北京市海淀区2010届高三上学期期末考试(数学理)

合集下载

北京市海淀区高三数学上学期期末考试试题 理 北师大版

北京市海淀区高三数学上学期期末考试试题 理 北师大版

北京市海淀区2013届高三第一学期期末考试数学(理)试题2013.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i --2.已知直线2,:2x t l y t =+⎧⎨=--⎩(t 为参数)与圆2cos 1,:2sin x C y θθ=+⎧⎨=⎩(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是A.π,(1,0)4 B.π,(1,0)4- C.3π,(1,0)4 D.3π,(1,0)4- 3.向量(3,4),(,2)x ==a b , 若||⋅=a b a ,则实数x 的值为 A.1- B.12-C.13- D.1 4.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A.4,30n S ==B.5,30n S ==C.4,45n S ==D.5,45n S ==5.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是 A.BEC ∆∽DEA ∆ B.ACE ACP ∠=∠ C.2DE OE EP =⋅ D.2PC PA AB =⋅6.数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为A. 144B.120C. 108D.72B8. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是A.12(,)33B.1(,1)2C. 2(,1)3D.111(,)(,1)322二、填空题:本大题共6小题,每小题5分,共30分.9. 以y x =±为渐近线且经过点(2,0)的双曲线方程为______.10.数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____.11. 在261(3)x x+的展开式中,常数项为______.(用数字作答) 12. 三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.13. 点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为___.k =14. 已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<,记点P 的轨迹的长度为()f r ,则1()2f =______________;关于r 的方程()f r k =的解的个数可以为________.(填上所有可能的值).三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数21()cos cos 2222x x x f x +-,ABC ∆三个内角,,A B C 的对边分别为,,a b c .(I )求()f x 的单调递增区间;(Ⅱ)若()1,f B C +=1a b ==,求角C 的大小.DABC左视图16.(本小题满分13分)汽车租赁公司为了调查A,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:(I )从出租天数为3天的汽车(仅限A,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,12,AB AC AA ===E 是BC 中点.(I )求证:1//A B 平面1AEC ;(II )若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.18. (本小题满分13分)EC 1B 1A 1CBA已知函数e ().1axf x x =- (I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.19. (本小题满分14分)已知()2,2E 是抛物线2:2C y px =上一点,经过点(2,0)的直线l 与抛物线C 交于,A B 两点(不同于点E ),直线,EA EB 分别交直线2x =-于点,M N . (Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O 为原点,求证:MON ∠为定值.20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x =在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”. 我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准 2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分) 三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为21()cos cos 2222x x x f x +-cos 122cos 121x x x x =+-=++ πsin()6x =+ ………………6分又sin y x =的单调递增区间为ππ2π,2π 22k k -+(),()Z k ∈ 所以令πππ2π2π262k x k -<+<+ 解得2ππ2π2π 33k x k -<<+ 所以函数()f x 的单调增区间为2ππ(2π,2π) 33k k -+,()Z k ∈ ………………8分 (Ⅱ) 因为()1,f B C +=所以πsin()16B C ++=,又(0,π)B C +∈,ππ7π(,)666B C ++∈所以πππ,623B C B C ++=+=,所以2π3A =………………10分由正弦定理sin sin B Ab a=把1a b ==代入,得到1s i n 2B =………………12分又,b a <B A <,所以π6B =,所以π6C =………………13分16.(本小题满分13分) 解:(I )这辆汽车是A 型车的概率约为3A 3A,B =出租天数为天的型车辆数出租天数为天的型车辆数总和300.63020=+这辆汽车是A 型车的概率为0.6 (3)分(II )设“事件i A 表示一辆A型车在一周内出租天数恰好为i 天”,“事件j B 表示一辆B型车在一周内出租天数恰好为j 天”,其中,1,2,3,...,7i j = 则该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为132231132231()()()()P A B A B A B P A B P A B P A B ++=++ ………………5分132231()()()()()()P A P B P A P B P A P B =++ ………………7分520102030141001001001001001009125=⋅+⋅+⋅=该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为9125………………9分设Y 为B 型车出租的天数,则Y 的分布列为()10.0520.1030.3040.3550.1560.0370.02=3.62E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯()10.1420.2030.2040.1650.1560.1070.05E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=3.48………………12分一辆A 类型的出租车一个星期出租天数的平均值为3.62天,B 类车型一个星期出租天数的平均值为3.48天. 从出租天数的数据来看,A 型车出租天数的方差小于B 型车出租天数的方差,综合分析,选择A 类型的出租车更加合理 . ………………13分17.(本小题满分14分)(I) 连接A C 1交AC 1于点O ,连接EO因为1ACC A 1为正方形,所以O 为A C 1中点, 又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B………………2分又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC………………4分(Ⅱ)以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系 所以111(0,0,0),(0,0,2),(2,0,0),(2,0,2),(0,2,0),(0,2,2),(1,1,0),A A B B C C E 设(0,0,)(02)M m m ≤≤,所以11(2,0,2),(1,1,2)B M m C E =--=--,因为11B M C E ⊥,所以 110B M C E ⋅=,解得1m =,所以1AM = ………………8分(Ⅲ)因为1(1,1,0),(0,2,2)AE AC ==, 设平面1AEC 的法向量为(,,)n x y z =,则有10AE n AC n ⎧⋅=⎪⎨⋅=⎪⎩,得00x y y z +=⎧⎨+=⎩,令1,y =-则1,1x z ==,所以可以取(1,1,1)n =-, ………………10分因为AC ⊥平面1A B B A 1,取平面1ABB A 1的法向量为(0,2,0)AC = ………………11分所以c o||A CAC A C ⋅<>………………13分平面1AEC 与平面1A B B A 1所成锐二面角的余弦值为………………14分 18. (本小题满分13分)解:当1a =时,e ()1axf x x =-,2e (2)'()(1)x x f x x -=- ………………2分 又(0)1f =-,'(0)2f =-, 所以()f x 在(0,(0))f 处的切线方程为21y x =-- ………………4分(II )2e [(1)]'()(1)ax ax a f x x -+=-当0a =时,21'()0(1)f x x -=<-又函数的定义域为{|1}x x ≠ 所以()f x 的单调递减区间为(,1-∞+∞ ………………6分当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a+= ………………7分当0a >时,11a x a+=>, 所以()f x ',()f x 随x 的变化情况如下表所以()f x 的单调递减区间为(,1)-∞,1(1,)a a+, 单调递增区间为1(,)a a++∞ ………………10分 当0a <时,11a x a+=< 所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a+-∞, 单调递减区间为1(,1)a a+,(1,)+∞ ………………13分 19. (本小题满分14分)解:(Ⅰ)将()2,2E 代入22y px =,得1p =所以抛物线方程为22y x=,焦点坐标为1(,0)2………………3分(Ⅱ)设211(,)2y A y ,222(,)2y B y ,(,),(,)M M N N M x y N x y ,法一:因为直线l 不经过点E ,所以直线l 一定有斜率 设直线l 方程为(2)y k x =-与抛物线方程联立得到 2(2)2y k x y x=-⎧⎨=⎩,消去x ,得:2240ky y k --=则由韦达定理得:121224,y y y y k=-+=………………6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+………………9分 同理可得:22242N y y y -=+………………10分 又 4(2,),(2,)m mOM y ON y -=-=-, 所以121224244422M N y y OM ON y y y y --⋅=+=+⋅++ 121212124[2()4]4[2()4]y y y y y y y y -++=++++44(44)444(44)k k--+=+-++0= ………………13分 所以OM ON ⊥,即MON ∠为定值π2………………14分 法二:设直线l 方程为2x my =+与抛物线方程联立得到 222x my y x=+⎧⎨=⎩,消去x ,得:2240y my --=则由韦达定理得:12124,2y y y y m=-+=………………6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+………………9分 同理可得:22242N y y y -=+………………10分 又 4(2,),(2,)m mOM y ON y -=-=-, 12124(2)(2)44(2)(2)M N y y OM ON y y y y --⋅=+=+++121212124[2()4]4[2()4]y y y y y y y y -++=++++4(424)44(424)m m --+=+-++=………………12分所以OM ON ⊥,即MON ∠为定值π2………………13分20. (本小题满分14分)解:(I )因为1(),f x ∈Ω且2()f x ∉Ω, 即2()()2f x g x x hx h x==--在(0,)+∞是增函数,所以0h ≤ ………………1分 而2()()2f x h h x x h x x ==--在(0,)+∞不是增函数,而2'()1hh x x =+ 当()h x 是增函数时,有0h ≥,所以当()h x 不是增函数时,0h < 综上,得h <………………4分(Ⅱ) 因为1()f x ∈Ω,且0a b c a b c <<<<++ 所以()()4=f a f a b c a a b c a b c++<++++, 所以4()af a d a b c=<++,同理可证4()b f b d a b c =<++,4()cf c t a b c=<++三式相加得4()()()()24,a b c f a f b f c d t a b c++++=+<=++所以2d t +-<………………6分 因为,d d a b <所以()0,b a d ab-< 而0a b <<, 所以0d < 所以(d d +-………………8分(Ⅲ) 因为集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取, 所以()f x ∀∈ψ,存在常数k ,使得 ()f x k < 对(0,)x ∈+∞成立我们先证明()0f x ≤对(0,)x ∈+∞成立 假设0(0,),x ∃∈+∞使得0()0f x >, 记020()0f x m x => 因为()f x 是二阶比增函数,即2()f x x 是增函数. 所以当0x x >时,022()()f x f x m x x >=,所以2()f x mx > 所以一定可以找到一个10x x >,使得211()f x mx k >> 这与()f x k< 对(0,)x ∈+∞成立矛盾 ………………11分()0f x ≤对(0,)x ∈+∞成立所以()f x ∀∈ψ,()0f x ≤对(0,)x ∈+∞成立 下面我们证明()0f x =在(0,)+∞上无解 假设存在20x >,使得2()0f x =,则因为()f x 是二阶增函数,即2()f x x 是增函数 一定存在320x x >>,322232()()0f x f x x x >=,这与上面证明的结果矛盾 所以()0f x =在(0,)+∞上无解综上,我们得到()f x ∀∈ψ,()0f x <对(0,)x ∈+∞成立所以存在常数0M ≥,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立又令1()(0)f x x x=->,则()0f x <对(0,)x ∈+∞成立,又有23()1f x x x-=在(0,)+∞上是增函数 ,所以()f x ∈ψ, 而任取常数0k <,总可以找到一个00x >,使得0x x >时,有()f x k >所以M的最小值 为0 ………………13分。

