的“蓝鲸1号”在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是( )A.27354 B.40000C.50000 D.12008.由四舍五入得到的近似数3.0的准确值a的取值范围是( )A.2.5<a<3.4 B.2.95≤a≤3.05C.2.95≤a<3.05 D.2.95<a<3.059.由四舍五入得到的近似数a≈2.1,b≈2.10,那么a,b的关系是( )A.a=b B.a>bC.a<b D.以上情况都可能10.车工小王加工两根轴,当把轴交给质检员检验时,质检员说:“不合格,只能报废!”小王不服气地说:“图纸上要求的精确度是 2.60米,一根为 2.56米,另一根为2.62米,怎么不合格?”同学们想想看,是小王加工的轴不合格,还是质检员故意刁难他?11.据测试,某个拧不紧的水龙头每秒钟滴2滴水,每滴水约0.05毫升.小刚同学在洗手后,没有把水龙头拧紧.试探究:当小刚离开4小时后,水龙头流掉多少毫升水?(精确到百位)参考答案1.C 2.C3.D [解析] 在实际问题中表示一个近似数时有时不能用四舍五入法,而只能用“进一法”或“去尾法”.4.D5.解:(1)7.3080精确到万分位.(2)0.060精确到千分位.(3)72.0万精确到千位.(4)3.50×104精确到百位.6.解:(1)0.5876≈0.59.(2)572900≈5.73×105.7.A8.C [解析] 注意a不能等于3.05,当a=3.05时,四舍五入后结果是3.1.9.D.10.解:小王加工的不合格.因为要求的精确度为 2.60米,所以准确值的范围应不小于2.595米,且小于2.605米.因为2.56米和2.62米均不在此范围内,所以是小王加工的轴不合格.11.解:水龙头4小时流掉的水:2×0.05×3600×4=1440(毫升),1440≈1.4×103.答:当小刚离开4小时后,水龙头约流掉1.4×103毫升水.数轴(30分钟50分)一、选择题(每小题4分,共12分)1.下列说法中正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一的一点【解析】选 D.数轴上一个点只能表示一个有理数,两个不同的点表示两个不同的有理数,任何有理数都能用数轴上的点表示出来,故A,B,C均错误.2.(2014·成都七中质检)数轴上的点A到表示-1的点B距离是6,则点A表示的数为( )A.6或-6B. 5C.-7D. 5或-7【解析】选D.若点A在点B左边,则点A表示的数是-7;若点A在点B的右边,则点A表示的数是+5.【易错提醒】(1)要弄清是哪两点间的距离,本题易错认为是点A与原点的距离.(2)数轴上到某点的距离应分在这点左右侧两种情况,不能遗漏.3.如图所示,在数轴上有六个点,且相邻两点间的距离相等,则点C表示的数是( )A.-2B.0C.2D.4【解题指南】解决本题的关键:(1)根据A,B,C,D,E,F每相邻两点间距离相等.(2)确定原点的位置.【解析】选C.由点A表示的数是-2,点E表示的数是6可知,这条数轴的原点是点B,所以点C所表示的数是2.二、填空题(每小题4分,共12分)4.如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是.【解析】点P向右移动3个单位长度得到点P′,从点P向右数3个单位长度得到的点P′表示的数是2. 答案:25.(2014·个.答案:4【变式训练】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长2014cm的线段AB,则线段AB盖住的整点个数是( )A.2011或2012B.2012或2013C.2013或2014D.2014或2015【解析】选D.分两种情况分析:(1)当线段AB的起点是整点时,终点也落在整点上,那就盖住2015个整点.(2)当线段AB的起点不是整点时,终点也不落在整点上,那么线段AB盖住了2014个整点.6.文具店、书店和玩具店依次坐落在一条东西方向的大街上,文具店在书店的西边30m处,玩具店在书店的东边90m处,元元从书店沿街向东走40m,接着又向东走-70m.此时元元的位置在.【解析】向东走-70m就是向西走了70m.把路看成数轴,设书店所在的地点为原点,向东规定为正,则向西为负.所以表示玩具店所在地的数是90,表示文具店所在地的数是-30.这样元元行走的路线就如图所示:答案:文具店三、解答题(共26分)7.(8分)请把下面不完整的数轴画完整,并在数轴上标出下列各数:-3,-,4.【解题指南】数轴应有原点、正方向和单位长度,根据图中所标数字确定原点,标上正方向及相应的数即可.【解析】8.