知识讲解 三角函数的性质及其应用 提高

知识讲解 三角函数的性质及其应用 提高
知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊

【考纲要求】

1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数

A,?,?对函数图象变化的影响.

2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.

【知识络】

【考点梳理】

考点一、函数sin()yAx????(0A?,0??)的图象的作法

1.五点作图法:

作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、

2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。

2.图象变换法:

(1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(0

(2)相位变换:把sinyAx?的图象上所有点向左(?>0)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象;

(3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象.

(4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b?

平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。

要点诠释:

由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位

sin()yAx????

sin

图象的作法三角函的质其

图象的性

变换的先后顺序不同时,原图象沿x轴的伸缩量有区别.

考点二、sin()yAx????的解析式

1.sin()yAx????的解析式

sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T???

叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式

求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数

sin()yAx????(0A?,0??)的性质

1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T???

3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?.

4.单调性:单调增区间

:[????????????22,22kk] , kZ?

单调减区间:[????????????232,22kk] , kZ?

5. 对称性:对称中心(????k,0),kZ?;对称轴

x=??????2k,kZ?

6.最值:当22xk???????即22kx???????时,y取最大值A

当22xk???????即22kx???????时,y取最小值-A.(kZ?).

要点诠释:

①求周期、单调区间、最值时一般先将函数式化为sin()yAx????,要特别注意A、?

的正负,再把x???看作一个整体,并结合基本三角函数的图象和性质解出即可;利用单调性比较三角函数大小一般要化为同名函数,并且在同一单调区间;

②整体代换和数形结合是三角函数学习中重要的思想方法,在学习中,很多三角函数的问题都是通过

整体代换并观察基本三角函数的图象而得到的

【典型例题】

类型一、求函数sin()yAx????(0A?,0??)的单调区间

例1(2016 丰台区模拟)已知函数()cos(cos3sin)fxxxx??. (Ⅰ)求f(x)的最小正周期;

(Ⅱ)当[0,]2x??时,求函数f(x)的单调递减区间.

【解析】(Ⅰ) 2()cos3sincosfxxxx??

31cos2sin222xx???311sin2cos2222xx???1sin(2)62x????

222T???????,故f(x)的最小正周期为π. (Ⅱ)当

3222,262kxkkZ???????????时,函数f(x)单调递减,

即f(x)的递减区间为:2[,],63kkkZ???????,

由2[0,][,][,],26362kkkZ????????????

所以f(x)的递减区间为:[,]62??.

【总结升华】熟练掌握函数sin()yAx????(0,0)A???的单调区间的确定的方法.三

角函数单调区间的确定,一般先将函数式化为基本三角函数的标准式,然后通过同解变形或利用数形结合的方法来求解.

举一反三:

【变式1】求下列函数的单调递增区间. (1)2sin()4312yx???,(2)

|sin()|4y x????,(3))tan(33yx???.

【解析】

(1)∵1212sin()sin()243234yxx???????,∴递增区间为9π21π[3,3]88xkk?????(kZ?);

(2)画出|sin()|4y x????的图象:

可知增区间为3[,]44xkk???????(kZ?);

(3)函数在区间5[,]183183kkx????????(kZ?)上是增函数.

【变式2】函数sin()cos()3262xxy?????的单调递减区间是()

A、[2,2]()22kkkZ???????

B、2[2,2]()23kkkZ???????

C、2[2,2]()33kkkZ???????

D、[2,2]()kkkZ????

【答案】C

【解析】函数

112sin()cos()cos()3262223xxyx?????????,故本题即求2cos()3x??的增区间.由2223kxk????????,kZ?可得C正确.

类型二、三角函数sin()yAx????的图象变换及其性质

例2.已知函数22()(sin2cos2)2sin2fxxxx???.

(Ⅰ)求()fx的最小正周期;

(Ⅱ)若函数()ygx?的图象是由()yfx?的图象向右平移8?个单位长度,再向上平移1个单位长度得到的,当x?[0,4?]时,求()ygx?的最大值和最小值.

【解析】(Ⅰ)22()(sin2cos2)2sin2fxxxx???2sin(4)4x???,

所以函数()fx的最小正周期为2?.

