气动系统基本回路

合集下载

液压与气压传动--第14章 气动基本回路

液压与气压传动--第14章 气动基本回路
第十四章 气动基本回路
气动基本回路是组成气动控制系统的基本单元,也是设 计气动控制回路的基础。气动基本回路分为压力控制、速度控 制和方向控制基本回路。
14.1 换向回路
一、单作用气缸换向回路
气缸可停在 任意位置
二、双作用气缸换向回路
14.2 速度控制回路
一. 单作用气缸速度控制回路
图a利用两个单向节流阀 控制活塞杆的伸出和退回速度。 两个单向节流阀串联时,要注 意单向阀的连接方向。 图b利用一个节流阀和一个快 速排气阀串联来控制活塞杆的 伸出速度和快速退回。
采用气液组合缸的同步回路
利用两液压缸油路串联,来保证 在负载F1、F2 不相等时也能使 工作台上下运动同步。蓄能器用 于换向阀处于中位时为液压缸补 充泄漏。
往复动作回路
单往复动作回路
按下手动阀,二位五通换 向阀处于左位,气缸外伸;当 活塞杆挡块压下机动阀后,二 位五通换至右位,气缸缩回, 完成一次往复运动。
二、二次压力控制回路
指把经一次调压后的压力p1再经减压阀减压稳压后所得到 的输出压力p2(称为二次压力),作为气动控制系统的工作气 压使用。
三、高低压转换回路
高低压选择回路
由多个减压阀控制,实现多
个压力同时输出。 用于系统同时需要高低压力 的场合。
高低压切换回路
利用换向阀和减压阀实高低 压切换输出。 用于系统分别需要高低压力 的场合。
位置控制回路
采用串联气缸定位 Fra bibliotek意位置停止回路
当气缸负载较小时,可选 气缸由多个不同行程的 气缸串联而成。换向阀1、2、 择图a 所示回路,当气缸负 载较大时,应选择图b 所示 3依次得电和同时失电,可 回路。当停止位置要求精确 得到四个定位位置。 时,可选择前面所讲的气液 阻尼缸任意位置停止回路。

第十四章 气动基本回路

第十四章 气动基本回路

第四节 气液联动回路
气液阻尼缸可是平稳的动作;气液增压缸可使传动力增大。 一、气-液转换速度控制回路
二、气液阻尼缸的速度控制回路
实现:慢进-快退
实现:快进-工进-快退
三、气液增压缸增力回路
四、气液缸同步回路
第五节 计数回路
第六节 延时回路
第七节 安全保护回路
一、过载保护回路
二、互锁回路
2、双向调速回路
用单向节流阀
用排气节流阀
三、快速往复回路 四、速度转接回路
气缸压下行程开关后,发电信号,是二位二通换向,改变排 气通道,改变速度。
五、缓冲回路 A图末端改变排气通道,缓冲; B图在形成终了时,左腔压力打不开顺序阀2,一、一次压力控制回路 这种回路,用于使储气罐送出的气体压力不超过规定压力。为此, 通常在储气罐上安装一只安全阀,用来实现一旦罐内超过规定压 力就向大气放气.也常在储气罐上装一电接点压力表,一旦罐内 超过规定压力时,即控制空气压缩机断电,不再供气。 二、二次压力控制回路 为保证气动系统使用的气体压力为一稳定值,多用由空气过滤器-减 压阀-油雾器(气动三大件)组成二次压力控制回路。但要注意,供 给逻辑元件的压缩空气不要加入润滑油。 三、高低压转换回路 该回路利用两只减压阀和一只换向阀间或输出低压或高压气源。
第十四章 气动基本回路
第一节 换向回路
一、单作用气缸换向回路
得电伸出,失电退回
该阀在两电磁铁均失电时能 自动对中,使气缸停于任何 位置,但定位精度不高,且 定位时间不长。
二、双作用气缸换向回路
第二节 速度控制回路
一、单作用气缸速度 控制回路. A图升降时均可调速; B图升时调速,降时快 排;
二、双作用气缸速度控制回路

