啤酒生产各物料衡算

啤酒生产各物料衡算
啤酒生产各物料衡算

啤酒酿造工艺流程

1:原料贮仓 2:麦芽筛选机3:提升机4:麦芽粉碎机5:糖化锅

6:大米筛选机7:大米粉碎机8:糊化锅9:过滤槽10:麦糟输送

11:麦糟贮罐12:煮沸/回旋槽 13:外加热器14:酒花添加罐15:麦汁冷却器16:空气过滤器17:酵母培养及添加罐18:发酵罐19:啤酒稳定剂添加罐

20:缓冲罐 21:硅藻土添加罐 22:硅藻土过滤机23:啤酒清滤机24:清酒罐25:洗瓶机 26:罐装机27:啤酒杀菌机 28:贴标机 29:装箱机

啤酒生产工艺流程示意图

啤酒生产工艺过程主要包括原料粉碎、糊化、糖化、过滤、发酵和包装等。其工艺流程示意图见图下图。

2 原料的制备

2.1 粗选、分选

a、粗选供生产啤酒用的大麦,由于含有泥土、砂石、草屑、杂谷或金属等杂质物,所以在浸麦前要采用粗选机将大麦进行清理。大麦粗选机多为振动筛式,筛体往复运动的振幅大小,可调节偏重块的重量来达到。物料中的轻杂质由前后风道排出。由于物料在筛上面运动,砂石及其他杂质按其形状的不同分级清理出来,使被加工谷物达到整洁。

b、分选分选目的是进一步清除大麦中的灰尘、麦芒、杂谷、碎麦等夹杂物,

并将大麦按麦粒度进行分级。

2.2 浸麦、发芽

a、浸麦浸麦是将经精选后的大麦置于浸麦槽中浸渍。精选大麦在用水浸渍过程中,由于浸渍水的循环置换及通入压缩空气,使大麦得到进一步清洗,并排除二氧化碳。大麦的含水量由原来的13%左右增加至43%~48%,同时麦粒因得到通风而增强了发芽的活力。

b、发芽大麦是酿造啤酒的主要原料,但首先必须将其制成麦芽方能用于酿酒。大麦在人工控制和外界条件下发芽,大麦发芽后成为绿麦芽。

2.3 干燥、除根

a、干燥大麦经过粗选、分选、浸渍、发芽后制成的绿麦芽还必须经过干燥将它制成干麦芽,以利于长期贮藏。干燥的目的是使麦芽的含水量从45%左右降至3.5%左右,并通过烘焙而增加麦芽特有的色、香、味,同时使麦根容易脱落。

b、除根经干燥后的干麦芽不能马上用于酿酒,因麦根中含有其它杂质,而且苦味,会破坏啤酒的味道和改变啤酒的色泽,所以必须用除根机除去已干燥的麦根,并利用风力清除其它杂质。

3 麦芽的糖化

3.1 糊化、糖化

a、糊化淀粉在常温下不溶于水,但当水温至53℃以上时,淀粉的物理性能发生明显变化。淀粉在高温下溶胀、分裂形成均匀糊状溶液的特性,称为淀粉的糊化。糊化后的产物又叫糊精。

b、糖化糖化是利用糖化酶将糊化产物糊精或低聚糖进一步水解转化为麦芽糖的过程。混合醪被泵入煮沸锅之前需先在过滤槽中去除其中的麦芽皮壳,并加入酒花再二次煮沸。

3.2 过滤

过滤是产品分离的一中方法,在啤酒生产过程中多次用到过滤技术,其主要原理是根据各种物质分子或颗粒的大小、形状、酸碱性和其他物化性质的不同进行分离产物的技术。

3.3 煮沸、冷却

a、煮沸在煮沸锅中,混合醪被煮沸以吸取酒花的味道,并起色和消毒。在煮沸后,加入酒花的麦芽汁被泵入回旋沉淀槽以去处不需要的酒花剩余物和不溶性的蛋白质。

b、冷却洁净的麦芽汁从回旋沉淀槽中泵出后,被送入薄板换热器冷却,冷却至主发酵温度6℃。随后,麦芽汁中被加入酵母,开始进入发酵的程序。

4 麦芽汁的发酵

广义的发酵是指利用生物体(包括微生物、植物细胞、酵母菌等)的代谢功能,使有机物分解的生物化学反应过程。狭义的发酵是指微生物通过无氧氧化将糖类转变成乙醇的过程。发酵分为有氧发酵和无氧(厌氧)发酵。啤酒发酵属于无氧发酵。

在啤酒发酵的过程中,人工培养的酵母将麦芽汁中可发酵的糖份转化为酒精和二氧化碳,生产出啤酒。发酵在八个小时内发生并以加快的速度进行,积聚一种被称作“皱沫”的高密度泡沫。这种泡沫在第3或第4天达到它的最高阶段。

从第5天开始,发酵的速度有所减慢,皱沫开始散布在麦芽汁表面,必须将它撇掉。酵母在发酵完麦芽汁中所有可供发酵的物质后,就开始在容器底部形成一层稠状的沉淀物。随之温度逐渐降低,在6~10天后主发酵就完全结束了。整个过程中,需要对温度和压力做严格的控制。

主发酵结束以后,绝大部分酵母沉淀于罐底。将这部分酵母回收起来以供下一罐使用。除去酵母后,生成物嫩啤酒继续在此锥形罐内培养,即后发酵。在此,剩余的酵母和不溶性蛋白质进一步沉淀下来,使啤酒的风格逐渐成熟。成熟的时间随啤酒品种的不同而异,一般在7~21天。

5 成熟啤酒的过滤

经过后发酵的成熟酒,大部分蛋白质颗粒和酵母已经沉淀,少量悬浮于酒中,须滤除方能包装。对啤酒的分离要求是:产量大,质量高(透明度高),劳动条件好,CO2损失小,不易污染,不影响风味,啤酒不吸收氧。实际上不论何种方法要达到十全十美的效果很困难的。成熟啤酒的过滤多采用硅藻土过滤法。其特点:可以不断地添加助滤剂,使过滤性能得到更新、补充,所以,过滤能力强,可以过滤很浑浊的酒,没有象棉饼那样洗棉和拆卸的劳动,省气省水省工,酒损失也低。硅藻土过滤机型号很多,其设计的特点在于体积小,过滤能力强,操作自动化。本设计采用板框式硅藻土过滤机:结构简单,活动部件少,维修方便。

6 包装

包装是啤酒生产过程的最后一步,包装要求在无菌的环境下进行。常用的包装类型有瓶装、罐装和桶装等。

二.35000t/a 啤酒厂糖化车间的物料衡算

啤酒厂糖化车间的物料平衡计算主要项目为原料(麦芽、大米)和酒花用量,热麦汁和冷麦汁量,废渣量(糖化槽和酒花槽)等。

2.1 糖化车间工艺流程示意图 根据我国啤酒生产现况,有关生产原料配比、工艺指标及生产过程的损失等数据如表1

所示。

图2 啤酒厂糖化车间工程流程示意图

2.2 工艺技术指标及基础数据

根据表1的基础数据,首先进行100kg 原料生产12°淡色啤酒的物料计算,然后进行100L 12°淡色啤酒的物料衡算,最后进行35000t/a 啤酒厂糖化车间的物料平衡计算。

表1 啤酒生产基础数据

(1)热麦计算 根据表1可得到原料收率分别为:

麦芽收率为: 75%×(100-6) %=70.5% 大米收率为: 92%×(100-13) %=80.04%

混合原料收得率为: (0.75×70.5%+0.25×80.04%)98%=71.79%

由上述可得100kg 混合料原料可制得的12°热麦汁量为: (71.79%×100)÷12%=598.3

又知12°麦汁在20℃时的相对密度为1.084,而100℃热麦汁比20℃时的麦汁体积增加1.04倍,故热麦汁(100℃)体积为:598.3÷(1.084×1000)×1000×1.04=574(L)

(2)冷麦汁量为:574×(1-0.075)=531(L)

(3)发酵液量为:531×(1-0.016)=522.5(L)

(4)过滤酒量为:522.5×(1-0.015)=514.7(L)

(5)成品啤酒量为:514.7×(1-0.02)=5.4.4(L)

2.4 生产100L12°淡色啤酒的物料衡算

根据上述衡算结果知,100kg混合原料可生产12°淡色成品啤酒504.4L,故可得以下结果:(1)生产100L12°淡色啤酒需耗混合原料量为:(100/5.4.4)×100=19.83 (kg)

(2)麦芽耗用量为:19.83×75%=14.87(kg)

(3)大米耗用量为:19.83-14.87=4.96(kg)

(4)酒花耗用量:对浅色啤酒,热麦汁中加入的酒花量为0.2%,故为:

(100/504.4) ×574×0.2%=0.228(kg)

(5)热麦汁量为:(574/504.4)×100=113.8(L)

(6)冷麦汁量为:(531/504.4)×100=105.3(L)