(8分)如图所示,在数轴上有A,B,C三个点,请回答:(1)将点A向右移动3个单位长度,点C向左移动5个单位长度,它们各自表示什么新数?(2)移动A,B,C中的两个点,使得三个点表示的数相同,有几种移动方法?【解析】(1)点A在原点左侧3个单位长度处,表示-3,向右移动3个单位长度后,落在原点处,表示0;点C 在原点右侧3个单位长度处,表示+3,向左移动5个单位长度后,落在原点左侧2个单位长度处,表示-2. (2)有三种移动方法:①点A不动,点B向左移动2个单位长度,点C向左移动6个单位长度;②点B不动,点A向右移动2个单位长度,点C向左移动4个单位长度;③点C不动,点A向右移动6个单位长度,点B 向右移动4个单位长度.【培优训练】9.(10分)张明的家、学校、车站、文化宫坐落在一条东西走向的大街上,依次记为A,B,C,D.车站位于张明家东100m,学校位于张明家西150m,文化宫位于张明家西400m.(1)用数轴表示A,B,C,D的位置(以张明家为原点,向东为正方向).(2)某日张明从家中去车站办完事后,又以每分钟50m的速度步行往文化宫方向走了约8min,试问这时张明大约在什么位置?离文化宫和学校各约多少米?【解析】(1)(2)在文化宫(D)东100m,学校(B)西150m,即图中点E处;离文化宫(D)100m,离学校(B)150m.- 11 -。
新人教版七年级数学上册第一章有理数教材分析与教学建议

新人教版七年级数学上册第一章有理数教材分析与教学建议一、课标分析:(一)地位和作用:有理数是数与代数领域,数与式主题中的重要内容之一,是学生继续学习无理数实数的基础,也学生是继续研究代数式、方程、函数的基础。
本章的主要内容包括负数和有理数的相关概念,这是学生在小学学习的正有理数及其运算的基础上,把数的认识扩大到有理数范围,初步体会数系扩充中数集的扩大,发展了学生的抽象能力和推理能力。
那在这一章当中,数轴是数形结合思想的一个重要载体,是学生后续学习实数、不等式、平面直角坐标系等内容的基础,通过数轴的学习和使用可以进一步地发展学生的抽象能力和几何直观素养。
(二)课标要求:1、经历从实际问题中抽象出负数的过程,会用正数和负数表示具体情境中具有相反意义的量理解负数和有理数的意义,初步感悟数域扩充,发展抽象能力。
2、能用数轴上的点表示有理数,能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,初步体会数形结合的思想方法,培养几何直观素养。
3、通过探究获得比较有理数大小的方法,能比较有理数的大小,初步体会代数推理。
二、内容安排:本章的主要内容:一是引入负数,把数的范围扩大到有理数;二是学习数轴这一重要数学工具并借助数轴理解相反数和绝对值的意义,探究比较有理数大小的方法。
(一)具体内容:1.1正数与负数;1.2有理数及其大小比较和数学活动。
(二)教学课时安排:约需9课时,具体分配如下(仅供参考):1.1正数和负数 1课时1.2有理数及其大小比较(共8课时)1.1.2有理数的概念 1课时1.2.2 数轴 1课时1.2.3 相反数 1课时1.2.4 绝对值2课时1.2.5 有理数的大小比较 1课时数学活动 1课时小结 1课时(三)本章知识结构图:有理数 相反数正数和负数 绝对值 数轴 有理数的大小比较三、2024 版新教材与 2012 版教材内容对比分析:2024年4月,教育部印发《义务教育课程方案和课程标准(2024版)》,开启了义务教育课程改革的新征程。
人教版七年级数学上册教学设计:1.2.1有理数

七年级数学上册教学设计现漏数的现象.1、分类数的名称1,2,3,4……叫做正整数;-1,-2,-3,-4……叫做负整数。
0叫做零。
,,(即)……叫做正分数;,,(即)……叫做负分数;正整数、负整数和零统称为整数。
正分数和负分数统称为分数。
整数和分数统称有理数。
即(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?小组回答:教师强调:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。
2、有理数的分类(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类(3)下列有理数中:-7,10.1,,89,0,-0.67,.哪些是整数?哪些是分数?哪些是正数?哪些是负数?小组回答:3.数的集合小组总结:我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。
同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。