气动系统基本回路

气动系统基本回路

出口节流
好 有比例关系 对调速特性影响很小 与负载率成正比
大 约等于平均速度

气动系统基本回路
速度控制回路 ——高速驱动回路
•利用快速排气阀,减少排气 背压,实现高速驱动
气动系统基本回路
速度控制回路 ——双速驱动回路
• 利用高低速两个节流阀实现 高低速切换
• 图中节流阀S1调节为高速,节流阀S2调节 为低速
气动系统基本回路
换向控制回路 ——双作用气缸换向回路
• 采用三位五通阀的换向控制回
路 中位排气式
中位时两个出气口 与排气口相通
气缸活塞杆可以任意推动
气动系统基本回路
压力(力)控制回路
气动系统基本回路
压力(力)控制回路 ——气源压力控制回路
• 气源压力控制主要是指实空压
机的输出压力保持在储气罐所允
电磁阀失电时,气缸仍能保持在 原有的工作状态
得电
气动系统基本回路
换向控制回路 ——双作用气缸换向回路
电磁阀仍然 保持在失电前
的位置, 因此气缸始终 处于伸出状态
• 采用二位五通阀的换向控制回
路 使用双电控阀具有记忆功能,
电磁阀失电时,气缸仍能保持在 原有的工作状态
失电
气动系统基本回路
换向控制回路 ——双作用气缸换向回路
微雾分离器
电气比例阀
先导式减压阀
气动系统基本回路
位置控制回路
气动系统基本回路
位置控制回路 ——多位气缸
•利用双位气缸,可以实现多达 三个定位点的位置控制
A
SD1 SD2 气 缸 行 程
-
-
0
+
-
++
A SD1

气动基本回路

气动基本回路
第十章
气动基本回路
气动基本回路
由相关气动元件组成,用来完成某 种特定功能的典型的管路结构. 分类: 方向控制回路 压力控制回路 速度控制回路 多缸控制回路
第一节
方向控制回路
一、单腔换向回路 见图10-1 特点:施 加控制信号 活塞杆伸出; 信号消失, 活塞杆立即 退回。
二、双控换向回路 见图10-2 特点:主控 阀具有记忆功 能,只有施加 一个相反的控 制信号后,主 控阀才会进行 换向。
三、自锁式换向回路 见图10-3 特点:主控阀无 记忆,按下手动阀 1,主控阀右位接 入,活塞杆左伸, 按钮松开,不换 向;只有按下手动 阀2才换向。
第二节压力控制回路
一、调压回路 见图10-4
二、增压回路 图10-5 增压比:n=D2/D12
第三节 速度控制回路 一、节流调速回路 采用单向节流阀实现排气节流的速度控制回路
3、往复动作回路(图10-15)
本章小结: 1、方向控制回路的组成及原理 2、压力控制回路的构成和原理. 3、速度控制回路的特点和原理。 4、同步回路、安全保护回路的组成、原 理。
ቤተ መጻሕፍቲ ባይዱ
再见!

利用两个单向节流阀实现两个方向的速度控制

二、缓冲回路
三、气-液调速回路
四、其他回路 1、同步回路 两活塞杆采用刚性连接的同步回路(图10-10)

气/液缸串联同步回路(图10-11)
2、安全保护回路 (1)自锁回路(图10-12)
(2)互锁回路(图10-13)
(3)过载保护回路 (图10-14)