(7)湿糖化糟量设热电厂出的湿麦芽糟水分含量为80%,则湿麦芽糟量为:[(1-0.06)(100-75)/(100-80)]×14.87=17.47(kg)

而湿大米糟量为:

[(1-0.13)(100-92)/(100-80)]×4.96=1.73kg)

故湿糖化糟量为:17.47+1.73=19.2(kg)

(8)酒花糟量设麦汁煮沸过程干酒花浸出率为40%,且酒花糟水分含量为80%,则酒花糟量为:

[(100-40)/(100-80)]×0.228=0.684(kg)

2.5 35000t/a 12°淡色啤酒酿造车间物料衡算表

设生产旺季每天糖化8次,而淡季则糖化4次,每年总糖化次数为1800次。由此可计算出每次投料量及其他项目的物料平衡。把述的有关啤酒厂酿造车间的三项物料衡算计算结果,整理成物料衡算表,如表2所示。

表2 啤酒厂酿造车间物料衡算表

(1)每次糖化的原料量为:

混合原料: (35000000/1800)×(100/504.4) = 3854.965(kg) 504.4为100kg 原料可生产出成品啤酒的量 大麦: 3854.965×0.75=2891.224(kg) 大米: 3854.965×0.25=963.741 (kg) (2) 热麦汁量: (576/100)×3854.965=22204.60(L) (3) 冷麦汁量: (531/100)×3854.965=20469.864(L) (4) 酒花用量: (0.228/19.83) ×3854.965=44.32 (kg) (5) 湿糖化糟量: (19.2/19.83)×3854.965=3732.49 (kg) (6) 湿酒花糟量: (0.684/19.83) ×3854.965=132.97(kg) (7) 发酵量:20469.864×(1-0.016)=20142.346(L ) (8) 过滤量: 20142.346×(1-0.015)=19840.21(L ) (9)

成品量: 19840.21×(1-0.02)=19443.41(L )

三、 35000t/a 啤酒厂糖化车间的热量衡算

自来水18℃

4.5 热水50℃

90℃,20min 100℃

过滤 糖化结束 78

麦芽 煮沸锅90min 回旋沉淀槽 薄板冷却器 发酵罐 酒花

图3 啤酒厂糖化工艺流程图

12min

7min

二次煮出糖化法是啤酒常用的糖化工艺,下面就以为基准进行糖化车间的势量衡算。

工程流程示意图如图2所示,其中的投料量为糖化一次的用料量(计算参表2)

3.1糖化用水耗热量Q1

根据工艺,糊化锅加水量为:

G1=(963.741+192.75)×4.5=5204.21(kg)

式中,963.741kg为糊化一次大米粉量,192.75kg为糊化锅加入的麦芽粉量(为大米量的

20%)

而糖化锅加水量为: G2=2698.744×3.5=9445.604(kg)

式中,2698.744kg为糖化一次糖化锅投入的麦芽粉量,即2891.224-192.75=2698.744 (kg)

而2891.224为糖化一次麦芽定额量。

故糖化总用水量为:

G W=G1+G2=14649.814(kg) (1) 自来水的平均温度取t1=18℃,而糖化配料用水温度t2=50℃,故耗热量为:

Q1=(G1+G2)cw(t1-t2)= 14649.814×(50-18) 4.18=1959559.12 (KJ) (2) 3.2第一次米醪煮沸耗热量Q2

由糖化工艺流程图(图3)可知: Q2= Q21+Q22+Q23 (3)

3.2.1 糖化锅内米醪由初温t0加热到100℃的耗热量Q21

Q21=G米醪C米醪(100-t0)(4)

(1)计算米醪的比热容G米醪根据经验公式G容物=00.1[(100-W)c0+4.18W]进行计算。式

中W为含水百分率;c0为绝对谷物比热容,取c0=1.55KJ/(Kg·K).

C

麦芽

=0.01[(100-6)1.55+4.18×6]=1.71KJ/(Kg·K)

C

大米

=0.01[(100-13)1.55+4.18×13]=1.89KJ/(Kg·K)

C

米醪=(G

大米

c

大米

+G

麦芽

c

麦芽

+ G

1

c

w

)/(G

大米

+G

麦芽

+ G

1

) (5)

=(963.741×1.89+192.75×1.71+5204.21×

4.18]/( 963.741+192.75+5204.21)

=4.27KJ/(Kg·K)

(2) 米醪的初温t0设原料的初温为18℃,而热水为50℃,则

t

0 =[(G

大米

c

大米

+G

麦芽

c

麦芽

)×18+ G

1

c

w

×50]/( G

米醪

C

米醪

) (6)

=[(963.741×1.89+192.75×1.71) ×18+5204.21×4.18×50]/(6360.701

×4.27)=40.01.5℃

其中G米醪=963.741+192.75+5204.21=6360.701(kg)(3)把上述结果回(4)中,得:

Q

21

=6360.701×4.27(100-40.01)=1629340.00 KJ 3.2.2 煮沸过程蒸汽带出的热量Q22

设煮沸时间为40min,蒸发量为每小时5%,则蒸发水分量为:

V 1=G

米醪

×5%×40/60=6360.701×5%×40/60=212.02 Kg(7)

故Q22= V1I=212.02×2257.2=478579.143 KJ (8)式中,I为煮沸温度(约为100℃)下水的汽化潜热(KJ/Kg)

3.2.3 热损失Q23

米醪升温和第一次煮沸过程的热损失约为前两次的耗热量的15%,即:

Q 23=15%(Q

21

+Q

22

)(9)

3.2.4 由上述结果得:

Q

2=1.15(Q

21

+Q

22

)=1.15(1629340.00+478579.143)=2424107.015 KJ(10)

3.3 第二次煮沸前混合醪升温至70℃的耗热量Q3

按照糖化工艺,来自糊化锅的煮沸的米醪与糖化锅中的麦醪混合后温度应为63℃,故混合前米醪先从100℃冷却到中间温度t0。

3.3.1 糖化锅中麦醪中的t

已知麦芽初温为18℃,用50℃的热水配料,则麦醪温度为:

G

麦醪=G

麦芽

+G

2

=2698.744+9445.604=12144.348 kg (11)

c

麦醪=(G

麦芽C麦芽

+G

2Cw

)/(G

麦芽

+G

2

=(2698.744×1.71+9445.604×4.18)/(2698.744+9445.604)(12)=3.63KJ/(kg.K)

t

麦醪=(G

麦芽C麦芽

×18+G

2Cw

×50)/(G

麦醪C麦醪

=(2698.744×1.71×18+9445.604×4.18×50)/(12144.348×3.63)(13) =46.66℃

3.3.2 根据热量衡算,且忽略热损失,米醪与麦醪混合前后的焓不变,则米醪的中间温度为:

G

混合=G

米醪

+G

麦醪

=6360.701+12144.348=18505.049 Kg (14)

C

混合=(G

米醪C米醪

+G

麦醪C麦醪

)/(G

米醪

+G

麦醪

)(15)=(6360.701×4.27+12144.348×3.63)/18505.049

=3.85kJ/(kg·K)

t=(G

混合C混合×t

混合

-G

麦醪C麦醪

×t

麦醪

)/(G

米醪C米醪

)(16)

=(18505.049×3.85×63-12144.348×3.63×46.66)/((6360.701-212.02)×4.27)

=92.61℃

3.3.3 Q3

Q 3=G

混合C混合

(70-63)=18505.049×3.85(70-63)=498711.07(kJ)(17)

3.4 第二次煮沸混合醪的耗热量Q4 由糖化工艺流程可知:

Q 4=Q

41

+Q

42

+Q

43

(18)

3.4.1 混合醪升温至沸腾所耗热量Q41 (1)经第一次煮沸后米醪量为:

G/

米醪=G

米醪

-V=6360.701-212.02=6148.681(kg) (19)

糖化锅的麦芽醪量为:

G

麦醪=G

麦芽

+G

2

=2698.744+9445.604=12144.348 kg (20)

故进入第二次煮沸的混合醪量为:

G

混合=G/

米醪

+G

麦醪

=6148.681+12144.348=18293.029 (kg) (21)

(2)根据工艺,糖化结束醪温为78℃,抽取混合醪的温度为70℃,则送到第二次煮沸的混合醪量为:

[G

混合(78-70)]/[G

混合

(100-70)]×100%=26.7% (22)

(3)麦醪的比热容

c 麦醪=(G 麦芽C 麦芽+G 2Cw )/(G 麦芽+G 2)

=(2698.744×1.71+9445.604×4.18)/(2698.744+9445.604) (23)

=3.63KJ/(kg.K)

混合醪比热容:

C 混合=(G 米醪C 米醪+G 麦醪C 麦醪)/(G 米醪+G 麦醪) (24)

=(6360.701×4.27+12144.348×3.63)/18505.049 =3.85kJ/(kg ·K )

(4)故Q 41=26.7%G 混合c 混合(100-70)=570667.95(kJ ) (25)

3.4.2 二次煮沸过程蒸汽带走的热量Q42

煮沸时间为10min ,蒸发强度5%,则蒸发水分量为:

V 2=26.7%G 混合×5%×10/60

=26.7%×18505.049×5%×10/60 =41.17(kg)

Q 42=IV 2=2257.2×41.17=92937.35(kJ) (26)

式中,I 为煮沸温度下饱各蒸汽的焓(kJ/kg )

3.4.3 热损失Q43

根据经验有:Q 42=15%(Q 41+Q 42) (27)

3.4.4 把上述结果代入公式(27)得

Q 4 =1.15(Q 41+Q 42) =1.15(570667.95+92937.35) =763146.095 (kJ) (28) 3.5 洗槽水耗热量Q5

设洗槽水平均温度为80℃,每100kg 原料用水450kg ,则用水量为:

G 洗=3854.965×450/100=17347.34(kg)

故 Q5=G 洗Cw(80-18)=17347.34×4.18×(80-18)=4495737.28(kJ) (29) 3.6 麦汁煮沸过程耗热量Q6

6362616Q Q Q Q ++= (30) 3.6.1 麦汁升温至沸点耗热量Q61

由表2啤酒厂酿造车间物料衡算表可知,100kg 混合原料可得到598.3kg 热麦汁,

并设过滤完毕麦汁温度为70℃,则进入煮沸锅的麦汁量为:

G 麦汁 =3854.965×598.3/100=23064.26(kg )

又C 麦汁=(2891.224×1.71+963.741×1.89+3854.965×6.4×4.18)/(3854.965×7.4)=3.85 (kJ/kg. )k 故Q61= G 麦汁C 麦汁 (100-70)=2665511.59(kJ) (31)

3.6.2 煮沸过程蒸发耗热量Q62

煮沸强度10%,时间1.5h ,则蒸发水分为:

V 3=23064.26×10%×1.5=3459.64(kg)

故Q 62=I V 3=2257. 2×3459.64=7809097.15 (KJ) (32) 3.6.3 热损失为

)%(15626163Q Q Q += (33)

3.6.4 把上述结果代入上式得出麦汁煮沸总耗热

Q6=1.15(Q61+Q62)=1.15(2665511.59+7809097.15)=12045800.05(KJ) (34)

3.7 糖化一次总耗热量Q总

Q总=Q1+Q2+Q3+Q4+Q5+Q6 =22187060.63(KJ)(35)

3.8 糖化一次砂耗用蒸汽用量D

使用表压0.3MPa的饱和蒸汽,I=2725.3Kj/kg,则:

D= Q总/[(I-i)η]

= 22187060.63/[(2725.3-561.47)×95% ] (36)

=10793.27(kg/h)

式中,i为相应冷凝水的焓(561.47kJ/kg);η为蒸汽的热效率,取η=95%。

3.9 糖化过程每小时最大蒸汽耗量Qmax

在糖化过程各步骤中,麦汁煮沸耗热量Q6为最大,且已知煮沸时间为90min热效率为95%,故:

Q max=Q6/(1.5×95%)=12045800.05/(1.5×95%)=8453193.02(KJ/h) (37)相应的最大蒸汽耗量为:

D max=Q max/(I-i)=8453193.02/(2725.3-561.47)=3906.59(kg/h) (38)

3.10 蒸汽单耗

据设计,每年糖化次数为1800次,总共生产啤酒35000t.年耗蒸汽总量为:

D T=10793.27×1800=19427886 (Kg)

每吨啤酒成品耗蒸汽(对糖化):

D5=19427886/35000=555.08(kg/t啤酒)

每昼夜耗蒸汽量(生产旺季算)为:

D d=10793.27×8=86346.16(kg/d)

至于糖化过程的冷却,如热麦汁被冷却成热麦汁后才送井发酵车间,必须尽量回收其中的热量。最后若需要耗用冷冻水,则在以下“耗冷量计算”中将会介绍

最后,把上述结果列成热量消耗综合表,如表3

四、35000t/a啤酒厂发酵车间的耗冷量衡算

啤酒发酵工艺有上面发酵和下面发酵两大类,而后者有传统的发酵槽发酵和锥形罐发酵等之分。不同的发酵工艺,其耗冷量也随之改变。下面以目前我国应用最普遍的锥形罐发酵工艺进行20000t/a啤酒厂发酵车间的耗冷量计算。

4.1 发酵工艺流程示意图

冷却

94℃热麦汁冷麦汁(6℃)锥形灌发酵-1℃过滤清酒灌图4发酵工艺流程

4.2 工艺技术指标及基础数据

年产12°淡色啤酒35000t;旺季每天糖化8次,淡季为4次,每年共糖化1800次;主发酵时间6天;

4锅麦汁装1个锥形罐;

12°Bx麦汁比热容c1=4.0KJ/(kgK);

冷媒用15%酒精溶液,其比热容可视为c2=4.18 KJ/(kgK);

麦芽糖化厌氧发酵热q=613.6kJ/kg;

麦汁发酵度60%。

根据发酵车间耗冷性质,可分成工艺耗冷量和非工艺耗冷量两类,即:

Q=Qt+Qnt (39)

4.3 工艺耗冷量

t

Q

4.3.1 麦汁冷却耗冷量Q1

近几年来普遍使用一段式串联逆流式麦汁冷却方法。使用的冷却介质为2℃的冷冻水,出口的温度为85℃。糖化车间送来的热麦汁温度为94℃,冷却至发酵起始温度6℃。

根据表2啤酒生产物衡酸表,可知每糖化一次热麦汁22204.60L,而相应的麦汁密度为1048kg/m3,故麦汁量为:

G=1048×22.2046=23270.42(kg)

又知120 Bx麦汁比热容C1=4.0KJ/(Kg·k),工艺要求在1h小时内完成冷却过程,则所耗冷量为:

Q 1 =[G

C

(t

1

-t

2

)]/τ (40)

=[23270.42×4.0(94-6)]/1

=8191187.84(KJ/h)

式中t1和t2——分别表示麦汁冷却前后温度(℃)

τ——冷却操作过程时间(h)

根据设计结果,每个锥形发酵罐装4锅麦汁,则麦汁冷却每罐耗冷量为:

Q f =4Q

1

=4×8191187.84=32764751.36(kJ) (41)

相应地冷冻介质(2℃的冷冻水)耗量为:

M f =Q

1

/[C

m

(t

4

-t

3

)]= 8191187.84/[4.18(85-2)]=23609.81(kg/h) (42)

式中,t3和t4——分别表示冷冻水的初温和终温(℃)

C m——水的比热容[KJ/(kg·K)]

4.3.2 发酵耗冷量Q2

(1)发酵期间发酵放热Q21,假定麦汁固形均为麦芽糖,而麦芽糖的厌氧发酵房热量为613.6kJ/kg。设发酵度为60%,则1L麦汁放热量为:

q

=613.6×12%×60%=44.18(kJ)

根据物料衡算,每锅麦汁的冷麦汁量为20469.864L,则每锥形缺罐发酵放热量为:

Q

01

=44.18×20469.864×4=3617434.366(kJ)

由于工艺规定主发酵时间为6天,每天糖化8锅麦汁(旺季),并考虑到发酵放热不平衡,取系数1.5,忽略主发酵的升温,则发酵高温时期耗冷量为:

Q 21 =(Q

01

×1.5×8)/(24×6×4)

=(3617434.366×1.5×8)/(24×6×4)]

=75363.22(kJ/h)

(2)发酵后期发酵液降温耗Q22主发酵后期,发酵后期,发酵液温度从6℃缓降到-1℃。每天单罐降温耗冷量为:

Q 02=4GC

1

[6-(-1)]=4×23270.42×4.0×7=2606287.04 (KJ) (43)

工艺要求此过程在2天内完成,则耗冷量为(麦汁每天装1.5个锥形罐):

Q 22=(1.5Q

02

)/(24×2)=(1.5×2606287.04)/(24×2)=81446.47(KJ/h) (44)

(3)发酵总耗冷量Q2

Q 2=Q

21

+Q

22

=75363.22+81446.47=156809.69(kJ/h) (45)

(4)每罐用冷媒耗冷量Q0

Q 0=Q

01

+Q

02

=3617434.366+2606287.04=6223721.406kg/h (46)

(5)发酵用冷媒耗(循环量)M2发酵全过程冷却用稀酒精液作冷却介质,进出口温度为-8℃和0℃,故耗冷媒量为:

M 2=Q

2

/(Cm×8)=156809.69/(4.18×8)=4689.285kg/h (47)

4.3.3酵母洗涤用冷无菌水冷却的耗冷量Q3

在锥形罐啤酒发酵过程,主发酵结束时要排放部分酵母,经洗涤活化后重复用于新麦汁的发酵,一般可重复使用5—7次。设湿酵母添加量为麦汁量的1.0%,且使用1℃的无菌水洗涤,洗涤无菌水量为酵母量的3倍。冷却前无菌水温30℃。用-8℃的酒精液作冷地介质。

由中述条件,可得无菌水用量为:

Gw′=23270.42×6×1.0%×3=4188.68(kg/d)

式中23270.42——糖化一次的冷麦汁量(kg)