(Ⅱ)依题意,()ygx??2sin[4()8x??4??]1?2sin(4)14x????因为04x???,所以34444x???????.

当442x????,即316x??时,()gx取最大值21?;

当444x?????,即0x?时,()gx取最小值0.

【总结升华】本题的关键之处是正确写出函数图象平移后的解析式.

举一反三:

【变式1】由sin()3yx???的图象得到cosyx?的图象需要向平移个单位.

【答案】左,6?;【解析】∵cossin()2yxx????,

∴由sin()3yx???的图象得到cossin()2yxx????的图象需要向左平移6?个单位. 【变式2】函数sin(2)3yx???的图象可由cos2yx?的图像经过怎样的变换得到( )

A.向左平移6?个单位B.向右平移6?个单位

C.向左平移12?个单位D.向右平移12?个单位

【答案】D

【变式3】若函数sinyx?的图象上的每个点的纵坐标不变,将横坐标缩小为原来的13,再将图象沿x轴向右平移3π个单位,则新图象对应的函数式是( )

A.sin3yx??B1πsin33yx????????

Cπsin33yx????????Dπsin39yx????????

【答案】A

例3.(2015 淮南校级三模)已知函数????sin,0,2fxMxM??????????????的部分图像如图所示.

(1)求函数??fx的解析式.

(2)在ABC?中,角A、B、C的对边分别

是a、b、c若??2coscosacBbC??,求2Af??????的取值范围.

【解析】(1)由图像知1M?,函数??fx的最小正周期54126T????????????,故2??

当6x??时??sin2sin163fx??????????????????????所以

2,32kkZ????????

所以2,6kkZ??????,又2???所以6???

所以??sin26fxx?????????

(2)由??2coscosacBbC??得??2sinsincossincosACBBC??

??2sincossinsinABBCA????1cos2B??,2,33BAC??????

sin26AfA????????????????,

203A???5666A???????

1sin126A???????????

1122Af?????????

【总结升华】给出sin()yAx????型的图象,求它的解析式,要从图象的升降找准位

置.

举一反三:

【变式1】下图是函数2sin()yx????(0??,2||???)的图象.则?、?的值是()A1011??,6??? B1011??,6????

C.2??,6??? D.2??,6????

【答案】C

【解析】由图象可得:2sin1112sin01221112??????????????????????????

∵2||???,由2sin1??得6???,

由11112sinsin012612??????????????????????,得

??11212kk???????Z

∴12211k???(k?Z)

由21112????,得2411??.满足24011???时,1k?或2k?.

由此得到11011??,22??.注意到11212TBC???,即1112????,

因此1211??,这样就排除了1011??.

∴2??,6???

注意:因为函数sin()yAx????是周期函数,所以仅靠图像上的三个点,不能完全确

定A、?、?.

的值.本题虽然给出了0??,2||???的条件,但是仅靠(0,1 )、11012???????,

两点,不能完全确定?、?的值.在确定?的过程中,比较隐蔽的条件11212TT???

(2T???)起了重要作用.

【变式2】(2015 陕西高考)如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin6yxk???????????.据此函数可知,这段时间水深(单位:m)的最大值为( )

A.5

B.6

C.8

三角函数的图像与性质

第三节三角函数的图象与性质[备考方向要明了] 考什么怎么考 1.能画出y=sin x,y=cos x,y=tan x的图象, 了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π]上的 性质(如单调性、最大值和最小值以及与x轴 的交点等),理解正切函数在区间???? - π 2, π 2内 的单调性. 1.以选择题或填空题的形式考查三角函数的 单调性、周期性及对称性.如2012年新课标 全国T9等. 2.以选择题或填空题的形式考查三角函数的 值域或最值问题.如2012年湖南T6等. 3.与三角恒等变换相结合出现在解答题中.如 2012年北京T15等. [归纳·知识整合] 正弦函数、余弦函数、正切函数的图象和性质 函数y=sin x y=cos x y=tan x 图象 定义域R R? ? ? x??x≠ π 2+kπ,k ∈Z} 值域[-1,1][-1,1]R 单调性 递增区间: ? ? ? ? 2kπ- π 2,2kπ+ π 2(k∈Z) 递减区间: ? ? ? ? 2kπ+ π 2,2kπ+ 3 2 π(k∈Z) 递增区间:[2kπ-π,2kπ] (k∈Z) 递减区间:[2kπ,2kπ+π] (k∈Z) 递增区间: ? ? ? ? kπ- π 2,kπ+ π 2(k∈ Z)