2010届海淀区高三年级数学(理科)二模试题及答案

2010届海淀区高三年级数学(理科)二模试题及答案

海淀区高三年级第二学期期末练习数 学 (理科) 2010.5一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{}0A x x =≥,{0,1,2}B =,则A .AB ⊂≠ B .B A ⊂≠C .A B B =D .A B =∅答案:B2.函数()sin(2)3f x x π=+图象的对称轴方程可以为A .12x π= B .512x π=C .3x π= D .6x π=答案:A3.如图,C D 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ∠=︒,则D BE ∠的大小为 A. 20︒ B. 40︒ C. 60︒ D. 70︒答案:D4.函数()2ln f x x x =--在定义域内零点的个数为A .0B .1C .2D .3答案:C5.已知关于x ,y 的不等式组02,20,20x x y kx y ≤≤⎧⎪+-≥⎨⎪-+≥⎩所表示的平面区域的面积为4,则k 的值为A .1B .3-C .1或3-D .0答案:A6.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能使n α⊥成立的是A .αβ⊥,n β⊂B .//αβ,n β⊥C .αβ⊥,//n βD .//m α,n m ⊥答案:B7.按照如图的程序框图执行,若输出结果为15,则M 处条件为A .16k ≥B .8k <C .16k <D .8k ≥答案:A8.已知动圆C 经过点F (0,1),并且与直线1y =-相切,若直线34200x y -+=与圆C 有公共点,则圆C的面积A .有最大值为πB .有最小值为π答案:D二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.在极坐标系中,若点0(,)3A πρ(00ρ≠)是曲线2cos ρθ=上的一点,则0ρ= .答案:110.某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图).1s ,2s 分别表示甲、乙两班各自5名学生学分的标准差,则1s 2s .(填“>”、“<”或“=”) 答案:<11.已知向量(1,0)=a ,(,1)x =b ,若2⋅=a b ,则x = ;+=a b . 答案212. 已知数列{}n a 满足11a =,12n n n a a +=(n ∈N *),则910a a +的值为 . 答案:4813.在A B C ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,若sin a c A =,则a b c+的最大值为 .答案:14.给定集合*{1,2,3,...,}()n A n n =∈N ,映射:n n f A A →满足:①当,,n i j A i j ∈≠时,()()f i f j ≠;②任取,n m A ∈若2m ≥,则有m {(1),(2),..,()}f f f m ∈,则称映射:n n f A A →是一个“优映射”.例如:用表1表示的映射33:f A A →是一个优映射. 表1 表2(1)已知表2表示的映射44:f A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);(2)若映射1010:f A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是_____. 答案:(1)由定义,{})2(),1(2f f ∈,而3)2(=f ,则只能2)1(=f .由于{})3(),2(),1(3f f f ∈,所以1)3(=f 或4)3(=f ,这样,)4(f 取剩下的值。

