宁波大学硕士研究生考试(数学分析)

宁波大学硕士研究生考试(数学分析)
宁波大学硕士研究生考试(数学分析)

宁波大学数学专业考研试题(数学分析)

【2009-2018】

宁波大学2009数学专业考研试题

宁波大学2010数学专业考研试题

宁波大学2011数学专业考研试题

宁波大学2012数学专业考研试题

宁波大学2013数学专业考研试题

宁波大学2014数学专业考研试题

宁波大学2015数学专业考研试题

宁波大学2016数学专业考研试题

宁波大学2017数学专业考研试题

宁波大学2018数学专业考研试题

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

宁波大学数学分析考试大纲

《数学分析》考试大纲 本《数学分析》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。 一、本考试科目简介: 《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。是从事数学理论及其应用工作的必备知识。本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。②根据我国一些国优教材所讲到基本内容和知识点。要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。 二、考试内容及具体要求: 第1章实数集与函数 (1)了解实数域及性质 (2)掌握几种主要不等式及应用。 (3)熟练掌握领域,上确界,下确界,确界原理。 (4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。 第2章数列极限 (1)熟练掌握数列极限的定义。 (2)掌握收敛数列的若干性质(惟一性、保序性等)。 (3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。 第3章函数极限 (1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。 (2)掌握函数极限的若干性质。 (3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。 (4)熟练应用两个特殊极限求函数的极限。 (5)牢固掌握无穷小(大)的定义、性质、阶的比较。 第4章函数连续性 (1)熟练掌握在X0点连续的定义及其等价定义。 (2)掌握间断点定以及分类。 (3)了解在区间上连续的定义,能使用左右极限的方法求极限。 (4)掌握在一点连续性质及在区间上连续性质。 (5)了解初等函数的连续性。 第5章导数与微分 (1)熟练掌握导数的定义,几何、物理意义。 (2)牢固记住求导法则、求导公式。 (3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。 (4)掌握微分的概念,并会用微分进行近似计算。 (5)深刻理解连续、可导、可微之关系。 第6章微分中值定理、不定式极限 (1)牢固掌握微分中值定理及应用(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)。(2)会用洛比达法则求极限,(掌握如何将其他类型的不定型转化为0/0型)。 第1-6章的重点与难点 (1)重点:①基本概念:极限、连续、可导、可微。②基本定理:单调有界,柯西准则,归结

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

矩阵分析期末考试

错误! 2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 一、(共30分,每小题6分)完成下列各题: (1)设4R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,????????????--=43234α,???? ? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2 {}54,αα,分别求21V V +和21V V 的维数. 解:=A {}54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为3和1 (2) 设()T i i 11-=α,()T i i 11-=β是酉空间中两向量,求内积()βα, 及它们的长度(i =). (0, 2, 2); (3)求矩阵?? ??? ?????----=137723521111A 的满秩分解. 解:?? ?? ? ?????----=137723521111A ??????? ? ??? ????? -- --→0000747510737201

??????????----=137723521111A ??????????--=775211??????? ? ?? ??? ??? ----747 510737201* (4)设-λ矩阵??? ? ? ??++=2)1(0000 00 )1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 * H x x α=,验证x 是向量 范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++ (2)矩阵A的核为AX=0的解空间。不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.

北京理工大学2017级硕士研究生矩阵分析考试题

北京理工大学2017-2018学年第一学期 2017级硕士研究生〈矩阵分析〉终考试题 一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1] ααα=-=-=下的矩阵表示为101110123A -????=????-?? (1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。 (2)求f 的核与值域。 二、(10分)求矩阵20000i A ????=?????? 的奇异值分解。 三、(10分)求矩阵111222111A -????=-????--?? 的谱分解。 四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明 (1)21A =; (2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。 五、(15分)已知矩阵1212a A a ??-??=????-???? , (1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞ =+∑绝对收敛? (2)取a = 0,求上述矩阵幂级数的和。

七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π π 300030021 01300103123001013000301 00013()()()A A A ??????????? ???===?????? ???????????? 八、(5分)已知 sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--????=-+-????--+?? 求矩阵A 。 九、(5分)已知不相容线性方程组 141223341 10 x x x x x x x x +=??+=??+=??+=? 求其最佳最小二乘解。 十、(10分)已知Hermite 二次型 12312132131(,,)f x x x ix x x x ix x x x =+-+ 求酉变换X UY =将123(,,)f x x x 化为标准型。