课堂巩固(1)把有理数 6.4,-9,,+10,,-0.021,-1,,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。
正整数集合,负整数集合正分数集合,负分数集合(2)把下列有理数:-3,+8,,+0.1,0,,-10,5,-0.7填入相应的集合:整数集合,分数集合正数集合,负数集合(3)判断题(1)整数又叫自然数。
()(2)正数和负数统称为有理数。
()(3)向东走-20米,就是向西走20米。
()(4)温度下降-2℃,是零上2℃。
()(5)非负数就是正数,非正数就是负数。
()。
七年级数学上册《有理数》教案、教学设计

(一)导入新课
1.教学内容:以生活中常见的温度为例,引入正负数的概念,引导学生思考温度中的正负是如何表示的,以及它们在实际生活中的意义。
2.教学过程:
(1)向学生展示一张天气预报的图片,上面显示了不同城市的气温,包括零上和零下的温度。
(2)提问:“同学们,你们在生活中遇到过零下的温度吗?它们是如何表示的?”
2.培养学生的合作精神,使他们学会在团队中分工合作、共同解决问题。
3.培养学生勇于面对困难和挑战,克服挫折,努力提高自己的数学素养。
4.培养学生严谨、细致的学习态度,让他们认识到细节在数学学习中的重要性。
5.引导学生将数学知识与实际生活相结合,体会数学在生活中的广泛应用,增强他们的实践能力。
二、学情分析
(3)让学生分小组讨论,思考正负数在温度表示中的意义。
(4)总结:正数表示零上的温度,负数表示零下的温度。通过这个例子,引出有理数的概念。
(二)讲授新知
1.教学内容:有理数的定义、分类、运算规则及其在实际问题中的应用。
2.教学过程:
(1)讲解有理数的定义,包括整数和分数,以及它们在数轴上的表示。
(2)介绍有理数的分类,包括正整数、负整数、正分数、负分数以及零。
2.重视学生运算能力的培养,特别是有理数的加减乘除运算,帮助他们熟练掌握运算规则。
3.考虑到学生之间存在个体差异,教学中应注意分层教学,使每个学生都能在原有基础上得到提高。
4.注重激发学生的学习兴趣,引导他们主动参与课堂讨论和实践活动,培养他们的数学思维能力。
5.针对学生对数学学习的恐惧和焦虑,教师要给予关爱和鼓励,帮助他们树立信心,克服困难。
(3)利用实际问题,引导学生运用有理数知识解决问题,培养他们的应用能力。
人教版七年级上册第一章有理数教学设计

人教版七年级上册第一章有理数教学设计一、教学目标1.了解有理数的概念和分类。
2.掌握有理数的加减法运算规律及其计算方法。
3.能够熟练地运用有理数进行实际问题的求解。
二、教学内容1.有理数的概念和分类。
2.有理数的加减法运算规律及其计算方法。
3.有理数的实际应用。
三、教学过程1. 导入(5分钟)•引导学生回忆第一章《有理数》相关的课程内容。
•引出本节课的主要内容和重要性。
2. 阐述有理数的概念和分类(20分钟)•通过图示的方式,引导学生理解有理数的含义。
•分类:正数、负数、零。
•运用现实生活中的例子进行解释。
3. 掌握有理数的加减法运算规律及其计算方法(50分钟)•引导学生发现和总结有理数加减法的运算规律。
•通过几何图形的形式进行有理数的加减法计算。
•利用实际问题引导学生进行实际应用。
•给学生提供大量的练习题进行巩固。
4. 有理数的实际应用(15分钟)•引导学生了解有理数在实际问题中的应用。
•通过实际问题的解答,让学生掌握运用有理数进行实际问题求解的方法。
5. 课堂小结与作业布置(10分钟)•小结讲解本节课的重点、难点以及应掌握的知识点。
•布置有关本节课内容的家庭作业。
四、教学方法本节课采用“讲授、练习、讨论、探究、实践”等多种教学方法进行授课。
五、教学重点、难点1. 教学重点•有理数的概念及分类。
•有理数的加减法运算规律及其计算方法。
•有理数的实际应用。
2. 教学难点•有理数概念的理解和分类。
•有理数加减法的规律及其计算方法。
六、教学评价教师在本节课中应当注重学生的自主学习,重视探究式学习的过程与结果。
在课堂上应当给予充分的思考和实践的机会,引导学生多角度、多维度地理解有理数。
在家庭作业的设计上,应当注重拓展学生对有理数实际应用的认识,加强对知识点的巩固。
七年级数学上册第一章有理数单元备课教案(新版)新人教版

第一章有理数一、课标要求1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系;(2)数轴能反映数的性质;(3)数轴能解释数的某些概念,如相反数、绝对值、近似数;(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,•一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义:绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a•的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.2.本单元在教材中的地位与作用:本章是数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。