2006年北京市海淀区高三上学期期末考试理科数学试卷

2006年北京市海淀区高三上学期期末考试理科数学试卷

2006年北京市海淀区高三上学期期末考试理科数学试卷一. 选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,选出符合题目要求的一项)(2)过点A(4,a)和点B(5,b)的直线与直线y=x+m平行,则|AB|的值为()(5)已知m、n是不重合的直线,α、β是不重合的平面,给出下列四个命题其中正确命题的个数为()A. 1个B. 2个C. 3个D. 4个得图象关于y轴对称,则a的最小值为()(7)一个三棱锥S—ABC的三条侧棱SA、SB、SC两两互相垂直,且表面积为()其中正确命题个数为()A. 1个B. 2个C. 3个D. 4个二. 填空题(本大题共6小题,每小题5分,共30分。

把答案填在题中横线上)是___________。

(11)边长为1的等边三角形ABC中,沿BC边高线AD折起,使得折后二面角B—AD—C为60°,则点A到BC的距离为___________,点D到平面ABC的距离为___________。

(12)下图中的多边形均为正多边形。

图①中F1、F2为椭圆的焦点,M、N为所在边中点,则该椭圆的离心率e1的值为___________,图②中F1、F2为双曲线的焦点,M、N、P、Q分别为所在边中点,则该双曲线的离心率e2的值为___________。

(13)一个正方体内接于一个球,过球心作截面,则下图中截面的可能图形是___________,其中过正方体对角面的截面图形为___________。

(把正确的图形的序号全填在横线上)三. 解答题。

(15)(本小题共13分)(I)角C的大小;(II)a+b的值。

(16)(本小题共14分)D为棱B1B的中点。

AC1(17)(本小题共13分)(I)若圆C的切线在x轴和y轴上截距相等,求此切线的方程;(II)从圆外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取最小值的点P的坐标。

北京市海淀区2010届高三上学期期末物理答案完全解析

北京市海淀区2010届高三上学期期末物理答案完全解析

海淀区高三年级2009~2010学年第一学期期末练习物理参考答案及评分标准2010.1一、本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的.全部选对的得3分,选对但不全的得2分,有选错或不答的得0分. 1. D 【解析】库仑定律122q q F kr=,另外,两球接触后平分电荷.2. C 【解析】线圈产生的磁场类比条形磁铁,上端为S 极,下端为N 极.3. ABD 【解析】降压变压器副线圈两端有效值为220V ,通过0R 的电流的有效值为20A .由于输电线有电阻,故升压变压器T 1的输出电压大于降压变压器T 2的输入电压.4. BD 【解析】Q C U =,要使Q 增大,可增大C 或U .5. AD 【解析】注意对电动机不能应用欧姆定律.电动机消耗的总功率为UI ,电动机消耗的热功率为2I R ,电源的输出功率为U I ,电源的效率为211I r Ir E IE-=-.6. BC 【解析】开关S 断开或闭合时,电路中电流会发生突变,另外,由于自感现象的存在,电流会逐渐变化,最终达到稳定.7. D 【解析】磁场对线框的作用力F 方向始终向左,选D.8. BD 【解析】在线段M N 上只有一点的磁感应强度为零,该点为O 点,O 点左侧磁感应强度方向向下,右侧磁感应强度方向向上.9. D 【解析】无法判断场强方向,A 错;电荷沿x 轴从0移到x 1的过程中,可能受电场力的作用,但电场力不做功,B 错;正电荷沿x 轴从x 2移到x 3的过程中,电场力做负功,电势能增大,C 错;D 对. 10. AC 【解析】设电子刚好能从极板右端飞出时,板间电压为U ,则l v t =,2122deU t dm=⋅⋅,得到222m d v U el=,可见A 对B 错.当2222m m d v U el=时,有12m U U =,则30t ω=︒,有电子从极板右端射出的时间与无电子从极板右端射出的时间之比为30190302︒=︒-︒,C 对D错.二、本题共2小题,共14分.把答案填在题中的横线上. 11.(共7分)【解析】(1)D (2分) 小灯泡电阻3.8V 12.7A 0.3AU R I ===,故选用1⨯档位。

北京市海淀区2017届高三上学期期末考试数学(理)试题(全Word版,含答案)

北京市海淀区2017届高三上学期期末考试数学(理)试题(全Word版,含答案)

海淀区高三年级第一学期期末练习数学(理科)2017.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项. 1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1B .2C .3D .53.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为 A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A .1522y x =-+B .152y x =- C .322y x =- D .23y x =-+6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14 B .16 C .18 D .20 8.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1]B .13[,]22C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.ABCD1D 1A 1B 1C E F开始是否是否a a b=-b b a=-a输出结束,a b输入a b≠a b>10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是__. 14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B =,且∆ABC 面积为32. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一....周期..,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期85%92%95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠=,224AB CD BC ===,O 是边AB 的中点.将三俯视图2左视图211主视图角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠=,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-=,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”.(Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ;(Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =,求所有满足该条件的{}n a .海淀区AOBCD1图ODCB2图1A高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);3(1)3y x =+和3(1)3y x =-+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==1332222a a ⨯⨯=,解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,7b b >∴=. (不写b>0不扣分) (Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:1321sin sin 2147a A B b ==⨯=, 又120B =,所以A 是锐角(或:因为12,a c =<=) 所以217557cos 1sin 19614A A =-==, 所以sin 213tan .cos 557A A A === 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X ==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X ==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分.情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的.例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分)解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1ADC 平面1A OB m =所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则1(3,1,0),(0,2,0),(0,0,2)A B D -,所以1(3,1,2)A D =-.设(3,,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(3,1,2)(3,,0)30m m -⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,330,x y z x y ⎧-++=⎪⎨-+=⎪⎩令1y =,则3,1x z ==, 所以(3,1,1)=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=1115cos ,5A O n A O n A O n⋅<>==⋅.法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠=,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O =,ODCBG1A zxy M所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D =,所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠=,所以160OAG ∠=, 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),(1,3,0),(0,0,2)O A B D -(, 所以11(2,0,2),(3,3,0,)A D A B =-=- 设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,330,x z x y -+=⎧⎪⎨-+=⎪⎩令1x =,则3,1y z ==,所以(1,3,1)n =,设直线1A O 与平面1A BD 所成角为θ,则 sin θ=1115cos ,5AO n AO n AO n ⋅<>==⋅.18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=, 解得212,23a a ==.所以2228,22c a b c =-==, 所以椭圆G 的离心率是6.3c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,O DCBG1A zxy由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列, 所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=-,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤=,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥=,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥=. 又因为1110b a a =-=, 所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-=,所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-,--所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+(1,2,3,)n =的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+, 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-=,所以1121()ki k i a a b b b =-≤+++∑,(1,2,3,,)k n =即112()k k S ka b b b ≤++++,(1,2,3,,)k n =由1(1,2,3,)n n b b n +≥=可得(1,2,3,,)k n b b k n ≤=又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k =, 所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++-,--即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n n S S S a b +-+++≤+等号成立的条件是1(1,2,3,,)i i n a a b b i n -===,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)精品文档考试教学资料施工组织设计方案。

北京市海淀区2010届高三一模数学(文)试题(WORD精校版)

北京市海淀区2010届高三一模数学(文)试题(WORD精校版)