[探究] 1.正切函数y =tan x 在定义域内是增函数吗? 提示:不是.正切函数y =tan x 在每一个区间????k π-π2,k π+π 2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数. 2.当函数y =A sin(ωx +φ)分别为奇函数和偶函数时,φ的取值是什么?对于函数y =A cos(ωx +φ)呢? 提示:函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π 2(k ∈Z )时是偶函 数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π 2 (k ∈Z )时是奇函数. [自测·牛刀小试] 1.(教材习题改编)设函数f (x )=sin ????2x -π 2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2 的偶函数 解析:选B ∵f (x )=sin(2x -π 2)=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数

三角函数知识点归纳

第一章:三角函数 §、任意角 1、 正角、负角、零角、象限角的概念. 2、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ. §、弧度制 1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 r l = α. 3、弧长公式:R R n l απ== 180 . 4、扇形面积公式:lR R n S 2 1 3602== π. §、任意角的三角函数 y =α αcos ,sin 1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么: 2、 设点(),A x y 为角α终边上任意一点,那么: (设r = sin y r α= ,cos x r α=,tan y x α=,cot x y α= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、 特殊角 . 1、 平方关系:1cos sin 22=+αα. 2、 商数关系:α α αcos sin tan = . 3、 倒数关系:tan cot 1αα= §、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”Z k ∈) 1、 诱导公式一:、 诱导公式二: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()(). tan tan ,cos cos , sin sin ααπααπααπ=+-=+-=+(其中:Z k ∈)

3、诱导公式三: 4、诱导公式四: ()()(). tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()(). tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- 5、诱导公式五: 6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ=??? ??-=??? ??- .sin 2cos ,cos 2sin ααπααπ-=?? ? ??+=??? ??+ §、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中 心、奇偶性、单调性、周期性. 3、会用五点法作图. sin y x =在[0,2]x π∈上的五个关键点为: 30010-1202 2 π π ππ(,)(,,)(,,)(,,)(,,). §、正切函数的图象与性质 1、记住正切函数的图象: 2、记住余切函数的图象: 3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. 周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.

三角函数知识点归纳

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

高中三角函数知识点总结《精华版》

三角函数知识点总结 1.角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2.象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.终边相同的角的表示: α终边与θ终边相同?2()k k αθπ=+∈Z 4.α与2 α的终边关系:例题:若α是第二象限角,则 2 α 是第_____象限角 5.弧长公式:||l R α=,扇形面积公式R l S ?=2 1 6.任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离 是0r = >,那么sin ,cos y x r r αα= =,()tan ,0y x x α=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。 ^ 7.三角函数在各象限的符号 8.特殊角的三角函数值:

, 9.同角三角函数的基本关系式: (1)平方关系: 1cos sin 2 2 =+αα (2)商数关系:α α αcos sin tan = (3)倒数关系:1cot tan =?αα … 例题:已知 11tan tan -=-αα,则α αααcos sin cos 3sin +-=____;2cos sin sin 2 ++ααα=_____。 10.三角函数诱导公式(主要作用:简化角,方便化简计算) (1)απαsin )2sin(=+k (2)ααsin )sin(-=- απαcos )2cos(=+k ααcos )cos(=- απαtan )2tan(=+k ααtan )tan(-=- (3)( 2 k πα+)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数) 符号看象限(看原函数,同时可把α看成是锐角). 诱导公式运用步骤:(1)负角变正角,再写成)20(2πααπ<≤+k ; 、 (2)转化为锐角三角函数。 常用重要结论:①若πβα=+,则βαsin sin =,βαcos cos -=; ②若2 πβα=+,则βαcos sin =,βαsin cos =。

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

三角函数知识点汇总

三角函数知识点 考点1、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 考点2、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记22r OP x y ==+ 则sin y r α= , cos x r α=, tan y x α= 2. 三角函数值在各个象限内的符号:(一全二正弦,三切四余弦) 考点3、同角三角函数间的基本关系式 1. 平方关系: 1cos sin 2 2 =+αα 2. 商数关系: α α αcos sin tan =