千阳县第七中学七年级数学上册第一章有理数1.2有理数1.2.2数轴教学设计1新版新人教版

数轴教学目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点)4.感受在特定的条件下数与形是可以相互转化的.教学过程一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出一支温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A. B.C. D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出如图中所表示的数轴上的F 各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表示:0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A.D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】 在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312. 解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( )A .5B .±5C .7D .7或-3解析:与点A 相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.三、板书设计1.数轴(1)原点(2)正方向(3)单位长度2.数轴上的点与有理数间的关系(1)原点表示零(2)原点右边的点表示正数(3)原点左边的点表示负数教学反思数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.相交线◆回顾归纳1.两条直线互相垂直,•其中的一条直线叫做另一条直线的_______,•交点叫做________.2.过一点有且只有_______与已知直线_______.3.连结直线外一点与直线上各点的所有线段中,________最短.4.直线外一点到这条直线的________的长度,叫做点到直线的距离.5.如图1直线AB,CD与EF相交,构成_______个角,其中∠1与∠5是_______,∠3与∠5是______,∠4与∠5是_______.图1 图2 图3 图4◆课堂测控知识点一垂线垂线段1.如图2所示,CD⊥AB,则点D是_____,∠ADC=∠CDB=________.2.如图3所示,l1⊥l2,垂足为_____,∠1与∠2是一组_____的邻补角,∠1•与______是一对_______的对顶角.3.(经典题)如图4所示,l1⊥l2,图中与直线L1垂直的直线是()A.直线a B.直线L2 C.直线a,b D.直线a,b,c4.如图5所示,若∠ACB=90°,BC=8cm,•AC=•6cm,•则B•点到AC•边的距离为________.图5 图6 图7 图85.如图6所示,直线L外一点P到L的距离是________的长度.知识点二同位角内错角同旁内角6.如图7所示,图中的同位角有______对.7.如图8所示,下列说法不正确的是()A.∠1与∠B是同位角 B.∠1与∠4是内错角C.∠3与∠B是同旁内角 D.∠C与∠A不是同旁内角8.如图9所示,∠1与∠2是哪两条直线被另一条直线所截,构成的是什么角的关系?∠3与∠D呢?图9◆课后测控1.如图10所示,直线AB,CD交于点O,OE⊥AB且∠DOE=40°,则∠COE=_____.图10 图11 图122.如图11所示,AO⊥OB于点O,∠AOB:∠BOC=3:2,则∠AOC=_______.3.如图12所示,AB与CD交于点O,OE⊥CD,OF⊥AB,•∠BOD= 25 °,•则∠AOE=____,∠DOF=_____.4.(教材变式题)如图所示,图(1)中∠1<∠2,图(2)中∠1=∠2.试用刻度量一量比较两图中PC,PD的大小.5.如图所示,分别过P画AB的垂线.6.(原创题)如图,OA⊥OC,OB⊥OD,且∠AOD=3∠BOC,求∠BOC的度数.◆拓展创新7.(经典题)我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在河流M上架上一座桥梁,如图所示,桥建在何处才能使A,B两个村庄的之间修建路面最短?