海淀区高三年级第二学期期中练习数 学 (文科) 2010.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 在复平面内,复数)1(i i -(i 是虚数单位)对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.30sin 75cos 30cos 75sin -的值为( ) A .1 B .21 C .22 D .23 3. 已知向量b a ,,则“a //b ”是“a +b =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 4. 已知等差数列}{n a 的前n 项和为n S ,且满足12323=-S S ,则数列}{n a 的公差是( ) A .21B .1C .2D .3 5.在同一坐标系中画出函数 a x y a y x y x a +===,,log 的图象, 可能正确的是 ( )6.一个体积为左视图的面积为( )A.36 B .8 C .38 D .12 7.给出下列四个命题:①若集合B A ,满足,A B A = 则B A ⊆;②给定命题q p ,, 若“q p ∨”为真,则“q p ∧”为真;B ACD③设,,,R m b a ∈ 若,b a <则22bm am <;④若直线01:1=++y ax l 与直线01:2=+-y x l 垂直,则1=a . 其中正确命题的个数是( )A .1B .2C .3D .48.直线12=+by ax 与圆122=+y x 相交于A,B 两点(其中b a ,是实数),且AOB ∆是直角三角形(O 是坐标原点),则点P ),(b a 与点)1,0(之间距离的最大值为( ) A12+ B. 2 C. 2 D. 12-第Ⅱ卷(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分. 9. 若,0>x 则xx y 4+=的最小值是____________________. 10. 已知动点P 到定点(2,0)的距离和它到定直线2:-=x l 的距离相等,则点P 的轨迹方程为_________.11. 已知不等式组⎪⎩⎪⎨⎧≤-≥≤a x x y x y , 表示的平面区域的面积为4,点),(y x P 在所给平面区域内,则y x z +=2的最大值为______.12.某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这100名同学中学习时间在6~8小时内的同学为 _______人.13. 已知程序框图如图所示,则执行该程序后输出的结果是_______________.第12题第13题图0.140.12 0.05 0.0414. 若点集22{(,)|1},{(,)|11,11}A x y x y B x y x y =+≤=-≤≤-≤≤,则(1)点集{1111(,)1,1,(,)}P x y x x y y x y A ==+=+∈所表示的区域的面积为_____; (2)点集{}12121122(,),,(,),(,)M x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为___________ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,22A ππωϕ>>-<<),其部分图象如图所示. (I)求()f x 的解析式; (II)求函数)4()4()(ππ-⋅+=x f x f x g 在区间0,2π⎡⎤⎢⎥⎣⎦上的 最大值及相应的x 值.16. (本小题满分13分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O 为圆心,且标有20元、10元、0元的三部分区域面积相等. 假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元 ,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.(I )若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?(II )若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?17. (本小题满分14分)如图:在四棱锥P ABCD -中,底面ABCD 是菱形,60,ABC PA ∠=︒⊥平面ABCD , 点,M N 分别为,BC PA 的中点,且2==AB PA . (I) 证明:BC ⊥平面AMN ; (II)求三棱锥AMC N -的体积;(III)在线段PD 上是否存在一点E ,使得//NM 平面ACE ;若存在,求出PE 的长;若不存在,说明理由.18. (本小题满分14分)已知函数1)(2-=x x f 与函数)0(ln )(≠=a x a x g .(I )若)(),(x g x f 的图象在点)0,1(处有公共的切线,求实数a 的值; (II )设)(2)()(x g x f x F -=,求函数)(x F 的极值.19. (本小题满分13分)已知椭圆C 的对称中心为原点O ,焦点在x 轴上,离心率为12, 且点(1,32)在该椭圆上.(I )求椭圆C 的方程;(II )过椭圆C 的左焦点1F 的直线l 与椭圆C 相交于,A B 两点,若AOB ∆的面积为726,求圆心在原点O 且与直线l 相切的圆的方程.20. (本小题满分13分)已知数列{}n a 满足:11=a ,21212,,12,,2n n n n a n a a -+⎧⎪⎪=⎨+⎪⎪⎩为偶数为奇数, 2,3,4,.n = (Ⅰ)求345,,a a a 的值;MC D(Ⅱ)设121n n b a -=+,1,2,3...n =,求证:数列{}n b 是等比数列,并求出其通项公式; (III )对任意的*2,m m N ≥∈,在数列{}n a 中是否存在连续..的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,说明理由.海淀区高三年级第二学期期中练习数 学(文)参考答案及评分标准 2010.4说明: 合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷 (选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第II 券(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.4 10.x y 82= 11.6 12.30 13.1214.π,π+12 15.(本小题满分13分) 解:(I )由图可知,A=1 …………1分,24π=T 所以π2=T ……………2分 所以1=ω ……………3分又1)4sin()4(=+=ϕππf ,且22ππϕ-<<所以4πϕ=……………5分所以)4sin()(π+=x x f . ……………6分(II )由(I ))4sin()(π+=x x f ,所以)4()4()(ππ-⋅+=x f x f x g =sin()sin()4444x x ππππ++⋅-+sin()sin 2x x π=+ ……………8分cos sin x x =⋅ ……………9分 1sin 22x = ……………10分 因为]2,0[π∈x ,所以],0[2π∈x ,]1,0[2sin ∈x故:]21,0[2sin 21∈x ,当4π=x 时,)(x g 取得最大值21. …………… 13分 16. (本小题满分13分) 解:(I )设“甲获得优惠券”为事件A …………… 1分因为假定指针停在任一位置都是等可能的,而题中所给的三部分的面积相等,所以指针停在20元,10元,0元区域内的概率都是31. …………… 3分 顾客甲获得优惠券,是指指针停在20元或10元区域,根据互斥事件的概率,有323131)(=+=A P , …………… 6分 所以,顾客甲获得优惠券面额大于0元的概率是23.(II )设“乙获得优惠券金额不低于20元”为事件B …………… 7分 因为顾客乙转动了转盘两次,设乙第一次转动转盘获得优惠券金额为x 元, 第二次获得优惠券金额为y 元,则基本事件空间可以表示为:{(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),(0,20),(0,10),(0,0)}Ω=,…………… 9分 即Ω中含有9个基本事件,每个基本事件发生的概率为91. ………… 10分 而乙获得优惠券金额不低于20元,是指20x y +≥,所以事件B 中包含的基本事件有6个, ………… 11分 所以乙获得优惠券额不低于20元的概率为3296)(==B P ………… 13分 答:甲获得优惠券面额大于0元的概率为32,乙获得优惠券金额不低于20元的概率为32. 