考点4、诱导公式“奇变偶不变,符号看象限” sin()sin ,cos()cos ,tan()tan .πααπααπαα+=-+=-+= sin()sin ,cos()cos ,tan()tan .αααααα-=--=-=- sin()sin ,cos()cos ,tan()tan . πααπααπαα-=-=--=- sin()cos , 2 cos()sin .2π ααπαα-=-= sin()cos ,2cos()sin .2πααπαα+=+=-3sin()cos ,23cos()sin .2πααπαα-=--=- 3sin()cos , 2 3cos()sin . 2 πααπαα+=-+= 考点5、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,}2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单 调 性 单调增区间: [2,2]22 k k π π ππ- +(k Z ∈) 单调减区间: 3[2,2]2 2 k k π π ππ+ + k Z ∈) 单调增区间: [2,2]k k πππ-(k Z ∈) 单调减区间: [2,2]k k πππ+(k Z ∈) 单调增区间: (,)22 k k π π ππ- +(k Z ∈) 周期性 2T π= 2T π= T π= 对 称 性 对称中心: (,0)k π,k Z ∈ 对称轴: 2 x k π π=+ ,k Z ∈ 对称中心:(,0)2 k π π+ ,k Z ∈ 对称轴: x k π=, k Z ∈ 对称中心:( ,0)2 k π ,k Z ∈ 对称轴:无 最 值 2,2x k k z π π=+ ∈时,max 1y =; 32,2 x k k z π π=+∈时,min 1y =- 2,x k k z π=∈时,max 1y =; 2,x k k z ππ=+∈,min 1y =- 无 考点6、“五点法”作图

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=o ;18010.017451()57.305718'180 rad rad rad π π = ≈=≈=o o o o ; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限内的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α==o L ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

知识讲解_三角函数的性质及其应用_基础

三角函数的性质及其应用 编稿:李霞 审稿:孙永钊 【考纲要求】 1、了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解参数A ,ω,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识网络】 【考点梳理】 考点一、函数sin()y A x ω?=+(0A >,0ω>)的图象的作法 1.五点作图法: 作sin()y A x ω?=+的简图时,常常用五点法,五点的取法是设t x ω?=+,由t 取0、2π 、π、32 π、 2π来求相应的x 值及对应的y 值,再描点作图。 2.图象变换法: (1)振幅变换:把sin y x =的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到 sin()y A x ?=+的图象; (3)周期变换:把sin()y A x ?=+的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω 1 倍(纵坐标不变),可得到sin()y A x ω?=+的图象. (4)若要作sin()y A x b ?=++,可将sin()y A x ?=+的图象向上(0)b >或向下(0)b <平移b 个单位,可得到sin()y A x b ?=++的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sin y x =的图象利用图象变换作函数sin()y A x ω?=+的图象时要特别注意:当周期变换和相位

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5.如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6.用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到? 问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx,x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx, ,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A.0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、 用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是

三角函数知识点

第 1 页 共 1 页 三角函数知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正, 第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α =MP ,cos α=OM ,tan α=AT .

必修4--三角函数所有知识点归纳总结

《三角函数》 【知识网络】 应用 弧长公式同角三角函数诱导应用计算与化简 的基本关系式公式证明恒等式 应用 任意角的概念角度制与任意角的三角函数的应用已知三角函 图像和性质数值求角 弧度制三角函数 和角公式应用 倍角公式 应用 差角公式 应用 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为k 360 k Z x 轴上角:k 180 k Z y 轴上角:90k 180k Z 3、第一象限角:0 k 36090k 360 k Z 第二象限角:90k 360180k 360k Z 第三象限角:180k 360270k 360k Z 第四象限角:270k 360360k 360k Z 4、区分第一象限角、锐角以及小于90 的角 第一象限角:0 k 36090 k 360 k Z 锐角:090小于90的角:90