气动基本回路

气动基本回路

2、气动常用回路
15、从两个不同地点控制双作用气缸的单往复运动
如图12-24所示回路,无论用手或用脚发出信号,操纵阀1S1、1S2, 均能使主阀1V1切换,活塞前进,活塞杆伸出碰到行程阀1S2后立即后退。
2、气动常用回路
16、慢速前进、快速后退回路
如图12-25所示回路,按下按钮阀1S1后,主控阀1V1换向,活塞前进,速度 由阀1V2控制,当活塞杆碰到行程阀1S2时,活塞后退,快速排气阀1V3可增加 其后退速度。
1、单作用气缸的控制 控制单作用气缸的前进、后退必须采用二位三通阀。如图12-8所 示单作用气缸控制回路,按下按钮,压缩空气从1口流向2口,活塞伸 出,3口遮断,单作用气缸活塞杆伸出。放开按钮,阀内弹簧复位, 缸内压缩空气由2口流向3口排放,1口被遮断,气缸活塞杆在复位弹 簧作用下立即缩回。
2、气动常用回路
1、气动基本回路
3、各种元件的表示方法 在回路图中,阀和气缸尽可能水平放置。回路中的所有元件均以起始位置 表示,否则另加注释。阀的位置定义如下: 1. 正常位置:阀芯未操纵时阀的位置。 2. 起始位置:阀已安装在系统中并已通气供压后,阀芯所处的位置应标明。如图 12-5所示的滚轮杠杆阀(信号元件),正常位置为关闭阀位,当在系统中被活 塞杆的凸轮板压下时,其起始位置变成通路,应表示成图12-5(b)所示。 对于单向滚轮杠杆阀,因其只能在单方向发出控制信号,因此在回路图中 必须以箭头表示出对元件发生作用的方向,逆向箭头表示无作用,如图12-6所 示。

气动程序控制回路
时间程序控制是指各执行元件的动作顺序按时间顺序 进行的一种自动控制方式。时间信号通过控制线路,按一 定的时间间隔分配给相应的执行元件,令其产生有顺序的 动作,它是一种开环的控制系统。图12-26(a)所示为时 间程序控制方框图。

气动基本回路最全的

气动基本回路最全的
过载保护回路
过载保护回路 正常工作时,阀1 得电, 使阀2 换向,气缸活塞 杆外伸。如果活塞杆受 压的方向发生过载,则 顺序阀动作,阀3 切换, 阀2 的控制气体排出, 在弹簧力作用下换至图 示位置,使活塞杆缩回。
力控制回路
气动系统一般压力较低,所以往往是通过改变执 行元件的受力面积来增加输出力。
▪ 单作用气缸快速返回回路活塞返回时,气缸下腔▪ 串联调速回路 通过两个单向节流阀, 利用液压油不可压缩 的特点,实现两个方 向的无级调速,油杯 为补充漏油而设。
▪ 气液缸串联变速回路 当活塞杆右行到撞块A 碰到机动换向阀后开始 作慢速运动。改变撞块 的安装位置,即可改变 开始变速的位置。
换向回路
▪ 单作用气缸换向回路 用三位五通换向阀可控制单 作用气缸伸、缩、任意位置停止。
换向回路
▪ 双作用气缸换向回路 用三位五通换向阀除控制 双作用缸伸、缩换向外,还可实现任意位置停止。
速度控制回路
▪ 气阀调速回路 ▪ 单作用气缸调速回路 用两个单向节流阀分别控制活塞杆的
升降速度。
速度控制回路
气液联动速度控制回路
▪ 气液缸并联且有中间位 置停止的变速回路 气 缸活塞杆端滑块空套在 液压阻尼缸活塞杆上, 当气缸运动到调节螺母 6 处时,气缸由快进转 为慢进。液压阻尼缸流 量由单向节流阀2 控制, 蓄能器能调节阻尼缸中 油量的变化。
位置控制回路
▪ 串联气缸定位
气缸由多个不 同行程的气缸串 联而成。换向阀 1、2、3依次得 电和同时失电, 可得到四个定位 位置。
位置控制回路
▪ 任意位置停止 回路 当气缸负载较 小时,可选择 图a 所示回路, 当气缸负载较 大时,应选择 图b 所示回路。
常用基本回路