17. (本小题满分14分)证明:(Ⅰ) 因为ABCD 为菱形,所以AB=BC又60ABC ∠=,所以AB=BC=AC , ……………1分 又M 为BC 中点,所以BC AM ⊥ …………… 2分 而PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥ …………… 4分 又PA AM A = ,所以BC ⊥平面AMN …………… 5分(II )因为11122AMC S AM CM ∆=⋅== …………… 6分 又PA ⊥底面,ABCD 2,PA = 所以1AN = 所以,三棱锥N AMC -的体积31=V AMCS AN ∆⋅ ………… 8分11326=⨯=………… 9分 (III)存在 …………… 10分取PD 中点E ,连结NE ,EC,AE, 因为N ,E 分别为PA ,PD 中点,所以AD NE 21// …………… 11分 又在菱形ABCD 中,1//2CM AD 所以MC NE //,即MCEN 是平行四边形 …………… 12分 所以, EC NM //,又⊂EC 平面ACE ,⊄NM 平面ACE所以MN //平面ACE , …………… 13分 即在PD 上存在一点E ,使得//NM 平面ACE ,此时12PE PD ==. …………… 14分 18. (本小题满分14分) 解:(I )因为(1)0,(1)0f g ==,所以点)0,1(同时在函数)(),(x g x f 的图象上 …………… 1分 因为x a x g x x f ln )(,1)(2=-=, '()2f x x =, ……………3分'()ag x x=……………5分 由已知,得)1(')1('g f =,所以21a=,即2a = ……………6分(II )因为x a x x g x f x F ln 21)(2)()(2--=-=()0>x ……………7分所以xa x x a x x F )(222)('2-=-= ……………8分 当0<a 时,因为0>x ,且,02>-a x 所以0)('>x F 对0>x 恒成立,所以)(x F 在),0(+∞上单调递增,)(x F 无极值 ……………10分; 当0>a 时,令0)('=x F ,解得12x x =(舍) ……………11分 所以当0x >时,'(),()F x F x 的变化情况如下表:x),0(a)+∞)('x F -+)(x F极小值……………13分 所以当a x =时,()F x 取得极小值,且a a a a a a a F ln 1ln 21)()(2--=--=. ……………14分综上,当0<a 时,函数)(x F 在),0(+∞上无极值;当0>a 时,函数()F x 在a x =处取得极小值a a a ln 1--.19. (本小题满分13分)解:(I )设椭圆C 的方程为22221,(0)x y a b a b+=>>,由题意可得 21==a c e ,又222c b a +=,所以2243a b =……………2分 因为椭圆C 经过(1,32),代入椭圆方程有 14349122=+a a解得2=a ……………4分所以1c = ,2413b =-=故椭圆C 的方程为 22143x y +=. ……………5分 (Ⅱ)解法一:当直线l x ⊥轴时,计算得到:33(1,),(1,)22A B ---,1113||||13222AOB S AB OF ∆=⋅⋅=⨯⨯=,不符合题意. ……………6分当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,0≠k由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y ,得 2222(34)84120k x k x k +++-= …………7分 显然0∆>成立,设1122(,),(,)A x y B x y ,则21228,34k x x k +=-+ 212241234k x x k -⋅=+ ……………8分又2212221221221)()()()(||x x k x x y y x x AB -+-=-+-==== ……………9分 即2212(1)||34k AB k+==+ 又圆O的半径r ==……………10分所以2221112(1)6|||2234347AOBk k S AB r k k ∆+=⋅⋅=⋅==++……………11分 化简,得4217180k k +-=,即22(1)(1718)0k k -+=, 解得2212181,17k k ==-(舍) ……………12分所以,2r ==,故圆O 的方程为:2212x y +=. ……………13分(Ⅱ)解法二:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x ,得 22(43)690t y ty +--= ……………7分因为0∆>恒成立,设1122(,),(,)A x y B x y , 则12122269,4343t y y y y t t +=⋅=-++ ……………8分所以12||y y -==243t =+ ……………9分所以1121||||2AOBS FO y y ∆=⋅⋅-==化简得到4218170t t --=,即0)1)(1718(22=-+t t ,解得211,t=2217 18t=-(舍)…………11分又圆O的半径为r==……………12分所以2r==,故圆O的方程为:2212x y+=……………13分.20.(本小题满分13分)解:(Ⅰ)因为11a=,所以21123a a=+=,3115222a a=+=,42127a a=+=,52113222a a=+=…………3分(Ⅱ)由题意,对于任意的正整数n,121nnb a-=+,所以121nnb a+=+…………4分又122221(21)12(1)2n n n na a a b-+=++=+=所以12n nb b+=…………6分又11112112b a a-=+=+=…………7分所以{}n b是首项为2,公比为2的等比数列,所以2nnb=…………8分(III)存在. 事实上,对任意的*2,m k N≥∈,在数列{}na中,2,21,22,221....,m m m m ma a a a+++-这连续的2m项就构成一个等差数列……10分我们先来证明:“对任意的*2,n n N≥∈,1*(0,2),nk k N-∈∈,有12212nnkka-+=--”由(II)得1212nnnb a-=+=,所以1221nna-=-.当k为奇数时,1121221222112222n n n kk ka a a----++-+=+=+当k为偶数时,112222221212n n n kk ka a a---+++=+=+记1,,21,,2kkkkk⎧⎪⎪=⎨-⎪⎪⎩为偶数为奇数因此要证12212n nk k a -+=--,只需证明21112212n n k k a --+=--,其中2*11(0,2),n k k N -∈∈ (这是因为若21112212n n k k a --+=--,则当211-=k k 时,则k 一定是奇数,有1121221222112222n n n k k k a a a ----++-+=+=+=212)22112(221)212(221111k k k n n n --=---+=--+--; 当21kk =时,则k 一定是偶数,有112222221212n n n k k k a a a ---+++=+=+=212)2212(21)212(21111kkk n n n --=--+=--+-- )如此递推,要证21112212n n k k a --+=--, 只要证明32222212n n k k a --+=--,其中11211,,21,,2k k k k k ⎧⎪⎪=⎨-⎪⎪⎩为偶数为奇数,3*22(0,2),n k k N -∈∈如此递推下去, 我们只需证明12222212n n k k a --+=--, 1*22(0,2),n n k k N --∈∈ 即1221115213222a +=--=-=,即352a =,由(I )可得, 所以对*2,n n N ≥∈,1*(0,2),n k k N -∈∈,有12212n n k ka -+=--,对任意的*2,m m N ≥∈ ,12212m m i i a ++=--,1211212m m i i a ++++=--,其中*),12,0(N i i m ∈-∈, 所以21212m m i i a a +++-=-又1212-=+m m a ,2112112--=++m m a ,所以21212m m a a +-=- 所以2,21,22,221....,m m m m m a a a a +++-这连续的2m项, 是首项为1221m m a +=-,公差为12-的等差数列 . …………13分说明:当12m m >(其中**1122,,m m N m N ≥∈∈)时,因为1222212222222,...,,,-+++m m m m m a a a a构成一个项数为22m 的等差数列,所以从这个数列中任取连续的12m 项,也是一个项数为12m ,公差为12-的等差数列.。