每班无菌水量:Gw= Gw′/3=3514.12/3=1396.23(kg/每班) (48)

假无菌水冷却操作在2h小时内完成,则无菌水冷却耗量为:

Q3=[GwGm(tw-tw′)]/r =[1396.23×4.18×(30-1)]/2=84625.21(kg/h) (49)所耗冷冻介质量为:

M 3=Q

3

/ [cw(t2-t1)] =84625.21/ (4.18×8)=2530.66(kg/h) (50)

式中,t1和t2—冷冻酒精液热交换前后的温度,分别为-8℃和0℃。

每罐用于酵母洗涤的耗冷量:

Q

3

=[GwGm(tw-tw′)]/1.5=[1396.23×4.18×(30-1)]/1.5 (51) =112834.00(kJ)

式中 1.5——每班装罐1.5罐

4.3.4 酵母培养耗冷量Q4

根据工艺设计,每月需进行一次酵母纯培养,培养时间为12d,即288h。根据工厂实践,

年产30000t啤酒培养冷量为41800(KJ/h),则

对应的年冷耗量为:

Q 4’= Q 4×288×10×3.5/3=1.40×108(KJ) (52)

相应的高峰冷冻介质循环量为:

M 4 =Q 4/[c w (t 1-t 2)]=41800/(4.18×8)=1250(kg/h)

4.3.5发酵车间工艺耗冷量Qt

综上计算,可算出发酵车间的工艺耗冷量为:

Qt=Q1+Q2+Q3+Q4=8191187.84+156809.69+84625.21+41800 (53) =8474422.74(KJ/h)

4.4 非工艺耗冷量Qnt

除了上述的发酵过程工艺耗冷量外,发酵罐外壁、运转机械、维护结构及管道等均会耗用或散失冷量,构成所谓的非工艺耗冷量,现分别介绍。

4.4.1露天锥形罐冷量散失Q5

锥形罐啤酒发酵工厂几乎都把发酵罐置天露天,由于太阳辐射,对流传热和热传导等造成冷量散失。通常,这部分的冷量由经验数据求取。根据经验,年产2万吨啤酒厂露天锥形罐的冷量在9000-20000kJ/t 啤酒之间,若在南方亚热地区设厂,可取高值。故旺季生天耗冷量为:

Q 5’=Gb ×20000=19.44×1.012×8×20000=3148276.95 (kJ/d)(54) 式中,G b ——旺季成品啤酒日产量(t )

若白天日晒高峰耗冷为平均每小时耗冷量的2倍,则高峰耗冷量为:

Q5=2Q 5’/24=2×3148276.95/24=262356.41(kJ/d) (55) 冷媒(-8℃稀酒精)用量:

M5=Q5/[c m (t2-t1)]= 262356.41/(4.18×8)=7845.59(kJ/d)(56)

4.4.2 清酒罐、过滤机及管道等散失冷量Q6

因涉及的设备、管路很多,若按前面介绍的公式计算,十分繁杂,故啤酒厂设计时往往根据实验经验选取。通常,取t Q Q %126 ,所以:

Q6=12%Qt=12%×8474422.74=1016930.73(KJ/h ) (57) 冷媒(-8℃稀酒精)用量:

M 6=Q 6/[cw(t2-t1)]= 1016930.73/(4.18×8)=30410.61(KJ/h ) (58)

4.5 30000t/a 啤酒厂发酵车间冷量衡算表

将上述计算结果,整理后可得35000t/a 啤酒厂发酵车间冷量衡算表,如表4所得

精馏塔中的物料衡算

3.4精馏塔的工艺条件及有关物性数据的计算 3.4.1操作温度的计算 1.)塔顶温度计算 查文献乙醇-水溶液中乙醇摩尔分数为0.70和0.80时,其沸点分别为78.7℃78.4℃塔顶温度为 D T ,则由内插法: 0.7078.7 0.800.7078.478.7D D x T --=--, 78.24D T ?=℃ 3.)塔釜的温度 查文献乙醇-水溶液中乙醇摩尔分数为0.00和0.05时,其沸点分别为100℃和90.6℃设塔顶温度为 W T ,则由内插法: 0.00100 0.050.0090.6100 W W x T --=--, 96.92W T ?=℃ 则 精馏段的平均温度: 278.2482.13 80.192 m T +==℃ 提馏段的平均温度: 196.9282.13 89.532 m T += =℃ 3.4.2操作压强 塔顶压强:P D =100 kpa 取每层塔板压降:ΔP=133.322 pa 则 进料板压力: 1000.77104.9F P kpa =+?= 塔釜 压力: 1000.77104.9W P kpa =+?= 则 精馏段的平均操作压强: 1100104.9 102.52 m P kpa +== 提馏段的平均操作压强: 2110.5104.9 107.72m P +== .)液相的平均密度 0.843 D x =0.013W x =

由 1 1 i i i n αρρ ==∑ 计算 (1.)对于塔顶 078.24D T C = 查文献 3741.83/A kg m ρ=,3972.9/B kg m ρ= 质量分率 ()0.84346.07 0.93210.84346.0710.84318.02 A α?= =?+-? 10.0679B A αα=-= 则 1A B D A B ααρρρ= +?A B A LB D 1L ρααρρ=+ D ρ31775.2/0.93210.0679 763.6972.9 m kg ==+ (2.)对于进料板 82.13F T C = 查文献 3739.6/A kg m ρ=,3970.50/B kg m ρ= 质量分率 ()0.215746.07 0.41270.215746.0710.215718.02 A α?= =?+-? 10.5102B A αα=-= 则 1A B F A B ααρρρ= +?A B A LB 1F L ρααρρ=+ F ρ31862.1/0.41270.5873 739.6970.5 m kg ==+ (3.)对于塔釜 096.92W T C = 160.009195x = 查文献 3721.2/A kg m ρ=,3955.1/B kg m ρ=

物料衡算与能量衡算

物料衡算与能量衡算 5.1概述 工艺通过甲苯和甲醇采用纳米ZSM-5分子筛催化下通过烷基化反应制得对二甲苯,得到了高纯度的对二甲苯,并且在工艺流程中实现了甲苯和甲醇的循环利用,达到了经济环保的要求。 设计过程中利用Aspen Plus 对全流程进行模拟,并在此基础上完成物料衡算、能量衡算。以工段为单位进行物流衡算,全流程分为甲苯甲醇烷基化反应工段、闪蒸——倾析工段、脱甲苯工段、对二甲苯提纯工段。 5.2物料衡算 5.2.1物料衡算基本原理 系统的物料衡算以质量守恒为理论基础,研究某一系统内进出物料量及组成的变化,即: 系统累计的质量=输入系统的质量-输入系统的质量+反应生成的质量-反应消耗的质量 假设系统无泄漏: R R O U T IN C G F F dt dF -+-=/ 当系统无化学反应发生时: O U T IN F F dt dF -=/ 在稳定状态下: 0/=-=O U T IN F F dt dF ,O U T IN F F = 注:IN F —进入系统的物料流率; OUT F —流出系统的物料流率; R G —反应产生物料速率; R C —反应消耗物料速率。

5.2.2 物料衡算任务 通过对系统整体以及部分主要单元的详细物料衡算,得到主、副产品的产量、原料的消耗量、“三废”的排放量以及最后产品的质量指标等关键经济技术指标,对所选工艺路线、设计流程进行定量评述,为后阶段的设计提供依据。 5.2.3系统物料衡算 详见附录,物料衡算一览表。 5.3能量衡算 5.3.1基本原理 系统的能量衡算以能量守恒为理论基础,研究某一系统内各类型的能量的变化,即: 输入系统的能量=输出系统的能量+系统积累的能量 对于连续系统: ∑∑-=+IN O U T H H W Q 注:Q —设备的热负荷; W —输入系统的机械能; ∑OUT H —离开设备的各物料焓之和; ∑IN H —进入设备的各物料焓之和。 本项目的能量衡算以单元设备为对象,计算由机械能转换、化学反应释放能量和单纯的物理变化带来的热量变化。 5.3.2能量衡算任务 (1) 、确定流程中机械所需的功率,为设备设计和选型提供依据。 (2) 、确定精馏各单元操作中所需的热量或冷量及传递速率,确定加热剂和冷剂的用量,为后续换热和公用工程的设计做准备。 (3) 、确定反应过程中的热交换量,指导反应器的设计和选型。

板式精馏塔项目设计方案

板式精馏塔设计方案 第三节精馏方案简介 (1) 精馏塔的物料衡算; (2) 塔板数的确定: (3) 精馏塔的工艺条件及有关物件数据的计算; (4) 精馏塔的塔体工艺尺寸计算; (5) 塔板主要工艺尺寸的计算; (6) 塔板的流体力学验算: (7) 塔板负荷性能图; (8) 精馏塔接管尺寸计算; (9) 绘制生产工艺流程图; (10) 绘制精馏塔设计条件图; (11) 对设计过程的评述和有关问题的讨论。 设计方案的确定及工艺流程的说明 原料液由泵从原料储罐中引岀,在预热器中预热至84 C后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽 流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25 C后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。 第四节:精馏工艺流程草图及说明