5、若 为第二象限角,那么 为第几象限角? 2 2k 2k k 2 k 2 4 2 k 0, 4 , k 1, 5 3 , 2 4 2 所以 在第一、三象限 2 6、弧度制:弧长等于半径时,所对的圆心角为 1弧度的圆心角,记作 1rad . 7、角度与弧度的转化: 1 0.01745 1 180 57.30 57 18 180 8、角度与弧度对应表: 角度 0 30 45 60 90 120 135 150 180 360 弧度 2 3 5 2 6 4 3 2 3 4 6 9、弧长与面积计算公式 弧长: l R ;面积: S 1 l R 1 R 2 ,注意:这里的 均为弧度制 . 2 2 二、任意角的三角函数 P (x, y) 1、正弦: sin y x y ;余弦 cos ;正切 tan x r r r 其中 x, y 为角 终边上任意点坐标, r x 2 y 2 . 2、三角函数值对应表: 度 30 45 60 90 120 135 150 180 270 360 弧度 2 3 5 3 2 6 4 3 2 3 4 6 2 sin 1 2 3 1 3 2 1 0 1 2 2 2 2 2 2 cos 3 2 1 0 1 2 3 0 1 2 1 1 2 2 2 2 2 tan 3 1 3 无 3 1 3 0 无 3 3 3、三角函数在各象限中的符号

三角函数的概念及性质

一、球与正方体的切与接 命题1 棱长为a的正方体的内切球、棱切球、外接球的半径依次为r1,r2,r3,则r1= a r2= a r3= a 正方体的内切球、棱切球是与正方体的六个面、十二条棱都相切的球,外接球是过正方体的八个顶点的球,它们是同一个正方体的球心相同的球。如图1所示,过正方体的对角面可作含各球基本量的截面图,不难发现,三类球的直径依次增大,分别是正方体的棱长,面对角线长,体对角线长,从而得r1= a,r2= a,r3= a。 题1 (2006年,福建)已知正方体外接球的体积是,那么正方体的棱长等于() 题2 (2007年,湖南)棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O 的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球截得的线段长为() 解析:根据命题1,球O的半径为,如图2所示,作过E、F、O的球的截面图,直线EF分别交圆O于M、N两点,过O作OH⊥EF于点H,则OH= ,H是MN的中点,连结OM,由勾股定理易得MH= ,故MN=2MH= ,故选D。 二、球与正四面体的切与接 命题2 棱长为a的正四面体的内切球、棱切球、外接球的半径依次为r1、r2、r3,则r1= a r2= a r3= a 正四面体的内切球、棱切球是指与正四面体的四个面、六条棱都相切的球,外接球是指过正四面体的四个顶点的球。同一个正四面体的三类球的球心相同。如图3所示,过正四面体的任一条棱AB及对棱的中点E作一截面,可得包含各球基本量的截面图,不难得出r1= a,r2= a,r3= a。

另:如果把正四面体补成一个正方体,如图4所示,那么正四面体的棱切球也是正方体的内切球,正四面体的外接球也是正方体的外接球。 题3 (2006年,山东)在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E为AB 的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,如图5所示,则三棱锥P-DEC的外接球的体积为() 解析:根据题意,三棱锥P-DEC是棱长为1的正四面体,则外接球半径为,故V= ,选C。 题4 (2007年,安徽)半径为1的球面上的四点A、B、C、D是正四面体的顶点,则A、B两点的球面距离为()。 A、arcos(- ) B、arcos(- ) C、arcos(- ) D、arcos(- ) 解析:根据命题2,正四面体的棱长为,设球心为O,则在△AOB中由余弦定理cos ∠AOB=- ,即∠AOB=arcos(- ),所以,A、B的球面距离为arcos(- ),选C。 三、球与直角四面体的切与接 命题3 共点的互相垂直的三条棱长分别为a、b、c的直角四面体的外接球半径r1= ,内切球半径r2= = ,其中V为体积,S为表面积。 同一个顶点上的三条棱两两垂直的四面体叫直角四面体,如图6所示,四面体S-ABC 中,SA⊥SB⊥SC,则称为直角四面体。将其补成一个长方体,则其外接球就是长方体的