北京市海淀区2010届高三第一学期期末考试_物理

北京市海淀区2010届高三第一学期期末考试_物理

海淀区高三年级2009—2010学年第一学期期末练习物 理 2010.1一、本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的。

全部选对的得3分,选对但不全的得2分,有选错或不答的得0分。

把你认为正确答案的代表字母填写在题后的括号内。

1.使两个完全相同的金属小球(均可视为点电荷)分别带上-3Q 和+5Q 的电荷后,将它们固定在相距为a 的两点,它们之间库仑力的大小为F 1。

现用绝缘工具使两小球相互接触后,再将它们固定在相距为2a 的两点,它们之间库仑力的大小为F 2。

则F 1与F 2之比为( )A .2:1B .4:1C .16:1 D .60:12.如图1所示,线圈两端与电阻相连构成闭合回路,在线圈上方有一竖直放置的条形磁铁,磁铁的S 极朝下。

在将磁铁的S 极插入线圈的过程中 ( )A .通过电阻的感应电流的方向由a 到b ,线圈与磁铁相互排斥B .通过电阻的感应电流的方向由a 到b ,线圈与磁铁相互吸引C .通过电阻的感应电流的方向由b 到a ,线圈与磁铁相互排斥D .通过电阻的感应电流的方向由b 到a ,线圈与磁铁相互吸引3.某小型水电站的电能输送示意图如图2所示,发电机通过升压变压器T 1和降压变压器T 2向用户供电。

已知输电线的总电阻为R ,降压变压器T 2的原、副线圈匝数之比为4∶1,降压变压器副线圈两端交变电压u =t V ,降压变压器的副线圈与阻值R 0=11Ω的电阻组成闭合电路。

若将变压器视为理想变压器,则下列说法中正确的是( )A .通过R 0电流的有效值是20AB .降压变压器T 2原、副线圈的电压比为4:1C .升压变压器T 1的输出电压等于降压变压器T 2的输入电压D .升压变压器T 1的输出功率大于降压变压器T 2的输入功率4.平行板电容器C 与三个可变电阻器R1、R2、R3以及电源连成如图3所示的电路。

高三第一学期期终测评(数学理)

高三第一学期期终测评(数学理)