、流程方案的选择

1. 生产流程方案的确定: 原料主要有三个组分:C2°、C3二、C3°,生产方案有两种:(见下图A , B )如 任务书规定: 图(A ) 为按挥发度递减顺序采出,图(B )为按挥发度递增顺序采出。在基本有机化工 生产过程中,按挥发度递减的顺序依次采出馏分的流程较常见。 因各组分采出之 前只需一次汽化和冷凝,即可得到产品。而图(B )所示方法中,除最难挥发组 分外。其它组分在采出前需经过多次汽化和冷凝才能得到产品, 能量(热量和冷 量)消耗大。并且,由于物料的循环增多,使物料处理量加大,塔径也相应加大, 再沸器、冷凝器的传热面积相应加大,设备投资费用大,公用工程消耗增多,故 应选用图(A )所示的是生产方案。 2. 工艺流程分离法的选择: 在工艺流程方面,主要有深冷分离和常温加压分离法。 脱乙烷塔,丙烯精制 塔采用常温加压分离法。因为 C2, C3在常压下沸点较低呈气态采用加压精馏沸 点可提高,这样就无须冷冻设备,可使用一般水为冷却介质,操作比较方便工艺 简单,而且就精馏过程而言,获得高压比获得低温在设备和能量消耗方面更为经 济一些,但高压会使釜温增加,引起重组分的聚合,使烃的相对挥发度降低,分 离难度加大。可是深冷分离法需采用制冷剂来得到低温, 采用闭式热泵流程,将 精馏塔和制冷循环结合起来,工艺流程复杂。综合考滤故选用常温加压分离法流 程。 1、 脱乙烷塔:根据原料组成及计算:精馏段只设四块浮伐 塔板,塔顶采用分 凝器、全回流操作 2、 丙烯精制塔:混合物借精馏法进行分离时它的难易程度取决 于混合 物的沸点差即取决于他们的相对挥发度丙烷一丙烯的 C2 C3 = C3 ° iC4 W% 5.00 73.20 20.80 0.52 0.48 100 工艺特点: 原料 C 工 C 。 (A ) (B )

物料衡算与热量衡算讲解

第4章物料衡算与热量衡算 4.1 物料衡算 物料衡算即是利用物料的能量守恒定律对其进行前后操作后物料总量与产品以及物料损失状况的计算方法,也就是进入设备用于生产的物料总数恒等于产物与物料损失的总量。物料衡算与生产经济效益有着直接的关系。 物料衡算需要在知道产量和产品规格的前提下进行所需的原、辅材料量、废品量以及消耗量的计算。 物料衡算的意义: (1)知道生产过程中所需的热量或冷量; (2)实际动力消耗量; (3)能够为设备选型、台数、决定规格等提供依据; (4)在拟定原料消耗定额基础上,进一步计算日消耗量、时消耗量,能够为所需设备提供必要的基础数据。 4.1.1 年工作日的选取 (1)年工作时间365-11(法定节假日)=354×24=8496(小时) (2)设备大修 25天/年=600小时/年 (3)特殊情况停车 15天/年=360小时/年 (4)机头清理、换网过滤 6次/年 8小时/次 [354-(25+15)]×1/6次/天×8小时/次=396小时=16.5天=17天 (5)实际开车时间 365-11-25-15-17=297天 8496-600-360-396=7140小时 (6)设备利用系数 K=实际开车时间/年工作时间=7140/8496=0.84 4.1.2 物料衡算的前提及计算 (1)挤出成型阶段 物料衡算的前提是应在已知产品规格和产量的前提下进行许多原辅材料量、废品量及消耗量的计算。 1 已知:PVC片材的年生产量为28500吨,其中物料自然消耗率为0.1%,产品合格率为94%,回收率为90%。每年生产297天,二班轮流全天24小时生产。物料衡算如下: 年需要物料量 M=合格产品量/合格率=28500/0.94≈30319.15t 1年车间进料量 M= M/(1-物料自然消耗率)=30319.15t /(1-0.1%)≈30349.50t 12年自然消耗量M=M-M=30349.50-30319.15=30.35t 132年废品量 M=M-合格产品量=30319.15-28500=1819.15t 14每小时车间处理物料量 M=30319.15/297/24h≈4.25t 5年回收物料量

第四章 物料衡算

第四章物料衡算 1.教学目的与要求 掌握化工过程物料衡算的基本方法,包括无化学反应的物料衡算、有化学反应的物料衡算。 2.主要教学内容 物料衡算式、物料衡算的基本方法、无化学反应的物料衡算、有化学反应的物料衡算以及物料衡算的计算机解题。 3.重点与难点: 重点:无化学反应及有化学反应的物料衡算方法 难点:具有循环、排放及旁路过程的物料衡算 4.学时分配: 8+6S 学时 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。 通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另—些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在—个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,团为核反应能量变比非常大,此定律不适用)。

第一节物料衡算式 4-1 化工过程的类型 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或行将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类型。 间歇操作过程: 4-2 物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积累量之和。所以,物料衡算的基本关系式应该表示为; 如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把由反应消耗或生成的量亦考虑在内。所以(4—1)式成为: 上式对反应物作衡算时.由反应而消耗的量,应取减号,对生成物作衡算时,由反应而生成的量,应取加号。 但是,列物料衡算式时应该注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化学反应,则衡算式中各项用摩尔/时为单位时,,必须考虑反应式中的化学计量系数。出为反应前后物料中的分子数不守恒。 第二节物料衡算的基本方法 进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,

物料衡算与热量衡算讲解

第 4 章物料衡算与热量衡算 4.1物料衡算物料衡算即是利用物料的能量守恒定律对其进行前后操作后物料总量与产品以及物料损失状况的计算方法,也就是进入设备用于生产的物料总数恒等于产物与物料损失的总量。物料衡算与生产经济效益有着直接的关系。 物料衡算需要在知道产量和产品规格的前提下进行所需的原、辅材料量、废品量以及消耗量的计算。 物料衡算的意义: (1)知道生产过程中所需的热量或冷量; (2)实际动力消耗量; (3)能够为设备选型、台数、决定规格等提供依据; (4)在拟定原料消耗定额基础上,进一步计算日消耗量、时消耗量,能够为所需设备提供必要的基础数据。 4.1.1 年工作日的选取 (1)年工作时间365-11 (法定节假日)=354×24=8496(小 时) (2)设备大修25 天/ 年=600 小时/ 年 (3)特殊情况停车15 天/年=360 小时/ 年 (4)机头清理、换网过滤6次/年8 小时/次 [354-(25+15)] ×1/6 次/天×8 小时/次=396小时=16.5 天=17 天(5 )实际开车时间 365-11-25-15-17=297 天8496-600-360-396=7140 小 时 (6 )设备利用系数 K= 实际开车时间/ 年工作时间=7140/8496=0.84 4.1.2 物料衡算的前提及计算 (1)挤出成型阶段物料衡算的前提是应在已知产品规格和产量的前提下进行许多原辅材 料量、废品量及消耗量的计算

已知:PVC 片材的年生产量为28500 吨,其中物料自然消耗率为 0.1% ,产品合格率为94%,回收率为90% 。每年生产297 天,二班轮流全天24 小时生产。物料衡算如下: 年需要物料量 M 1=合格产品量/合格率=28500/0.94 ≈30319.15t 年车间进料量 M2= M 1/(1-物料自然消耗率)=30319.15t / (1-0.1% ) ≈30349.50t 年自然消耗量 M3=M 2-M 1=30349.50-30319.15=30.35t 年废品量 M4=M 1-合格产品量=30319.15-28500=1819.15t 每小时车间处理物料量M 5=30319.15/297/ 24h≈4.25t 年回收物料量 M6=M 4×回收率=1819.15 ×90%≈1637.23t 新料量 M7=M 2-M 6=30349.50-1637.23=28712.27t 2)造粒阶段 ① 确定各岗位物料损失率塑化造粒工段物料损耗系数

精馏段和提馏段操作线方程

《精馏段和提馏段操作线方程》教学设计

线方程可通过塔板间的物料衡算求得。 在连续精馏塔中,因原料液不断从塔的中部加入,致使精馏段和提馏段具有不同的操作关系,现分别予以讨论。 讲授新知讲述: 1、精馏段操作线方程 在图片虚线范围(包括精馏段的 第n+1层板以上塔段及冷凝器)内作 物料衡算,以单位时间为基准,可得: 总物料衡算:V=L+D 易挥发组分的物料衡算: V y n+1=Lx n+Dx D 式中: V——精馏段内每块塔板上升的蒸汽 摩尔流量,kmol/h; L——精馏段内每块塔板下降的液体 摩尔流量,kmol/h; y n+1——从精馏段第n+1板上升的蒸 汽组成,摩尔分率; x n——从精馏段第n板下降的液体组 成,摩尔分率。 聆听并看下图 学生书写记忆: D n n x D L D x D L L y + + + = +1 1 1 1+ + + = +R x x R R y D n n 分析归纳:(小组发言) 关于精馏段操作线方程的两点 讨论(1)该方程表示在一定操作条 件下,从任意板下降的液体组成x n 和 与其相邻的下一层板上升的蒸汽组 成y n+1 之间的关系。

