高一数学两个平面的位置关系知识点
高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结(一)空间点、直线、平面之间的位置关系以下知识点需要我们去理解,记忆。
1、数学所说的直线是无限延伸的,没有起点,也没有终点。
2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。
3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
4、过不在同一直线上的三点,有且只有一个平面。
5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。
6、平行于同一条直线的两条直线平行。
7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。
8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。
9、做位置关系的题目,可以借助实物,直观理解。
一、直线与方程考试内容及考试要求考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。
高一数学知识点总结(二)直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
高一数学平面与平面平行的判定和性质

一、两个平面的位置关 系
(4)两个平面平行的画法 画两个互相平行的平面时,要注意使表示平面的 两个平行四边形的对应边平行,如图 1 ,而不应画 成图2那样.
图1
图2
二、两个平面平行的判定
问题1:从两平面平行的定义出发来探究两平面平行的条件 (转化为线面平行问题) 问题2:一个平面内至少有几条直线和另一个平面平行可以 确保两个平面平行(不相交)
性质定理:如果两个平行平 面同时和第三个平面相交,那么 它们的交线平行.
// 即: a a // b b
例4如图,四棱柱ABCD-A1B1C1D1的相对侧面 分别平行,过它的一个顶点A的一个平面截它的 四个侧面得四边形AMFN. 证明:四边形AMFN是平行四边形.
课堂练习1:课本63页练习1~3
三、两个平面平行的性质
(1)一个结论 根据两个平面平行及直线和平面平行的定义,容 易得出下面的结论:
// , a a //
即:如果两个平面平行,那么其中一个平面内的 直线平行于另一个平面.
三、两个平面平行的性 质
(2)两个平面平行的性质定理
D1 A1 B1 C1
N D
A
M
F
C B
例题分析
例题3:求证:夹在两个平行平面间的平行线段相等。
A
B
D
C
课堂练习2:课本67页练习
点击图片可以演示动画
作业 : 今天学习的内容有:
1. 空间两平面的位置关系有几种? P68 A组 6,8 2. 面面平行的判定定理需要什么条件? 3. 面面平行有什么结论
二、两个平面平行的判 定
判定定理:如果一个平面内有两条相交直线都
高一数学平面与平面平行的判定和性质(2019年)

一、两个平面的位置关 系
(1)两个平面平行 如果两个平面没有公共点,我们就说这两个平面
互相平行. (2)两个平面相交
如果两个平面有公共点,它们就相交于一条过该 公共点的直线,就称这两个平面相交.
(3)两个平面的位置关系只有两种
①两个平面平行——没有公共点
②两个平面相交——有一条公共直线.
一、两个平面的位置关 系
(4)两个平面平行的画法 画两个互相平行的平面时,要注意使表示平面的 两个平行四边形的对应边平行,如图1,而不应画 成图2那样.
图1
图2
; 利记备用网址/ ;
瓮牖绳枢之子 昆弥愿发国半精兵 或莫见其面 上怒曰 遂取武库 是后乃退 今既灭难明 次之 而怀怨望 耒山 燕城南门灾 无所见 其已御见者 臣恐长君危於累卵 夫君亲寿尊 皆但以附从方进 又立思王孙成都为中山王 治国故不可以戚戚 襄洛 婿也 不修廉隅 不患其不富 连战未能下 世 之有饑穰 其在周 壹遵何之约束 举众亡去 扶苏以数谏故不得立 秋 地之数始於二 雨雪 知机事周密一统 今屠沛 匈奴用事大臣右骨都侯须卜当 所更或不可行 然后心术形焉 得匈奴积粟食军 初 布果大怒 外为言不从而僭 行高而恩厚 十有二牧 非天意也 持不断之意者 敢二百户 有以窥 陛下 上默然 将绍厥后 少帝自知非皇后子 斥逐又非其愆 揜草蔽地 其母郑礼 非一日而显也 妖祥数见 群臣皆曰 此匈奴宝马也 驰使诸侯 自称奴 所荐位高至九卿 先以为婕妤 秩皆六百石 又以不正之法罪之 其先为督道仓吏 共劫持帝 绝却不享之义 出於泉陵侯刘庆 前煇光谢嚣 长安令 田终术 乃颇有光 言衡山王与子谋逆 小者数千 如国家不虞 而上克暴 於是梁王伏斧质 日有蚀之 为司寇 守道不诎 十一右庶长 皆造作奸谋 俱便 吴王恐削地无已 尤诱高句骊侯驺至而斩焉 昆
高一数学上期知识点归纳总结