上海市黄浦区2010届高三上学期期终基础学业测评高三数学试卷(理科) (2010.1.20)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚; 3.本试卷共23道试题,满分150分;考试时间120分钟.命题人:冯志勇 审核人:李小平 校对:胡泊一.填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.已知函数在,,且点的反函数是)12()(1)(1x f y a x xa x f -=---=)(1x f y -=的图像上,则实数=a .2.)02()12(,与,,非零向量、已知-=++=∈βαb a a R b a 平行,则a 、b 满足的条件是 .3.已知随机事件A 、B 是互斥事件,若18.0)(25.0)(==B P A P ,, 则)(B A P ⋃= . 4.不等式1|11|≥-+x x 的解集是 . 5.方程1)49(log 3+=-x x的解=x .6.已知角α(πα<<0)的顶点在原点,始边与x 轴正半轴重合,点P )34(,-是角α终边上一点,则2cosα= .7.方程1sin 3cos =+x x 的解集是 .8.=∈++++=∞→*22)]([)(lim )(321)(n f n f N n n n f n ,则若 .9.下面是用行列式解二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的程序框图,请在(1)、(2)、(3)处分别填上合适的指令.10.如图1所示,点A 、B 是单位圆(圆心在原点,半径为1的圆)上两点,OA 、OB 与x 轴正半轴所成的角分别为.和βα-,,记)sin (cos αα=,,))sin()(cos(ββ--=用两种方法计算⋅后,利用等量代换可以得到的等式是 .11.在cm AB cm BC cm AC ABC 543===∆,,中,,现以BC 边所在的直线为轴把ABC ∆(及其内部)旋转一周后,所得几何体的全面积是 2cm .12.掷一枚质地均匀的硬币可能出现图案向上,也可能出现文字向上.现将一枚质地均匀的硬币连续掷3次,表示若用随机变量ξ3次中出现图案向上的次数ξE ,则数学期望= .13.给出下列4个命题,其中正确命题的序号是 . (1)在大量的试验中,事件A 出现的频率可以作为事件A 出现的概率的估计值;(2)样本标准差)2(1)()()(22221≥--++-+-=n n x x x x x x S n 可以作为总体标准差的点估计值;(3)随机抽样就是使得总体中每一个个体都有同样的可能性被选入样本的一种抽样方法;(4)分层抽样就是把总体分成若干部分,然后在每个部分指定某些个体作为样本的一种抽样方法.14.已知数列{},的值是奇数的值是偶数 ,是正整数满足⎪⎩⎪⎨⎧-==+)(13)(2)(11n nn nn n a a a a a m m a a 若的所有可能的值是,则m a 24= .二.选择题(本大题满分16分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.15.已知{}”成立的”是“,,则“,且、a x a a x a R x a =-∈≠∈||0[答]( )A .充要条件.B .充分非必要条件.C .必要非充分条件.D .非充分非必要条件.16.定义两种运算xx x f b a b a b a b a ⊕-⊗=-=⊗-=⊕222)(||22,则函数,的解析式是[答]( )A .)22(4)(2,,-∈-=x x x x f . B .)22(4)(2,,-∈--=x xx x f .C .)2()2(4)(2∞+⋃--∞∈-=,,,x x x x f .D .)2()2(4)(2∞+⋃--∞∈--=,,,x x xx f .17.在空间中,给出下列4个命题(其中c b a 、、表示直线,β表示平面),则正确命题的序号是[答]( )(1)三个点确定一个平面; (2)若;,则,b a c b c a ||||||(3)在空间中,若角21θθ与角的两边分别平行,则21θθ=; (4)若ββ⊥⊂⊥⊥≠a cbc a b a,则、,,.A .(1)、(2)、(4).B .(2).C .(2)、(3).D .(2)、(3)、(4).18.已知函数0)()()1(1)1(|1|1)(2=++⎪⎩⎪⎨⎧=≠-=c x bf x f x x x x x f 的方程,若关于 有且仅有3个实数根=++232221321x x x x x x ,则、、[答]( )A .5.B .2222b b +.C .3.D .2222c c +.三.解答题(本大题满分78分) 本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图3所示,已知长方体中1111D C B A ABCD -,431===AA AB AD ,,M 是11B A 的中点.(1)求1ACD BM 与平面所成的角; (2)求点M 到平面1CD A 的距离.20.(本题满分14分)的值.、,求,,,且中,在c a c a b C A C B A ABC 5644222=-==>>∆21.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知a 、b 是正整数,函数)(2)(b x bx ax x f -≠++=的图像经过点)31(,. (1)求函数f (x )的解析式;(2)判断函数f (x )在]01(,-上的单调性,并用单调性定义证明你的结论.22.(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分5分.某生产旅游纪念品的工厂,拟在2010年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x 万件与年促销费用t 万元之间满足3-x 与t +1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2010年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)(1)求出x 与t 所满足的关系式;(2)请把该工厂2010年的年利润y 万元表示成促销费t 万元的函数; (3)试问:当2010年的促销费投入多少万元时,该工厂的年利润最大?23.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.已知数列{}.,满足)(22111*+∈+==N n a a a a n n n n (1)证明数列{};的通项公式列是等差数列,并求出数n n n n a a a ⎭⎬⎫⎩⎨⎧2 (2)求等差数列{}11231201)(++*=++++∈n nn n n n n n a C b C b C b C b N n b ,使对*∈N n 都成立;(3)M a c a c a c a c M N n nb c nn n n <++++∈=* 332211)(,使,是否存在正常数令*∈N n 对恒成立,并证明你的结论.黄浦区2009学年度第一学期期末教学质量检测数学试卷(理科)(2010年1月20日)参考答案和评分标准说明:1、本解答仅列出试题的一种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高三年级第一学期期末练习数 学 (理科) 2010.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 函数1(0)y x x x=+>的值域为A .[)2,+∞B .(2,)+∞C .(0,)+∞D .(][),22,-∞-+∞2.如图,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为A. B .6 C.D .33.已知双曲线2213y x -=,那么它的焦点到渐近线的距离为A .1BC .3D .44.已知,m n 为两条不同直线,,αβ为两个不同平面,那么使//m α成立的一个充分条件是A .//,//m βαβB .,m βαβ⊥⊥C .,,m n n m αα⊥⊥⊄D .m 上有不同的两个点到α的距离相等5.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为A .16 B .15C .13D .256.如图,向量-a b 等于 A .1224--e e B .1242--e e C .123-e eD .123-+e e7.某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有四名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有 A .72种 B .54种 C .36种 D .18种8.点P 在曲线C :2214x y +=上,若存在过P 的直线交曲线C 于A 点,交直线l :4x =于B 点,满足PA PB =或PA AB =,则称点P 为“H 点”,那么下列结论正确的是 A .曲线.C .上的所有点都是“H 点” B .曲线C 上仅有有限个点是“H 点” C .曲线C 上的所有点都不是“H 点”D .曲线C 上有无穷多个点(但不是所有的点)是“H 点”第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.若直线l 的参数方程为1 23x t t y t =+⎧⎨=-⎩,(为参数),,则直线l 的斜率为_______________.10.阅读右图所示的程序框图,若运行该程序后输出的y 值为1, 则输入的实数x 值为________________.11.一个几何体的三视图如下图所示,则该几何体的表面积为__________________.12.设关于x 的不等式2*2()x x nx n -<∈N 的解集中整数的个数为n a ,数列{}n a 的前n 项和为n S ,则100S 的值为_______________________.13.在区间[0,2]上任取两个数,a b ,那么函数22()f x x ax b =++无零点的概率为_________. 14.考虑以下数列{}n a ,*n N ∈:① 21n a n n =++;② 21n a n =+;③ ln 1n na n =+. 其中满足性质“对任意正整数n ,212n nn a a a +++≤都成立”的数列有 (写出满足条件的所有序号);若数列{}n a 满足上述性质,且11a =,2058a =,则10a 的最小值正视图侧视图俯视图为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)在ABC ∆中,角,,A B C 的对边分别为,,,3a b c C π=,5b =,ABC ∆的面积为(Ⅰ)求a ,c 的值; (Ⅱ)求sin()6A π+的值.16.(本小题满分13分)某地区教研部门要对高三期中数学练习进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得3分,答错或不答得0分;第二空答对得2分,答错或不答得0分.第一空答对与否与第二空答对与否是相互独立的.从所有试卷中随机抽取1000份试卷,其中该题的得分组成容量为1000的样本,统计结果如下表:(Ⅰ)求样本试卷中该题的平均分,并据此估计这个地区高三学生该题的平均分; (Ⅱ)这个地区的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率.