第十章 气动系统基本回路讲解

第十章   气动系统基本回路讲解

液压与气动技术--气动系统基本回路
一、节流调速回路
2.采用双向节流阀实现排基本回路
二、缓冲回路
获得气缸行程末端的缓冲,除采用带缓冲的气缸外,在行程长、 速度快、惯性大的情况下,往往需要采用缓冲回路来满足气缸运 动速度的要求。
液压与气动技术--气动系统基本回路
1.同步回路 1)两缸活塞杆采用
刚性连接的同步回路。
1.同步回路
2.采用气-液转换同步回路
液压与气动技术--气动系统基本回路
液压与气动技术--气动系统基本回路
2.安全保护回路
1)互锁回路
单缸互锁回路 这种 回路应用极为广泛, 例如,送料、夹紧与 进给之间的互锁,即 只有送料到位后才能 夹紧,夹紧工件后才 能进行切削加工(进 给)等。
三、气-液调速回路
气压作用在气缸无杆 腔活塞上,有杆腔内 的液压经机控换向阀 进入气-液转换器,活 塞杆快速伸出。当活 塞杆压下机控换向阀 时,有杆腔油液只能 通过节流阀到气-液转 换器,使活塞杆伸出 速度减慢,而当电磁 阀处于上位时,活塞 杆快速返回。
液压与气动技术--气动系统基本回路
四、其他回路
一、调压回路 调压回路如图是最基本的压力控制回路,由气源调节装置—过滤器、 减压阀和油雾器组成。用减压阀来实现气动系统气源的压力控制。
液压与气动技术--气动系统基本回路
二、增压回路
液压与气动技术--气动系统基本回路
第三节 速度控制回路
一、节流调速回路 1.采用单向节流阀实
现排气节流的速度控 制回路。
液压与气动技术--气动系统基本回路
一、双控换向回路
采用有记忆作用的双控换向阀的换向回路
液压与气动技术--气动系统基本回路