将以上两式联立后,有: D n n x D L D x D L L y +++=+1 令R =L /D ,R 称为回流比,于是上式可写作: 111+++= +R x x R R y D n n 以上两式均称为精馏段操作线方程。 点评小组的发言:(略) (2)该方程为一直线方程,该直线过对角线上a (x D ,x D )点,以R /(R +1)为斜率,或在y 轴上的截距为 x D /(R +1)。 讲授新知 讲述: 2、 提馏段操作线方程 在图虚线范围(包括提馏段第m 层板以下塔段及再沸器)内作物料衡算,以单位时间为基准,可得: 总物料衡算:L’=V’+W 易挥发组分衡算:L’x m =V’y m+1+Wx W 式中: L ’——提馏段中每块塔板下降的液体流量,kmol/h ; V ’——提馏段中每块塔板上升的蒸汽流量,kmol/h ; x m ——提馏段第m 块塔板下降液体中 易挥发组分的摩尔分率; y m +1——提馏段第m +1块塔板上升蒸 聆听并看下图 学生书写记忆: W m m x W L W x W L L y ---= +''''' 1

化工中的物料衡算和能量衡算

化工中的物料衡算和能量衡算 化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反” 即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守 恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡 算。正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程 学科的特点。为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、 能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。 物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料 之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的 基础。一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。 绘制流程图时应注意: 1.用简洁的长方形来表达一个单元,不必画蛇添足; 2.每一条物质流线代表一个真实的流质流动情况; 3.区别开放与封闭的物质流 4.区别连续操作与分批操作(间歇生产) 5.不必将太复杂的资料写在物质流线上 确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。 合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种: 1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。 2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb

等。 3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。 4.干湿基准:水分算在内和不算在内是有区别的,惯例如下: 烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基; 奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。 化肥、农药常指湿基,而硝酸、盐酸等则指干基。 选取基准后,就要确定着眼物料了。通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。对于有化学反应的过程,参加反应的组分不能被选作着眼物料。 列物料衡算方程式时计算中要注意单位一致。列方程时,要注意:物料平衡是关于质量的平衡,而不是关于体积或者摩尔数的平衡。只有密度相同时才可列关于体积的方程,根据元素守恒可列相应的关于摩尔数的方程。 物料衡算方程的基本形式为:(以下均为质量,若密度不变,也可用体积或体积流速) 输入+产生=输出+积累+消耗。 对于无反应的物理过程,没有产生和消耗,所以输入=输出+积累,如果是稳态过程,积累=0,则方程变为:输入=输出。以下分别对特定的单元操作讨论物料衡算关系。 1.输送:连续性方程,进管液体=出管液体;进泵液体=出泵液体 2.过滤:总平衡:输入的料浆=输出的滤液+输入的滤饼; 液体平衡:料浆中的液体=滤液中的液体+滤饼中的液体 3.蒸发:原料液=积累+母液+晶体+水蒸气 其他过程类似。值得注意的是,如果对于每个组分列物料衡算方程,则总衡算方程不用列出,因为其不独立。一般来说,对于无反应的物理过程,如果有n 个组分,就可以列出n个方程。 对于有化学反应的过程,物料衡算要更复杂一些,因为反应中原子重新组合,消耗旧物质,产生新物质,所以每一个物质的摩尔量和质量流速不平衡。此外,在化学反应中,还涉及化学反应速率、转化率、产物的收率等因素。为了有利于反应的进行,往往一种反应物要过量。因此在进行反应过程的物料衡算时,应考虑以上因素。对于不参加反应的惰性物质列衡算方程通常比较方便。通常来讲,总质量衡算和元素衡算用得较多,组分衡算对于有化学反应的过程不可以用。 有化学反应的过程物料衡算通常有以下几种方法:直接计算法、利用反应速率进行物料衡算、元素衡算法、化学平衡常数法、结点衡算法、联系组分衡算法等。

物料衡算和热量衡算

3 物料衡算 依据原理:输入的物料量=输出的物料量+损失的物料量 3.1 衡算基准 年生产能力:2000吨/年 年开工时间:7200小时 产品含量:99% 3.2 物料衡算 反应过程涉及一个氧化反应过程,每批生产的产品相同,虽然有原料对叔丁基甲苯和溶剂甲苯的循环,第一批以后循环的物料再次进入反应,但每批加料相同。在此基础上,只要计算第一个批次的投料量,以后加料一样。 反应釜内加热时间2h、正常的反应时间18h、冷却时间1h。加上进料和出料各半个小时,这个生产周期一共2+18+1+1=22h。所以在正常的生产后,每22小时可以生产出一批产品。每年按300天生产来计算,共开工7200小时,可以生产327个批次。要求每年生产2000吨对叔丁基苯甲酸,则每批生产2000÷327=6.116吨。产品纯度99 %( wt %) 实际过程中为了达到高转化率和高反应速率,需要加入过量对叔丁基甲苯做溶剂,反应剩余的原料经分离后循环使用。 3.2.1 各段物料 (1) 原料对叔丁基甲苯的投料量 设投料中纯的对叔丁基甲苯为X kg,则由 C11H16C11H14O2 M 148.24 178.23 m x 6054.8 得x=6054.8×148.24÷178.23=5036.0 kg 折合成工业原料的对叔丁基甲苯质量为5036.0÷0.99=5086.9kg 实际在第一批生产过程加入的对叔丁基甲苯为6950.3kg (2)氧气的通入量 生产过程中连续通入氧气,维持釜内压力为表压0.01MPa,进行氧化反应。实

际生产过程中,现场采集数据结果表明,通入的氧气量为1556.8 kg,设反应消耗的氧气量为x kg 3/2O2C11H14O2 M 31.99 178.23 m x 6054.8 得x= 3/2×6054.8×31.99÷178.23=1630.1kg 此时采用的空气分离氧气纯度可达99%,因此折合成通入的氧气为1630.1÷0.99=1646.6 kg即在反应过程中,需再连续通入1646.6kg氧气。 (3)催化剂 催化剂采用乙酰丙酮钴(Ⅲ),每批加入量10.4 kg (4)水的移出量 设反应生产的水为x kg H2O C11H14O2 M 18.016 178.23 m x 6054.8 得x=6054.8×18.016÷178.23=612 kg 产生的水以蒸汽的形式从反应釜上方经过水分离器移出。 3.2.2 设备物料计算 (1)计量槽 对叔丁基甲苯计量槽: 一个反应釜每次需加入的对叔丁基甲苯质量为3475.1÷2=3475.15 kg 对叔丁基甲苯回收计量槽:每批反应结束后产生母液1834.8kg 甲苯计量槽:每批需加入甲苯做溶剂,加入量为396.1 kg (2)反应釜:反应结束后,经过冷却、离心分离后,分离出水612kg,剩余的对叔丁基甲苯1834.8kg循环进入下一批产品的生产。分离出来的固体质量为:6950.3+10.4+1646.6-612-1834.8=6160.5 kg 。 (3)进入离心机的物料:6950.3+10.4+1646.6-1834.8-612=6160.5kg (4)脱色釜:分离机分离出来的粗产品移入脱色釜,加入甲苯做溶剂,加入量为396.1 kg,搅拌升温将产品溶解,再加入76.5 kg活性碳进行脱色。进入

物料衡算

物料衡算 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。一般在物料衡算之后,才能计算所需要提供或移走的能量。通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另一些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在一个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,因为核反应能量变化非常大,此定律不适用)。 3-1物料衡算式 1、化工过程的类型 化工过程操作状态不同,其物料或能量衡算的方程亦有差别。 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或者将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类别。 闻歇操作过程:原料在生产操作开始时一次加入,然后进行反应或其他操作,一直到操作完成后,物料一次排出,即为间歇操作过程。此过程的特点是在整个操作时间内,再无物料进出设备,设备中各部分的组成、条件随时间而不断变化。

连续操作过程:在整个操作期间,原料不断稳定地输入生产设备,同时不断从设备排出同样数量(总量)的物料。设备的进料和出料是连续流动的,即为连续操作过程。在整个操作期间,设备内各部分组成与条件不随时间而变化。 半连续操作过程:操作时物料一次输入或分批输入,而出料是连续的,或连续输入物料,而出料是一次或分批的。 稳定状态操作就是整个化工过程的操作条件(如温度、压力、物料量及组成等)如果不随时间而变化,只是设备内不同点有差别,这种过程称为稳定状态操作过程,或称稳定过程。如果操作条件随时间而不断变化的,则称为不稳定状态操作过程,或称不稳定过程。 间歇过程及半连续过程是不稳定状态操作。连续过程在正常操作期间,操作条件比较稳定,此时属稳定状态操作多在开、停工期间或操作条件变化和出现故障时,则属不稳定状态操作。 2、物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。所谓体系就是物料衡算的范围,它可以根据实际需要人为地选定。体系可以是一个设备或几个设备,也可以是一个单元操作或整个化工过程。 进行物料衡算时,必须首先确定衡算的体系。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积果量之和。所以,物料衡算的基本关系式应该表示为: ???? ?????? ?????? ??物料量积累的+物料量输出的=物料量输入的