试求该同学这道题第一空得分不低于第二空得分的概率.17. (本小题满分13分)已知四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,PD ⊥底面ABCD ,E ,F 分别为棱BC ,AD 的中点. (Ⅰ)求证:DE ∥平面PFB ; (Ⅱ)已知二面角P -BF -CP -ABCD 的体积.第一空得分情况第二空得分情况ABECPD F18.(本小题满分13分)已知函数2()1x af x x +=+(其中a R ∈).(Ⅰ)若函数()f x 在点(1,(1))f 处的切线为12y x b =+,求实数,a b 的值; (Ⅱ)求函数()f x 的单调区间.19.(本小题满分14分)已知抛物线:W 2y ax =经过点A (2,1),过A 作倾斜角互补的两条不同直线12,l l . (Ⅰ)求抛物线W 的方程及准线方程; (Ⅱ)当直线1l 与抛物线W 相切时,求直线2l 与抛物线W 所围成封闭区域的面积; (Ⅲ)设直线12,l l 分别交抛物线W 于B ,C 两点(均不与A 重合),若以线段BC 为直径的圆与抛物线的准线相切,求直线BC 的方程.20.(本小题满分14分)给定项数为m *(,3)m N m ∈≥的数列{}n a ,其中{0,1}i a ∈(1,2,,)i m = .若存在一个正整数(21)k k m ≤≤-,若数列{}n a 中存在连续的k 项和该数列中另一个连续的k 项恰好按次序对应相等,则称数列{}n a 是“k 阶可重复数列”,例如数列{}n a0,1,1,0,1,1,0.因为1234,,,a a a a 与4567,,,a a a a 按次序对应相等,所以数列{}n a 是“4阶可重复数列”. (Ⅰ)分别判断下列数列①{}:0, 0, 0, 1, 1, 0, 0, 1, 1, 0.n b ②{}:1, 1, 1, 1, 1, 0, 1, 1, 1, 1.n c 是否是“5阶可重复数列”?如果是,请写出重复的这5项;(Ⅱ)若数为m 的数列{}n a 一定是 “3阶可重复数列”,则m 的最小值是多少?说明理由; (III )假设数列{}n a 不是“5阶可重复数列”,若在其最后一项m a 后再添加一项0或1,均可使新数列是“5阶可重复数列”,且41a =,求数列{}n a 的最后一项m a 的值.海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准 2010.1说明: 合理答案均可酌情给分,但不得超过原题分数第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.3- 10.34 11.2412π+ 12.10100 13.3414.②③;28 三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(Ⅰ)由已知,3C π=,5b =,因为 1s i n 2ABC S ab C ∆= ,即 115s i n23a π=⋅ , ………………..1分 解得 8a = .………………..3分由余弦定理可得:2642580cos493c π=+-=,………………..5分 所以 7c =. ………………..7分 (Ⅱ)由(Ⅰ)有4925641cos 707A +-==,………………..9分由于A 是三角形的内角,易知 sin A =………………..10分所以 s i n ()s i nc o sc o s s i n 666A A A πππ+=+ ………………..11分1172=+⨯1314= . ………………..13分16.(本小题满分13分)解:(Ⅰ)设样本试卷中该题的平均分为x ,则由表中数据可得: 01983802069823023.011000x ⨯+⨯+⨯+⨯== ,……………….4分 据此可估计这个地区高三学生该题的平均分为3.01分.……………….5分(Ⅱ)依题意,第一空答对的概率为0.8,第二空答对的概率为0.3,……………….7分 记“第一空答对”为事件A ,“第二空答对”为事件B ,则“第一空答错”为事件A , “第二空答错”为事件B .若要第一空得分不低于第二空得分,则A 发生或A 与B 同时发生,……………….9分 故有: ()()0.80.20.70.94P A P A B +⋅=+⨯= .……………….12分 答:该同学这道题第一空得分不低于第二空得分的概率为0.94. ……………….13分17. (本小题满分13分) 解:(Ⅰ)因为E ,F 分别为正方形ABCD 的两边BC ,AD 的中点,所以BE FD ∥,所以,BEDF 为平行四边形,……………….2分 得//ED FB ,……………….3分 又因为FB ⊂平面PFB ,且ED ⊄平面PFB ,……………….4分 所以DE ∥平面PFB .……………….5分(Ⅱ)如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系.设PD =a , 可得如下点的坐标:P (0,0,a ),F (1,0,0),B (2,2,0) 则有:(1,0,),(1,2,0),PF a FB =-= (6)因为PD ⊥底面ABCD ,所以平面ABCD 的一个法向量为(0,0,1)=m , ……………….7设平面PFB 的一个法向量为(,,)x y z =n ,则可得=0PF FB ⎧⋅=⎪⎨⋅⎪⎩n n 即 0+2=0x a zx y -=⎧⎨⎩令x =1,得11,2z y a ==-,所以11(1,,)2a=-n .……………….9分由已知,二面角P-BF-C:1cos<,>||||⋅===m nm nm n, ……………….10分解得a =2. ……………….11分因为PD是四棱锥P-ABCD的高,所以,其体积为182433P ABCDV-=⨯⨯=. ……………….13分18.(本小题满分13分)解:由2()1x af xx+=+,可得222()(1)x x af xx+-'=+. ……………….2分(Ⅰ)因为函数()f x在点(1,(1))f处的切线为12y x b=+,得:1(1)21(1)2ff b⎧'=⎪⎪⎨⎪=+⎪⎩……………….4分解得112ab=⎧⎪⎨=⎪⎩……………….5分(Ⅱ)令()0f x'>,得220x x a+->…①……………….6分当440a∆=+≤,即1a≤-时,不等式①在定义域内恒成立,所以此时函数()f x的单调递增区间为(,1)-∞-和(1,)-+∞. ……………….8分当440a∆=+>,即1a>-时,不等式①的解为1x>-或1x<-……………….10分又因为1x≠-,所以此时函数()f x的单调递增区间为(,1-∞-和(1)-+∞,单调递减区间为(11)--和(1,1--..……………….12分所以,当1a≤-时,函数()f x的单调递增区间为(,1)-∞-和(1,)-+∞;当1a>-时,函数()f x的单调递增区间为(,1-∞-和(1)-+∞,单调递减区间为(11)--和(1,1--+. .……………….13分解:(Ⅰ)由于A (2,1)在抛物线2y ax =上, 所以 14a =,即14a =. ……………….2分 故所求抛物线的方程为214y x =,其准线方程为1y =-. ……………….3分(Ⅱ)当直线1l 与抛物线相切时,由21x y ='=,可知直线1l 的斜率为1,其倾斜角为45︒,所以直线2l 的倾斜角为135︒,故直线2l 的斜率为1-,所以2l 的方程为3y x =-+ …….4分 将其代入抛物线的方程214y x =,得 24120x x +-=, 解得 122,6x x ==-, …….5分 所以直线2l 与抛物线所围成封闭区域的面积为:2222266611(3)d d (3)d 44x x x x x x x ----+-=-+-⎰⎰⎰……………….6分223611(3)212x x x -=-+-643=……………….8分(Ⅲ)不妨设直线AB 的方程为1(2) (0)y k x k -=->,……………….9分由21(2)14y k x y x -=-⎧⎪⎨=⎪⎩ 得24840x kx k -+-=, ……………….10分易知该方程有一个根为2,所以另一个根为42k -, 所以点B 的坐标为2(42,441)k k k --+, 同理可得C 点坐标为2(42,441)k k k --++,……………….11分所以||BC=, ……………….12分线段BC 的中点为2(2,41)k -+,因为以BC 为直径的圆与准线1y =-相切, 所以241(1)2k +--=,由于0k >, 解得k =. …………….13分 此时,点B的坐标为2,3-,点C的坐标为(2,3-+, 直线BC1=-,所以,BC的方程为(3[2)]y x --=--,即10x y +-=. …….14分解:(Ⅰ)记数列①为{}n b ,因为23456,,,,b b b b b 与678910,,,,b b b b b 按次序对应相等,所以数列①是“5阶可重复数列”,重复的这五项为0,0,1,1,0;记数列②为{}n c ,因为12345,,,,c c c c c 、23456,,,,c c c c c 、34567,,,,c c c c c 、45678,,,,c c c c c 、 56789,,,,c c c c c 、678910,,,,c c c c c 没有完全相同的,所以{}n c 不是“5阶可重复数列”.……………….3分(Ⅱ)因为数列{}n a 的每一项只可以是0或1,所以连续3项共有328=种不同的情形.若m =11,则数列{}n a 中有9组连续3项,则这其中至少有两组按次序对应相等,即项数为11的数列{}n a 一定是“3阶可重复数列”;若m =10,数列0,0,1,0,1,1,1,0,0,0不是“3阶可重复数列”;则310m ≤<时,均存在不是“3阶可重复数列”的数列{}n a .所以,要使数列{}n a 一定 是“3阶可重复数列”,则m 的最小值是11. ……………….8分(III )由于数列{}n a 在其最后一项m a 后再添加一项0或1,均可使新数列是“5阶可重复数列”,即在数列{}n a 的末项m a 后再添加一项01或,则存在i j ≠,使得1234,,,,i i i i i a a a a a ++++与321,,,,0m m m m a a a a ---按次序对应相等,或1234,,,,j j j j j a a a a a ++++与321,,,,1m m m m a a a a ---按次序对应相等,如果1234,,,a a a a 与321,,,m m m m a a a a ---不能按次序对应相等,那么必有2,4i j m ≤≤-,i j ≠,使得123,,,i i i i a a a a +++、123,,,j j j j a a a a +++与321,,,m m m m a a a a ---按次序对应相等.此时考虑11,i j a a --和4m a -,其中必有两个相同,这就导致数列{}n a 中有两个连续的五项恰按次序对应相等,从而数列{}n a 是“5阶可重复数列”,这和题设中数列{}n a 不是“5阶可重复数列”矛盾!所以1234,,,a a a a 与321,,,m m m m a a a a ---按次序对应相等,从而4 1.m a a ==……………….14分说明:其它正确解法按相应步骤给分.。

相关文档
最新文档