2019宁波大学671数学分析考试大纲

2019年宁波大学硕士研究生招生考试初试科目考试大纲 科目代码、名称: 671数学分析 一、考试形式与试卷结构 (一)试卷满分值及考试时间 本试卷满分为150分,考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。 (三)试卷题型结构 填空题,选择题,解答题,计算题,证明题,应用题。 二、考试科目简介 《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。是从事数学理论及其应用工作的必备知识。本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。②根据我国一些国优教材所讲到基本内容和知识点。要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。 三、考试内容及具体要求 第1章实数集与函数 (1)了解实数域及性质 (2)掌握几种主要不等式及应用。 (3)熟练掌握领域,上确界,下确界,确界原理。 (4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。 第2章数列极限 (1)熟练掌握数列极限的定义。 (2)掌握收敛数列的若干性质(惟一性、保序性等)。 (3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。 第3章函数极限 (1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。 (2)掌握函数极限的若干性质。 (3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。

矩阵分析期末考试2012

2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 学号 姓名 一、(共30分,每小题6分)完成下列各题: (1)设4 R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,???? ?? ??????--=43234α, ????? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的 维数. 解:=A {} 54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V 的维数为 3和1 (2) 设() T i i 11-=α,() T i i 11-=β是酉空间中两向量,求 内积()βα, 与它们的长度(i = . (0, 2, 2); (3)求矩阵?? ?? ? ?????----=137723521111A 的满秩分解.

解:?? ?? ? ?????----=137723521111A ??????? ? ??? ???? ? -- --→0000747510737201 ??????????----=137723521111A ??????????--=775211??????? ??? ??? ?? ? ----747 510737201* (4)设-λ矩阵???? ? ??++=2)1(000000 )1()(λλλλλA ,求)(λA 的标准形与其 行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=, 验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为 ?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数与一组基; (2)(5分)求T 的核)(T N 的维数与一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

宁波大学大一第一学期期末高数试卷复习

高等数学(上) 一、填空题(每小题3分,共30分) 1. 如果函数)(x f y =的定义域为]1,0[,则)(ln x f 的定义域为],1[e .(3分) 2.已知 2 )0(' =f ,而且 0)0(=f ,则= →x x f x )2(lim 4 .(3分) 3.已知 2 2lim e x x kx x =??? ??+∞→,则=k 1 .(3分) 4.曲线x x y ln =在点)0,1(处的切线方程是 1-=x y .(3分) 5.函数 6 53)(2 +--= x x x x f 的间断点个数为 2 .(3分) 6.如果? ??? ???>+=<=0,) 1ln(0 ,0, sin )(x x x x k x x x x f 在0=x 处连续,则= k 1 .(3分) 7.函数 x e x f 2)(=的带有拉格朗日型余项的n 阶麦克劳林展式为:(3分) ) 10()! 1(2 ! 2 221)(1 1 2 <<++ + +++=++θθn x n n n x n e x n x x x f . 8.函数)0,,()(2 ≠++=p r q p r qx px x f 是常数,且,则)(x f 在区间],[b a 上 满 足拉格朗日中值公式的ξ=2b a +.(3分) 9.定积分()dx x x x 10 1 1sin ?-+的值为61 .(3分) 10.设? +=C x F dx x f )()(,则? --dx e f e x x )(=C e F x +--)(.(3分) 二.计算题(要求有计算过程,每小题5分,共40分) 11.求极限1 1 3lim 2 1 -+- -→x x x x .(5分) 解: ) 13)(1() 13)(13(lim 1 1 3lim 2 1 2 1 ++ --++-+- -=-+- -→→x x x x x x x x x x x x ---------(3分) 42 ) 13)(1(2 lim 1 - =++ -+-=→x x x x ----------------------------------(5分)

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 , , 。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (),123设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

宁波大学科学学院 高等数学(下)期末试题

宁波大学科技学院2003/2004学年第二学期试卷解答 课程名称:高等数学A (2)(6学分)考试性质:期末统考(A 卷) 一、 单项选择题(每小题3分,共5?3=15分) 1、函数),(y x f 在点),(00y x 处两个偏导数),(00'y x f x 与 ),(00'y x f y 存在是),(y x f 在点),(00y x 连续的( D ) ; A.充分条件而非必要条件 B. 必要条件而非充分条件 C. 充分必要条件 D. 既非充分条件又非必要条件 2、设91:22≤+≤y x D ,则??=D dxdy y x f ),(( C ); A. ??9120)sin ,cos (rdr r r f d θθθπ B. ??9120)sin ,cos (dr r r f d θθθπ C. ??3120 )sin ,cos (rdr r r f d θθθπ D. ??31 20 )sin ,cos (dr r r f d θθθπ 3、若级数∑∞=-1 )1(n n n x a 在1-=x 处收敛,则此级数在2=x 处 ( B ); A. 条件收敛 B.绝对收敛 C.发散 D.收敛性不能确定 4、微分方程x xe y y y -=++32'3"的一个特解应具有的形式( B ); A. x e b ax -+)( B. x e b ax x -+)( C. x axe - D. x e ax -2