参考答案回顾归纳1.垂线,垂足 2.一条直线,垂直 3.垂线段4.垂线段 5.八,同位角,内错角,同旁内角课堂测控1.垂足,90° 2.O,相等,∠3,90°3.D(点拨:∵L1∥L2,a⊥L1,b⊥L1,c⊥L1)4.8cm(点拨:点到直线距离定义)5.PC的长(点拨:PE>PD>PC,PA>PB>PC)6.2(点拨:∠ADE与∠B,∠ADC与∠B)7.D(点拨:∠C与∠A是直线AB,BC被AC所截的同旁内角)8.AB,CD被AC所截,∠1与∠2是内错角关系;AC与CD被AD所截,∠3与∠D是同旁内角关系.课后测控1.140°(点拨:∠DOB=∠AOC=90°-40°=50°)2.150°(点拨:∠AOB=90°,3x=90°,x=30°,∠BOC=60°)3.65°,115°(点拨:∠AOC=∠BOD=25°,∠AOE=90°-∠AOC=90°-25°=65°)• 4.图(1)量得PC<PD,图(2)量得PC=PD.5.如图.6.∵∠BOD=90°,∠AOC=90°,∠BOD+∠AOC=180°∴∠AOD=180°-∠BOC,又∵∠AOD=3∠BOC∴3∠BOC=180°-∠BOC,∴∠BOC=45°解题技巧:本题扣住∠AOD=2×90°-∠BOC这一关键式子.7.如图所示.(1)将A向下平移河宽长度得A′;(2)连A′B交河岸于M;(3)过M作MN⊥a,交河岸b于N,MN即为架桥处;(4)连AN,则AN+MN+BM最短.3.1.2 等式的性质知能演练提升能力提升1.下列变形符合等式性质的是()A.如果2x-3=7,那么2x=7-3B.如果3x-2=x+1,那么3x-x=1-2C.如果-2x=5,那么x=-D.如果-x=1,那么x=-32.已知a-b-1=1,则2a-2b-3的值是()A.1B.2C.5D.73.如果式子5x-4的值与-互为倒数,那么x的值是()A.B.-C.D.-4.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的质量是一个香蕉的质量的()A.倍B.倍C.2倍D.3倍5.(1)如果-3(x+3)=6,那么x+3=,变形依据是.(2)如果3a+7b=4b-3,那么a+b=,变形依据是.6.若2a-b=5,a-2b=4,则a-b的值为.7.小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,解得方程的解x=-2,则原方程的解为.8.将等式5a-3b=4a-3b变形,过程如下:因为5a-3b=4a-3b,所以5a=4a(第一步),所以5=4(第二步).上述过程中,第一步的依据是,第二步得出错误的结论,其原因.9.已知等式(a-2)x2+ax+1=0是关于x的一元一次方程,求这个方程的解.★10.某旅客携带了30 kg的行李从南京禄口国际机场乘飞机去天津.按民航的规定,旅客最多可免费携带20 kg的行李,超重部分每千克按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,求他的飞机票价格是多少元.创新应用★11.能不能由(a+3)x=b-1得到等式x=?为什么?反之,能不能由x=得到(a+3)x=b-1?为什么?参考答案知能演练·提升能力提升1.D2.A等式a-b-1=1的两边都加1,得a-b=2,两边再同乘2,得2a-2b=4,所以2a-2b-3=4-3=1.3.D由题意可列出方程5x-4=-6,根据等式的性质,得x=-.4.B5.(1)-2等式的性质2(2)-1等式的性质1和等式的性质2(1)根据等式的性质2,等式两边都除以-3,得x+3=-2.(2)先根据等式的性质1,等式两边都减去4b,得3a+3b=-3.再根据等式的性质2,等式两边同除以3,得a+b=-1.6.3将两等式左右两边分别相加,得2a-b+a-2b=9,即3a-3b=9,等式两边同时除以3,得a-b=3.7.x=2把x=-2代入5a+x=13,得a=3.所以原方程5a-x=13为15-x=13,根据等式的性质,得x=2.8.等式的性质1等式的两边同除以了一个可能等于0的数a9.解因为(a-2)x2+ax+1=0是关于x的一元一次方程,所以a-2=0,即a=2.所以原方程变为2x+1=0,根据等式的性质,得x=-.10.解设他的飞机票价格是x元.由题意,得(30-20)×1.5%x=120,即0.15x=120.根据等式的性质,得x=800.答:他的飞机票价格是800元.创新应用11.解不能由(a+3)x=b-1得到x=,因为当a=-3时,a+3=0,而0不能为除数,即不符合等式的性质2的规定.由x=可以得到(a+3)x=b-1,因为x=是已知条件,已知条件中已经隐含着条件a+3≠0,等式的两边乘同一个数,等式仍成立.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