化工原理(天大版)干燥过程的物料衡算与热量衡算

1 8.3干燥过程的物料衡算与热量衡算 干燥过程是热、质同时传递的过程。进行干燥计算,必须解决干燥中湿物料去除的水分量及所需的热空气量。湿物料中的水分量如何表征呢? 湿物料中的含水量有两种表示方法 1.湿基含水量w 湿物料总质量 湿物料中水分的质量= w kg 水/kg 湿料 2.干基含水量X 量 湿物料中绝干物料的质湿物料中水分的质量= X kg 水/kg 绝干物料 3.二者关系 X X w +=1w w X -=1 说明:干燥过程中,湿物料的质量是变化的,而绝干物料的质量是不变的。因此,用干基含 水量计算较为方便。 图8.7 物料衡算 符号说明: L :绝干空气流量,kg 干气/h ; G 1、G 2:进、出干燥器的湿物料量,kg 湿料/h ; G c :湿物料中绝干物料量,kg 干料/h 。 产品 G 2, w 2, (X 2), θ2 G 1, w 1, (X 1), θ1 L, t 2 , H 2

目的:通过干燥过程的物料衡算,可确定出将湿物料干燥到指定的含水量所需除去的水分量及所需的空气量。从而确定在给定干燥任务下所用的干燥器尺寸,并配备合适的风机。 1.湿物料的水分蒸发量W[kg 水/h] 通过干燥器的湿空气中绝干空气量是不变的,又因为湿物料中蒸发出的水分被空气带 走,故湿物料中水分的减少量等于湿物料中水分汽化量等于湿空气中水分增加量。即: [])]([][)(1221221121H H L W X X G w G w G G G c -==-=-=- 所以:1212221 1 2111w w w G w w w G G G W --=--=-= 2.干空气用量L[kg 干气/h] 1212) (H H W L H H L W -=∴-=Θ 令121H H W L l -== [kg 干气/kg 水] l 称为比空气用量,即每汽化1kg 的水所需干空气的量。 因为空气在预热器中为等湿加热,所以H 0=H 1,0 21211H H H H l -=-=,因此l 只与空气的初、终湿度有关,而与路径无关,是状态函数。 湿空气用量:)1(0'H L L += kg 湿气/h 或)1(0'H l l += kg 湿气/kg 水 湿空气体积:H s L V υ= m 3湿气/h 或H s l V υ=' m 3湿气/kg 水 通过干燥器的热量衡算,可以确定物料干燥所消耗的热量或干燥器排出空气的状态。作为计算空气预热器和加热器的传热面积、加热剂的用量、干燥器的尺寸或热效率的依据。 1.流程图 温度为,湿度为H 0,焓为的新鲜空气,经加热后的状态为t 1、H 1、I 1,进入干燥器与湿物料接触,增湿降温,离开干燥器时状态为t 2、H 2、I 2,固体物料进、出干燥器的流量为G 1、G 2,温度为θ1、θ2,含水量为X 1、X 2。通过流程图可知,整个干燥过程需外加热量有两处,预热器内加入热量Q p ,干燥器内加入热量Q d 。外加总热量Q =Q p +Q d 。将Q 折合

物料衡算

三.工艺设计计算 3.1 物料横算 3.1.1物料衡算的意义 物料横算,是在已知产品规格和产量前提下算出所需原料量、废品量及消耗量。同时,还可拟定出原料消耗定额,并在此基础上做能量平衡计算。通过物料横算可算出: (1)实际动力消耗量 (2)生产过程所需热量或冷量 (3)为设备选型、决定规格、台数(或台时产量)提供依据 (4)在拟定原料消耗定额的基础上,可进一步计算日消耗量,每小时消耗量 等设备所需的基础数据。 综上所述,物料衡算是紧密配合车间生产工艺设计而进行的,因此,物料衡算是工艺设计过程的一项重要的计算内容。 3.1.2物料横算的方法 塑料制品的生产过程多采用全流程、连续操作的形式。 物料衡算的步骤如下: (1)确定物料衡算范围,画出物料衡算示意图,注上与物料衡算有关的数据。 物料衡算示意图如下:

(2)说明计算任务。如:年产量、年工时数等。 (3)选定计算基准。生产上常用的计算基准有:①单位时间产品数量或单位 时间原谅投入量,如:kg/h,件/h,t/h(连续操作常采用此种基准);②加入设备的原料量(间歇操作常采用此种基准)。 (4)由已知数据,根据下列公式进行物料衡算: ΣG1=ΣG1+ΣG3 式中:ΣG1——进入设备的物料量总和 ΣG2——离开设备的正品量和次品量总和 ΣG3——加工过程中物料损失量总和 (5)收集数据资料。一般包括以下方面: ①年生产时间:连续生产300~350 d 间歇生产200~250 d 连续生产时,年生产的天数较多,在300d左右,其他时间将考虑全长检修,车间检修或5%~10%意外停机。当间歇生产时,就要减去全年的休息日,目前为双休日加上法定假日全年约为110d,所以间歇生产比连续生产少110个工作日。 总之,确定了每年有效地工作时数后就能正确定出物料衡算的时间基准,算出每小时的生产任务,进而在以后的计算中选定设备的规格。 具体的选择天数要通过分析得出。 ②有关定额、合格率、废品率、消耗率、回收率等。在任何一个产品加 工过程中,合格产品都不是百分之百。由于设备原因、原材料原因以及人为原因都可能造成废品的出现。加工不同的产品出现废品的几率有差异,要具体情况具体分析。才外还应考虑车间管理水平、设备先进水平等,取高值与低值都应有充分的论据。经过电铲研究后发现:塑料制品合格率为85%~95%、自然损耗率为0.1%~0.15%,这主要是贮存、运输、

精馏塔全塔物料衡算

一、精馏塔全塔物料衡算 )(:)(:)(:s kmol W s kmol D s kmol F 塔底残液流量塔顶产品流量进料量:塔底组成 :塔顶组成、下同):原料组成(摩尔分数x x x w D F a t F 4102.1?= 00F 46=x 00D 93=x 00W 1=x kmol kg 04.32=M 甲醇 kmol kg 02.18=M 水 原料甲醇组成: 00F 4.3202.18/5404.32/4604 .32/46=+= x 塔顶组成:00D 2.8802 .18/704.32/9304 .32/93=+=x 塔底组成:00W 6.002 .18/9904.32/104 .32/1=+=x 进料量: s kmol a t F 23 44 10205.23600 24300] 02.18/)324.01(04.32/324.0[10102.1102.1-?=??-+??=?= 物料衡算式为: x x x W D F W D W D F F +=+= 联立代入求解:3 108-?=D 2 10405.1-?=W 二、常压下甲醇—水气液平衡组成(摩尔)与温度关系 1、温度 C C C o o o t t t t t t t t t 2.99.......................... 06.0100 31.509.9210076.66 (100) 2.887 .6441.871009.667.6452.68....................67.74.323.9026.967.79.883.90W W W D D D F F F =--=--=--=--=--=--::: 精馏段平均温度: C o t t t 64.67276 .6652.682 D F 1=+= += 提馏段平均温度: C o t t t 86.832 76 .6652.682 W F 2 =+= +=

物料衡算

物料衡算 1.教学目的与要求 掌握物料衡算的基本方法,学会对无化学反应的物料衡算及有化学反应的物料衡算进行计算。 2.主要教学内容 掌握物料衡算式、画物料流程简图的方法;计算基准的选择;无化学反应的物料衡算,有化学反应的物料衡算。 3.重点与难点: 重点:无化学反应及有化学反应物料衡算的计算方法 难点:有化学反应物料衡算的计算方法 4.学时分配:8+6S 学时 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。一般在物料衡算之后,才能计算所需要提供或移走的能量。通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另一些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在一个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,因为核反应能量变化非常大,此定律不适用)。 第一节物料衡算式 1 物料衡算式 1、化工过程的类型 化工过程操作状态不同,其物料或能量衡算的方程亦有差别。 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或者将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类别。 闻歇操作过程:原料在生产操作开始时一次加入,然后进行反应或其他操作,一直到操作完成后,物料一次排出,即为间歇操作过程。此过程的特点是在整个操作时间内,再无物料进出设备,设备中各部分的组成、条件随时间而不断变化。