第十四章气动基本回路

第十四章气动基本回路

五、缓冲回路
要获得气缸行程末端的缓冲,除采用带缓冲的气缸外,特 别在行程长、速度快、惯性大的情况下,往往需要采用缓冲 回路来满足气缸运动速度的要求。
b)所示回路的特点是,当 活塞返回到行程末端时, 其左腔压力已降至打不开 顺序阀2的程度,余气只能 经节流阀1排出,因此活塞 得到缓冲。
a)所示回路能实现快进一慢进缓冲一停止快 退的循环,行程阀可根据需要来调整缓冲开始 位置,这种回路常用于惯性力大的场合。
气液联动回路
三、气液增压缸增力回路
利用气液增压缸1把较低的气压变为较高的液 压力,以提高气液缸2的输出力的回路
四、气液缸同步动作回路
特点是将油液密封在回路 之中,油路和气路串接, 同时驱动1、2两个缸,使 二者运动速度相同,
但这种回路要求缸1无杆腔 的有效面积必须和缸2的有 杆腔面积相等。在设计和 制造中,要保证活塞与缸 体之间的密封,回路中的 截止阀3与放气口相接,用 以放掉混人油液中的空气
第八节 顺序动作回路
顺序动作是指在气动回路中,各个气缸,按 一定程序完成各自的动作。
例如单缸有单往复动作、二次往复动作、连 续往复动作等;
双缸及多缸有单往复及多往复顺序动作等。
一、单缸往复动作回路
单缸往复动作回路
单向顺序阀控制回路
连续往复动作回路
当按下阀1的按钮后,阀4 换向,活塞向前运动,这 时由于阀3复位将气路封闭, 使阀4不能复位,活塞继续 前进。到行程终点压下行 程阀2,使阀4控制气路排 气,在弹簧作用下,阀4复 位,气缸返回,在终点压 下阀3,阀4换向,活塞再 次前进,形成了A1、 A0 、 A1 、A0多次反复动作,待 提起阀1的按钮后,阀4复 位,活塞返回而停止运动。
概念:用来调节气缸的运动速度或实现气缸的 缓冲等的控制回路,一般为节流调速。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12 2 10 3 1 2 10 3 1
Y
12
1
1
0
1
0
1
X
“与”回路
Z
X 0 0 Y 0 1 Z 0 0
12 2 1 2 10 3 1 10
Y
3
1
1
0
1
0
1
12
X
“与”回路
Z
X 0 0 Y 0 1 Z 0 0
12 2 10 3 1 2 10 1
Y
12
1
1
0
1
0
1
X
3
“与”回路
Z
X 0 0 Y 0 1 Z 0 0
12 2 1 2 10 1 10
Y
3
1
1
0
1
0
1
12
X
3
“非”回 路
X
Z
Z
12 2 10 1 3
0
1
1
0
X
“非”回 路
X
Z
Z
12 2 3 10
0
1
1
0
X
1
“或”回 路
Z
X 0 0 1 1 Y 0 1 0 1 Z 0 1 1 1
12 2 10 3 1 12 2 10
X
Y
3
1
“或”回 路
Z
X 0 0 1 1 Y 0 1 0 1 Z 0 1 1 1
同步控制回路
——机械连接的同步回路
• 气缸的活塞杆通过齿轮齿条 机构连接起来,实现同步动 作
齿轮齿条机构
同步控制回路
——气液转换缸的同步回路
气液转换缸
利用两个气液缸 实现同步动作
同步控制回路
——气液转换缸的同步回路
气液转换缸
利用两个气液缸 实现同步动作
气动逻辑回路
“与”回路
Z
X 0 0 Y 0 1 Z 0 0
换向控制回路
——单作用气缸换向回路
• 回路的初始由三通阀的弹簧控
制阀处于常闭状态 电磁阀得电,三通阀换向,单 作用气缸活塞杆向前伸出 电磁阀失电,三通阀回到初始 状态,单作用气缸活塞杆在弹簧 作用下退回
换向控制回路
——双作用气缸换向回路
• 采用二位五通阀的换向控制回
路 使用双电控阀具有记忆功能, 电磁阀失电时,气缸仍能保持在 原有的工作状态
失电
换向控制回路
——双作用气缸换向回路
• 采用三位五通阀的换向控制回
路 三种三位机能 • 中位封闭式 • 中位加压式
• 中位排气式
换向控制回路
——双作用气缸换向回路
• 采用三位五通阀的换向控制回
路 中位封闭式
能使气缸定位 在行程中间任 何位置,但因为 阀本身的泄漏, 定位精度不高
中位会有泄漏
换向控制回路
减压阀设定 较低的返 回压力
压力(力)控制回路
——双压驱动回路
•在气动系统中,有时需要提 供两种不同的压力,来驱动 双作用气缸在不同方向上的 运动
•电磁铁得电,气缸以高压伸出
压力(力)控制回路
——双压驱动回路
•在气动系统中,有时需要提 供两种不同的压力,来驱动 双作用气缸在不同方向上的 运动
•电磁铁失电,由减压阀控制气缸 以较低压力返回
SD1
S1
低速
速度控制回路
——双速驱动回路
• 利用高低速两个节流阀实现 高低速切换
• 图中节流阀S1调节为高速,节流阀S2调节 为低速
SD2 S2
SD1 + +
SD2 +
气缸速度 0 低速 高速
SD1
S1
高速
同步控制回路
同步控制回路
——节流阀同步回路
• 利用节流阀使流入和流出执 行机构的流量保持一致