______________________________________________________________________________________________________________ -可编辑修改- 第一章 有理数
1.1正数和负数 教学目标: 1、了解正数与负数是从实际需要中产生的。 2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。 3、会用正、负数表示实际问题中具有相反意义的量。 重点:正、负数的概念 重点:负数的概念、正确区分两种不同意义的量。 教学过程: 一、创设情境,引入新课 问题1:为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它们叫做什么数? 学生:自然数 问题2:为了表示“没有”,我们又引入了一个什么数? 学生:0(0也是自然数) 问题3:当测量和计算的结果不是整数时,又引进了什么数? 学生:分数(小数) 问题4:某市某一天的最高温度是零上5℃,最低温度是零下5℃,要表示这两个温度,都记作5℃,我们就不能把它们区别清楚,那么应该要怎么表示呢? 要清楚的表示这两个量,我们以前的数就不够用了。为了表示这些量,我们需要引入一种新数,这就是本节课要学习的内容——正数和负数。 二、合作交流,探索新知 1、相反意义的量 ______________________________________________________________________________________________________________ -可编辑修改- 问题:在日常生活中,常会遇到这样一些量:①气温有零上7℃和零下7℃;②汽车向东行驶2.5千米和向西行驶1.5
千米;③收入200元和支出100元;④高于海平面8844m和低于海平面150m。 学生讨论:上面例子出现的各对量,虽然内容不同,但有一个共同点,这个共同点是什么? 教师归纳:都是具有相反意义的量。零上和零下、向东和向西、收入和支出、高于和低于都是具有相反意义的量。而“相反意义的量”应该包括两方面:一是意义相反;二是在具有相反意义的基础上要有量值。 2、正数和负数 教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。 结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。 为了用数表示具有相反意义的量,我们把其中一种意义的量。如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。根据需要,有时在正数前面也加上“+”(读作正)号。 注意:①数0既不是正数,也不是负数。0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。 三、巩固知识 1、课本P3 练习1,2,3,4 2、课本P4例 归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义。 四、总结 ①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么? 五、布置作业 课本P5习题1.1第1、2题。 ______________________________________________________________________________________________________________ -可编辑修改- 1.2.1有理数 教学目标: 1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。 2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。 重点:正确理解有理数的概念 重点:有理数的分类 教学过程: 一、知识回顾,导入新课 什么是正数,什么是负数? 问题1:学习了负数之后 ,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。) 问题2:观察黑板上的这么数,并给它们分类。 先让学生独立思考,接着讨论和交流分类的情况,得出数的类型有5类:正整数、0、负整数、正分数、负分数。 二、讲授新课 1、有理数的定义 引导学生对前面的数进行概括,得出:正整数、零、负整数统称为整数;正分数和负分数统称分数。整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。 2、有理数的分类 让学生在总结出5类数基础上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。 (1)按定义分类: (2)按性质分类:
有理数 整数 正整数 0 负整数 正分数 有理数 正有理数 正整数 正分数 0 ______________________________________________________________________________________________________________ -可编辑修改- 三、巩固知识 练习1:课本P8 练习 练习2:把下列各数填入它所属的集合内:
-12 ,-7,+2.8,-90,-3.5,913 ,0,4 负数集合:{ ,…} 整数集合:{ ,…} 负整数集合:{ ,…} 分数集合:{ ,…} 四、总结 通过本节课,你收获了什么? 可以归纳为以下几点: 1、本节主要学习有理数的概念,会将有理数按照一定的标准进行分类; 2、主要用到的思想方法是分类思想; 3、注意的问题:分类时要做到不重不漏,只要标准统一即可。 五、布置作业 课本P14习题1.2第1题。
1.2.2数轴 ______________________________________________________________________________________________________________
-可编辑修改- 教学目标:
1、掌握数轴的概念,理解数轴上的点和有理数的对应关系; 2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数; 3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。 重点:正确理解数轴的概念和用数轴上的点表示有理数 重点:数轴的概念和用数轴上的点表示有理数 教学过程: 一、创设情境,引入新课 教师通过实例、课件演示得到温度计读数. 问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?(教师在黑板上画出3幅图,三个温度分别为零上、零度和零下) 问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(学生分成小组讨论,交流合作,动手操作) 二、讲授新课 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗? 让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件? 从而得出数轴的三要素:原点、正方向、单位长度 问题3:1、你能举出一些在现实生活中用直线表示数的实际例子吗? 2、画一条数轴。 3、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗? 4、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律? 5、每个数到原点的距离是多少?由此你会发现了什么规律? (小组讨论,交流归纳) 归纳出一般结论,即课本P9的归纳。 ______________________________________________________________________________________________________________ -可编辑修改- 三、巩固知识
课本P10 练习1、2题 四、总结 请学生作出总结:什么是数轴?数轴的三要素是什么?如何画数轴?如何在数轴上表示有理数? 五、布置作业 课本P14习题1.2第2题。
1.2.3相反数 教学目标: 1、 掌握相反数的概念,进一步理解数轴上的点与数的对应关系; 2、 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力; 3、 体验数形结合的思想。 重点:求已知数的相反数 重点:根据相反数的意义化简符号 教学过程: 一、创设情境,引入新课 活动:要求两个学生背靠背站在同一位置,然后一个向右走5步,一个向左走5步 问题1:如果向右为正,向右走5步,向左走5步各记作什么? 学生回答:向右走5步记作+5步;向左走5步记作-5步。 问题2:在数轴上,画出表示+5,-5的点,并观察表示它们的点具有怎样的特征? 师生共同总结出:在数轴上,+5和-5所对应的点位于原点的两边,并且与原点的距离相等。 问题3:举出几组具有这样特征的两个数。如:2和-2,1.8与-1.8 归纳结论:课本P10归纳。