第二节精馏原理、第三节精馏塔物料衡算习

第二节精馏原理、第三节精馏塔物料衡算 复习 【学习目标】 1、理解精馏的原理,精馏过程及连续精馏的流程。 2、理解全塔物料方程、操作线方程,掌握有关的计算。 【学习过程】 一、简单蒸馏 1、简单蒸馏的定义: 2、简单蒸馏时一种、蒸馏操作。 3、简单蒸馏包含、和等设备。 4、随着蒸馏过程的进行,釜液中易挥发组分的含量不断,与之平衡的气相组成中易挥发组分的含量不断,釜中液体的泡点逐渐。 二、精馏原理 1、精馏过程就是将液相多次和将气相多次的过程,液体混合物经过 和后,便可以得到几乎完全的分离。 2、精馏装置的作用 ⑴塔板的作用 精馏塔塔板上气相中易挥发组分从上而下逐板;液相中难挥发组分从上而下逐渐;温度从上而下逐渐。 ⑵精馏段是指,其作用是 。 ⑶提馏段是指,其作用是 。 ⑷回流的作用 。⑸塔釜的作用 。 3、精馏连续进行的必要条件是。 4、精馏可以分为和。 三、精馏塔物料衡算的前提 1、为了简化精馏衡算,通常引入下列几种假设、、 和。 2、恒摩尔汽化是指 。 3、恒摩尔溢流是指 。 四、精馏塔物料衡算 1、精馏塔物料衡算包括、和。 2、全塔物料衡算的表达式为和。 3、精馏段操作线方程表达式为或。该方程的斜率分别为、;截距分别为、。 4、提馏段操作线方程表达式为或。该方程的斜率分别为、;截距分别为、。 5、精馏塔的进料状况包括(q )、(q )、 ( q )、(q )和(q )。 6、进料热状况参数表达式为,当进料状况为液体时,表达式为 。 7、进料状况方程(q线方程)的表达式为,代表提馏段操作线和精馏段操作线焦点轨迹方程。 8、精馏段操作线、提馏段操作线和进料状况操作线与对角线交点分别为、 和。 【基础练习】 1、在精馏塔内自上而下,气相中易挥发组分的含量逐板( ) A、增多 B、减少 C、不变 D、先减少后增多 2、在精馏操作中自上而下,精馏塔内温度的变化情况( )

啤酒糖化车间物料衡算与热量衡算

# 30000t/a12°淡色啤酒糖化车间物料衡算与热量衡算) 二次煮出糖化法是啤酒生产常用的糖化工艺,下面就以此工艺为基准进行糖化车间的热量衡算。由于没有物料数量等基础数据,因此,从物料计算开始。 已知物料定额的基础数据如表,绝对谷物的比热容为1.55Kj/kg*K, 12°麦汁在20℃时的相对密度为1.084,100℃时热麦汁的体积是20℃时的1.04倍;煮沸温度下(常压100℃)水的气化潜热为I=2257.2 Kj/kg,加热过程热损失取15%,0.3MPa的饱和水蒸气I=2725.2 Kj/kg,相应冷凝水的焓为561.47 Kj/kg,蒸汽热效率为0.95, I物料衡算 啤酒厂糖化车间的物料衡算主要项目为原料(麦芽、大米)和酒花用量,热麦汁和冷麦汁量,废渣量(糖化糟和酒花糟)等。 1.糖化车间工艺流程示意图 2.工艺技术指标及基础数据 我国啤酒生产现况决定了相应的指标,有关生产原料的配比、工艺指标及生产过程的损失等数据如上表所示。 根据基础数据,首先进行100kg原料生产12°淡色啤酒的物料计算,然后进行100L12°淡色啤酒的物料衡算,最后进行30000t/a啤酒厂糖化车间的物料平衡计算。 3. 100kg原料(75%麦芽,25%大米)生产12°淡色啤酒的物料计算 (1)热麦汁量 麦芽收率为:0.75(100-6)÷100=70.5% 大米受率为:0.92(100-13)÷100=80.04% 混合原料受得率为: (0.75×70.5%+0.25×80.04%)98.5%=71.79% 由此可得100kg混合原料可制得的12°热麦汁量为: (71.79÷12)×100=598.3kg 12°麦汁在20℃时的相对密度为1.084,而100℃热麦汁的体积是20℃时的1.04倍,故热麦汁(100℃)的体积为: (598.3÷1.084)×1.04=574 (L) (2)冷麦汁量为 574×(1-0.075)=531 (L) (3)发酵液量为: 531×(1-0.016)=522.5 (L) (4)过滤酒量为:

物料衡算

5 物料衡算 本设计是目标为年产1000吨苦荞抛光米的生产加工工艺,主要加工原料为苦荞麦,加工过程中的副产物为苦荞壳、废料肥料壳粉、黄粉等。对该工艺流程进行物料衡算,能较为直观清楚地了解各个工艺环节的物料流向,为苦荞企业生产和苦荞产业的发展提供一定的借鉴指导作用。 5.1 生产加工工艺流程 苦荞麦粒去杂蒸煮烘干脱壳精碾(添加植物油炒制)苦荞精米包装成品米 苦荞麦粒蒸煮烘干后脱壳产生苦荞糙米和苦荞壳,脱壳后产生的苦荞壳用于制作特色保健养生枕头。脱壳苦荞粒进过精碾工艺产生抛光米与黄粉,黄粉常用作其他食品加工基料。 5.2 加工过程中的各项基料计算 5.2.1 苦荞原料的需求量计算 由实际测取的苦荞抛光米的产出得率C1为46.88%,则年产T1为1000吨苦荞抛光米所需要的苦荞麦粒原料为W1吨: T1= W1*C1 W1= T1 C1 =1000 46.88% =2133.11 (吨) 5.2.2 副产物苦荞壳、黄粉的产量计算 由表3.1可知,脱壳工艺产生的苦荞壳的得率C2为29.76%;精碾抛光工艺产生的黄粉得率为C314.02%,则该年产1000吨精米生产线每年可产生副产物苦荞壳W2、黄粉W3吨: W2 = W1*C2 = 2133.11×29.76%=634.81 (吨)

W3 = W1*C3 = 2133.11×14.02% = 299.06 (吨) 5.2.3 废料壳粉的计算 废料壳粉是由脱壳工艺产生苦荞壳的同时产生的,大多未加二次利用,造成损失。废料壳粉的得率C4由表3.1可知为9.34%,则年产1000吨苦荞抛光米所产生的废料壳粉量为W4吨: W4 = W1*C4 = 2133.11×9.34% = 199.23 (吨) 通过物料计算可知,年产1000吨苦荞精米的生产线需要投入原料苦荞麦2133.11吨,产生苦荞壳、苦荞黄粉分别为634.81吨、299.06吨,产生未加利用的废料壳粉为199.23吨。

乙醇-水连续精馏塔的设计

化工原理课程设计任务书一 一、设计题目:乙醇精馏塔 二、设计任务及条件 (1)、进料含乙醇38.2%,其余为水(均为质量分率,下同) (2)、产品乙醇含量不低于93.1%; (3)、釜残液中乙醇含量不高于0.01%; (4)、生产能力5000T/Y乙醇产品,年开工7200小时 (5)、操作条件: ①间接蒸汽加热;②塔顶压强:1. 03 atm(绝对压强) ③进料热状况:泡点进料;④回流比:R=5 ⑤单板压降:75mm液柱 三、设计内容 (1)、流程的确定与说明; (2)、塔板和塔径计算; (3)、塔盘结构设计: i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。(4)、其它:i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量 四、设计成果 (1)设计说明书一份; (2)A4设计图纸包括:流程图、精馏塔工艺条件图。 化工原理课程设计任务书(6) (一) 设计题目 乙醇-水连续精馏塔的设计 (二) 设计任务及操作条件 1) 进精馏塔的料液含乙醇25%(质量分数,下同),其余为水; 2) 产品的乙醇含量不得低于94%; 3) 残液中乙醇含量不得高于0.1%; 4) 生产能力为日产(24小时)吨94%的乙醇产品; 5) 操作条件 a) 塔顶压力 4kPa(表压) b) 进料热状态自选 c) 回流比自选 d) 加热蒸气压力 0.5MPa(表压) e) 单板压降≤0.7kPa。 (三) 塔板类型

浮阀塔。 (四) 厂址 厂址为武汉地区。 (五) 设计内容 1、设计说明书的内容 1) 精馏塔的物料衡算; 2) 塔板数的确定; 3) 精馏塔的工艺条件及有关物性数据的计算; 4) 精馏塔的塔体工艺尺寸计算; 5) 塔板主要工艺尺寸的计算; 6) 塔板的流体力学验算; 7) 塔板负荷性能图; 8) 精馏塔接管尺寸计算; 9) 对设计过程的评述和有关问题的讨论。 2、设计图纸要求: 1) 绘制生产工艺流程图(A2号图纸); 2) 绘制精馏塔设计条件图(A2号图纸)。 3.4 浮阀精馏塔设计实例 3.4.1 化工原理课程设计任务书 1 设计题目:分离乙醇-水混合液的浮阀精馏塔设计 2 原始数据及条件 生产能力:年处理乙醇-水混合液14.0万吨(开工率300天/年)原料:乙醇含量为20%(质量百分比,下同)的常温液体 分离要求:塔顶乙醇含量不低于95%

相关文档
最新文档