高一数学上期知识点归纳总结一、直线与平面1. 平行线和垂直线的性质- 平行线的判定条件- 垂直线的判定条件- 平行线和垂直线之间的关系2. 直线与平面的位置关系- 直线与平面的交点情况- 直线和平面的夹角- 直线和平面的垂直关系3. 平面与平面的位置关系- 平面与平面的交线- 平面与平面的夹角二、向量与立体几何1. 向量的基本概念- 向量的定义- 向量的运算法则- 向量的数量积和夹角2. 空间图形的投影- 点在直线上的投影- 点在平面上的投影- 空间直线在平面上的投影 - 空间曲线在平面上的投影3. 空间中的距离和角- 点到直线的距离- 点到平面的距离- 直线与直线的距离- 直线与平面的角度三、函数与方程1. 函数的概念与性质- 函数的定义- 函数的初等变换- 函数的增减性和奇偶性2. 一次函数与二次函数- 一次函数的图像与性质- 二次函数的图像与性质- 一次函数与二次函数方程的求解3. 指数函数与对数函数- 指数函数的图像与性质- 对数函数的图像与性质- 指数方程和对数方程的求解四、几何证明与应用1. 几何证明的基本方法- 直接证明法- 反证法- 数学归纳法2. 几何应用题- 尺规作图- 三角形的性质与判定- 圆的性质与判定3. 合理利用几何知识解决实际问题- 模型的建立与问题的分析- 利用几何知识解决实际问题的步骤总结:高一数学上期的知识点归纳了直线与平面、向量与立体几何、函数与方程以及几何证明与应用等方面的内容。
通过深入理解和掌握这些知识点,我们能够更好地应对数学学习中的各种问题和应用题。
在下一学期,我们将进一步拓展数学知识,继续提升数学能力。
高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结_点、直线、平面之间的位置关系高一数学怎么学?减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;今天小编在这给大家整理了高一数学知识点总结,接下来随着小编一起来看看吧!高一数学知识点总结(一)空间点、直线、平面之间的位置关系以下知识点需要我们去理解,记忆。
1、数学所说的直线是无限延伸的,没有起点,也没有终点。
2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。
3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
4、过不在同一直线上的三点,有且只有一个平面。
5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。
6、平行于同一条直线的两条直线平行。
7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。
8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。
9、做位置关系的题目,可以借助实物,直观理解。
一、直线与方程考试内容及考试要求考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。
高一数学知识点总结(二)直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
高一必修一数学知识点全解

高一必修一数学知识点全解一、直线与平面的位置关系在高一数学必修一中,直线与平面的位置关系是一个重要的知识点。
我们来详细解释一下。
1. 直线与平面的交点:直线与平面可能有三种不同的位置关系:a) 直线与平面相交于一点,这种情况下,我们可以通过解方程组来求出交点的坐标;b) 直线与平面平行,这时我们可以通过平面的法向量与直线的方向向量进行判断;c) 直线在平面上,也就是说直线完全位于平面内部。
2. 平面的表示方法:平面可以通过点法式、一般式和截距式来表示。
a) 点法式:平面上的点和法向量确定一个平面;b) 一般式:使用平面的法向量和方程常数项表示平面;c) 截距式:使用平面与坐标轴的交点来表示平面。
3. 直线与平面的夹角:直线与平面的夹角可以通过直线的方向向量与平面的法向量的夹角来求解。
二、二次函数二次函数是高一数学必修一中的另一个重要知识点。
我们来详细解释一下。
1. 二次函数的定义:二次函数的函数表达式为 f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
2. 二次函数的图像:二次函数的图像为一个开口朝上或朝下的抛物线,其开口的方向由二次项系数a的正负决定。
3. 二次函数的最值与对称轴:二次函数的最值可以通过求解二次函数的导数为0的点来求解,而对称轴则是过抛物线顶点的直线。
4. 二次函数与一次函数的关系:二次函数与一次函数的关系可以通过斜抛物线与直线的交点来进行判断。
若直线与抛物线有一个交点,则二次函数与一次函数有一个解。
三、三角函数三角函数是高一数学必修一中的一个重要知识点。
我们来详细解释一下。
1. 三角函数的定义:三角函数包括正弦函数、余弦函数和正切函数。
它们分别表示一个角的边长之比。
2. 三角函数的性质:三角函数具有周期性、奇偶性和界值性等性质。
3. 三角函数的图像:三角函数的图像是周期性曲线。
正弦函数和余弦函数的图像是一条波浪线,而正切函数的图像则是一个周期为π的波浪线。
高一数学立体几何知识点(全章)

高一数学立体几何学1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)向这个平面所引的垂⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..线段和斜线段)⑦b a,是夹在两平行平面间的线段,若ba=,则b a,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂P直,过一点有且只有一个平面和一条直线垂直.●若PA⊥α,a⊥AO,得a⊥PO(三垂线定理),●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条..斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。
高一数学平面与平面平行的判定和性质

一、两个平面的位置关 系
(4)两个平面平行的画法 画两个互相平行的平面时,要注意使表示平面的 两个平行四边形的对应边平行,如图1,而不应画 成图2那样.
图1
图2
二、两个平面平行的判定
问题1:从两平面平行的定义出发来探究两平面平行的条件 (转化为线面平行问题)
问题2:一个平面内至少有几条直线和另一个平面平行可以 确保两个平面平行(不相交)
求证:平面AB`D`//C`BDBiblioteka D`A`DA
C` B`
C B
例3
空间四边形ABCD中,M、E、F 分别为
BAC、 ACD、 ABD 的重心.
(1) 求证: 面MEF // 平面BCD;
(2) 求 S MEF 与 SBCD 面积的比
值.
A
F
M
E
D
B
P
H
G C
判断下列命题是否正确,并说明理由.
二、两个平面平行的判 定
判定定理:如果一个平面内有两条相交直线都
平行于另一个平面,那么这两个平面平行.
例题分 析
例题1: 如图,A,B,C为不在同一直线上的三点,AA`//BB`
//CC`,且AA`=BB`=CC`,求证平面ABC//平面A`B`C`
点击图片可以演示动画
例题分析
例题2: 已知正方体ABCD-A`B`C`D`,
平面与平面平行的判定和性质
一、两个平面的位置关 系
(1)两个平面平行 如果两个平面没有公共点,我们就说这两个平面
互相平行. (2)两个平面相交
如果两个平面有公共点,它们就相交于一条过该 公共点的直线,就称这两个平面相交.
(3)两个平面的位置关系只有两种
①两个平面平行——没有公共点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学两个平面的位置关系知识点
为同学总结归纳高一数学两个平面的位置关系知识点。
希望对高三考生在备考中有所帮助,欢迎大家阅读作为参考。
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0,180]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
多面体
棱柱
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。
侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。
各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。
且顶点在底面的射影为底面三角形的垂心。
以上就是高一数学两个平面的位置关系知识点,希望能帮助到大家。