三角函数的图像与性质题目及答案

1.函数 f (x )=sin 2x +3?图象的对称轴方程可以为 ( D ) A .x = B .x = C .x = D .x = 2.函数 y =sin x +3?cos 6-x ?的最大值及最小正周期分别为 ( A ) A .1,π B. ,π C .1, D .1,2π 3.函数 y =2sin x -4?cos 4-x ?是( C ) A .[-1,1] B .[- ,-1] C .[- ,1] D .[-1, ] A .f(x)在( , )上是递增的 B .f(x)的图像关于原点对称 A .k π (k ∈Z) B .k π +π (k ∈Z)C .k π + (k ∈Z) D .k π - (k ∈Z) [2k π + ,2k π + ](k ∈ z ) __________________. 高三理科数学周测十六(三角函数的图像与性质) ? π? ? ? 5π π π π 12 3 6 12 ? π? ?π ? ? ? ? ? 1 π 2 2 ? π? ?π ? ? ? ? ? A .周期为 2π 的奇函数 B .周期为 π 的奇函数 C .周期为 π 的偶函数 D .周期为 π 的非奇非偶函数 4.函数 y =sin2x +sinx -1 的值域为(C ) 5 5 5 4 4 4 5.对于函数 f(x)=2sinxcosx ,下列选项中正确的是( B ) π π 4 2 C .f(x)的最小正周期为 2π D .f(x)的最大值为 2 6.函数 f(x)= 3cos(3x -θ )-sin(3x -θ )是奇函数,则 θ 等于( D ) π π 6 3 3 7. 若 f (sin x )=3-cos2x ,则 f (cos x )=( C ) A 、3-cos2x 8.函数 f ( x ) = x sin( x - 5 π 2 B 、3-sin2x C 、3+cos2x D 、3+sin2x ) 是( B ) A.偶函数 B.奇函数 C.非奇非偶函数 D.既奇又偶函数 9. 在 (-π , π ) 内是增函数, 且是奇函数的是( A ) . x x x A. y = sin B. y = cos C. y = - sin D. y = sin 2 x 2 2 4 1 . 函 数 y = 2s x i - 1 n 的 定 义 域 是 _______ π 5π 6 6 2.函数 y = a + b sin x (b > 0) 的最大值是 3 ,最小值是- 1 ,则a =_____ 1 , 2 2 2 1 / 2

高一三角函数知识点整理

§04. 三角函数 知识要点 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系: ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360± +=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad = π180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745 (rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在 α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y = αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 7. 三角函数的定义域: SIN \COS 1、 2、3、4表示第一、二、三、 四象限一半所在区域16. 几个重要结论:

三角函数的性质及其应用 专题3

高考数学复习优质专题学案(附经典解析) 三角函数的性质及其应用 基础知识:

一、典型例题 1. 函数1()sin()cos()536f x x x ππ =++-的最大值为( ). A. 65 B. 1 C. 35 D. 1 5 2. 若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( ). A. π4 B. π2 C. 3π4 D. π 3. 已知函数()2 ππsin 2sin 22cos 166f x x x x ??? ?=++-+- ? ?? ? ? ? . (1)求函数()f x 的最小正周期和最大值; (2)讨论函数()f x 在区间ππ,122??-? ??? 上的单调性. 二、课堂练习 1. 设函数()sin(2)3f x x π =+,以下四个结论:①它的周期为π;②它的图象关于直线12 x π= 对称;③它的图象关于点(,0)3π对称;④在区间(,0)6π -上是增函数. 其中正确的结论有( ). A. ①②③④ B. ①② C. ②③④ D.①③ 2. 已知函数()πsin (0)3f x x ωω??=+> ?? ? ,ππ63f f ????= ? ??? ?? ,且()f x 在区间ππ,63?? ??? 上有最小 值,无最大值,则ω的值为( ). A. 23 B. 11 3 C. 73 D. 143 3. 函数()πcos 36f x x ?? =+ ?? ? 在[]0,π的零点个数为________. 三、课后作业 1. 函数ππsin 2cos 263y x x ????=++- ? ?? ? ? ? 的最小正周期和振幅分别是( ). A. π B. π,2 C. 2π,1 D. 2π

高中数学三角函数知识点总结归纳

高中数学必修4知识点总结 第一章 三角函数 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落 在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ), y=A cos(ωx+φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函数、 余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和 最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x 通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现 象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该 图象与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别 开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的 第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x 取0、、π、、2π来求相应的x 值及对应

相关文档
最新文档