——入口节流和出口节流
入口节流
易产生低速爬行 没有比例关系 对调速特性有影响 小 小 大 小
出口节流
好 有比例关系 对调速特性影响很小 与负载率成正比 大 约等于平均速度 大
速度控制回路
——高速驱动回路
•利用快速排气阀,减少排气 背压,实现高速驱动
速度控制回路
——双速驱动回路
• 利用高低速两个节流阀实现 高低速切换
其它控制回路
• 采用SSC阀来实现
——终端瞬时加压回路
P1升高
• 同样可以实现防止活塞杆高 速伸出
SSC阀,控制气缸 起动时低速伸出, 接触到工件,P1 升高,SSC阀换向, 高压驱动工件
其它控制回路
• 采用制动气缸
——落下防止回路
其它控制回路
• 采用先导式单向阀
——落下防止回路
结 束
谢谢您的参与!
初始状态
换向控制回路
——双作用气缸换向回路
• 采用二位五通阀的换向控制回
路 使用双电控阀具有记忆功能, 电磁阀失电时,气缸仍能保持在 原有的工作状态
得电
换向控制回路
——双作用气缸换向回路
电磁阀仍然 保持在失电前 的位置, 因此气缸始终 处于伸出状态
• 采用二位五通阀的换向控制回
路 使用双电控阀具有记忆功能, 电磁阀失电时,气缸仍能保持在 原有的工作状态
其它控制回路
——缓冲回路
• 利用溢流阀产生缓冲背压
中位时气缸下腔的 压力由溢流阀 设定,产生背压
其它控制回路
——防止起动飞出回路
• 在气缸起动前使其排气侧产 生背压
采用中位加压式 电磁阀使气缸 排气侧产生背压
P P
其它控制回路
• 采用入口节流调速
——防止起动飞出回路
入口节流 调速防止 起动飞出
压力(力)控制回路
P1
——多级压力控制回路
•在一些场合,需要根据工件 重量的不同,设定低、中、 P2 高三种平衡压力
P3
先导式减压阀
压力(力)控制回路
•利用电气比例阀进行压力无 级控制,电气比例阀的入口 应该安装微雾分离器
微雾分离器
——多级压力控制回路
电气比例阀
先导式减压阀
位置控制回路
位置控制回路
——双作用气缸换向回路
• 采用三位五通阀的换向控制回
路 中位封闭式
活塞杆伸出
换向控制回路
——双作用气缸换向回路
• 采用三位五通阀的换向控制回
路 中位封闭式
活塞杆缩回
换向控制回路
——双作用气缸换向回路
A1
A2
• 采用三位五通阀的换向控制回
路 中位加压式
中位时进气口与 两个出气口同时相通, 因活塞两端作用面积不相等, 故活塞杆仍然会向前伸出
换向控制回路
——双作用气缸换向回路
• 采用三位五通阀的换向控制回
路 中位排气式
中位时两个出气口 与排气口相通 气缸活塞杆可以任意推动
压力(力)控制回路
压力(力)控制回路 ——气源压力控制回路
• 气源压力控制主要是指实空压
机的输出压力保持在储气罐所允 许的额定压力以下
溢流阀控制气罐 的最大允许压力
——多位气缸
•利用双位气缸,可以实现多达 三个定位点的位置控制
SD1 + + SD2 +
A B
气缸行程 0 A B
SD1
SD2
位置控制回路
——多位气缸
•利用双位气缸,可以实现多达 三个定位点的位置控制
SD1 + + SD2 +
A B
气缸行程 0 A B
SD1
SD2
位置控制回路
——多位气缸
•利用双位气缸,可以实现多达 三个定位点的位置控制
SMC气动培训教程
气动系统基本回路
• SMC(中国)有限公司 上海分公司
基本回路分类
1.换向控制回路
2.压力(力)控制回路
5.同步控制回路
6.气动逻辑回路
3.位置控制回路
4.速度控制回路
7.其它控制回路
换向控制回路
换向控制回路
——单作用气缸换向回路
• 回路的初始由三通阀的弹簧控
制阀处于常闭状态 电磁阀得电,三通阀换向,单 作用气缸活塞杆向前伸出 电磁阀失电,三通阀回到初始 状态,单作用气缸活塞杆在弹簧 作用下退回
SD1 + + SD2 +
A B
气缸行程 0 A B
SD1
SD2
位置控制回路
——制动气缸
•利用制动气缸,可以;得电,制动 解除
SD1
SD2
SD3
速度控制回路
速度控制回路
特性
低速平稳性 阀的开度与速度 惯性的影响 起动延时 起动加速度 行程终点速度 缓冲能力
12 2 10 3 1 12 2 10
X
Y
3
1
“或”回 路
Z
X 0 0 1 1 Y 0 1 0 1 Z 0 1 1 1
12 2 3 1 10 12 2 10
X
Y
3
1
“或”回 路
Z
X 0 0 1 1 Y 0 1 0 1 Z 0 1 1 1
12 2 3 1 10 12 2 10
X
Y
3
1
高压
低压
其它控制回路
其它控制回路
• 采用SSC阀来实现
——终端瞬时加压回路
• 同样可以实现防止活塞杆高 速伸出
SSC阀,控制气缸 起动时低速伸出, 接触到工件后 瞬时加压
其它控制回路
• 采用SSC阀来实现
——终端瞬时加压回路
P1较低
• 同样可以实现防止活塞杆高 速伸出
SSC阀,控制气缸 起动时低速伸出, 接触到工件
• 图中节流阀S1调节为高速,节流阀S2调节 为低速
相关文档
最新文档