5、设L 是抛物线2x y =上从点)1,1(A 到点)0,0(O 的一段弧,则 ?=L xydx ( A ) ; A. 41- B. 41 C. 5 2- D. 52 二.填空题(每小题3分,共6?3=18分) 1、 设x y u =,则=??x u ( y y x ln ),=??y u ( 1-x xy ); 2、 曲面3=+-xy z e z 在点)0,1,2(P 处的切平面方程为( 042=-+y x ); 3、函数)ln(22z y x u ++=在点)1,2,1(-M 处的梯度M gradu |= ( →→→-+k j i 3 13261 ); 4、设平面曲线L 为上半圆周21x y -=,则曲线积分 ?+L ds y x )(22=( π ); 5、设)(x f 是周期为π2的周期函数,它在区间],(ππ-上的定义 为???<≤<≤-=π πx x x x f 0,00,)(,则)(x f 的傅立叶级数在π=x 处收敛于( 2π - ); 6、微分方程05'2"=+-y y y 通解为()2sin 2cos (21x c x c e y x +=) 三、计算题(一)(每小题10分,共2?10 = 20分) 1、设函数x y z arctan =,求dz 。 (答案:)(12 2ydx xdy y x dz -+=)

宁波大学数学与应用数学(基地班)

宁波大学数学与应用数学(基地班)专业(2010版) 一、培养目标 本基地班培养学生掌握数学科学的基本理论和方法,具备扎实的数学知识和数学素养,能熟练运用数学知识和技术解决实际问题的能力;能从事经济与金融数学、网络与计算技术等数学相关领域的科学研究、开发应用、教学和管理工作;具备在数学学科和数学基础要求较高的相关学科继续深造的基础和潜能的高素质、高水平的创新型人才。 二、培养基本规格要求 1.具有扎实的数学基础,掌握数学科学的思想方法,具有较强的分析问题和解决问题的能力;有一定的科学研究能力,具备考研和继续深造的知识和能力的优势。 2.具有较强的应用数学知识去解决实际问题的能力,具有较强的数学建模与应用能力,熟练掌握某一应用领域的基本知识,具备较强的学科竞赛和知识综合的素质。 3.能熟练使用计算机,包括常用语言、工具及一些数学软件,具有编写应用程序的能力。 4.具有较好的外语基础,能适应双语教学。 5.了解数学科学的某些新发展和应用前景,有较宽的知识面和专业视野。 6.有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法。 7.了解国家科学技术等有关政策和法规。 三、核心课程 1、学位课程 学位课程:常微分方程、概率论、近世代数 2、主要课程 主要课程:数学分析、高等代数、几何学、常微分方程、复变函数、实变函数、概率论、近世代数、数理统计、泛函分析、微分几何、大学物理、数值计算方法、数学建模、数学建模实验等,以及根据应用方向选择的基本课程。 四、学制与毕业要求(学制:4 年,最低学分:164) 1.学制:四年,最长学习年限为六年。 2.毕业最低学分:164学分 五、授予学位及要求 符合宁波大学学士学位授予的有关规定,授予理学学士学位。 六、各类课程设置及学分分配要求 1、课程设置说明 1.各类课程结构的设置说明 课程设置采用“平台+模块”的结构体系。课程按春季、秋季、短学期安排。本专业课程包括以下几大类:通识教育类课程:(42学分); 数学基础课程:(约48学分):数学分析、高等代数、几何学、常微分方程、概率论、

2019-2020年宁波大学数学及应用数学专业培养方案及教学计划.doc

宁波大学数学与应用数学专业培养方案及教学计划 一、培养目标 本专业培养掌握数学科学的基本理论和方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,培养适应我国新世纪经济建设和社会发展需要的“宽口径、厚基础、强能力、高素质”的,能在科技、教育和经济部门从事研究、教学工作或在生产经营公司企业及管理部门从事实际应用、开发研究和管理工作的高级人才。 要求学生掌握数学和应用数学的基本理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有良好的科学素养和宽广的知识面;熟练掌握一门外语;并有较强的创新意识、开拓精神以及较强的实际应用能力和适应能力。 二、培养基本规格与要求 1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法; 2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应用领域的基本知识; 3.能熟练使用计算机,包括常用语言、工具及一些数学软件,具有编写简单应用程序的能力; 4.了解国家科学技术等有关政策和法规; 5.了解数学科学的某些新发展和应用前景; 6.有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,有一定的科学研究和教学能力。 三、核心课程 1.学位课程:常微分方程、概率论、近世代数 2.主要课程:数学分析、高等代数、解析几何、常微分方程、概率论、数理统计、复变函数、实变函数、近世代数、泛函分析、微分几何、大学物理、数学建模、数学建模实验、数值计算方法等,以及根据应用方向选择的基本课程。 四、学制与毕业要求 1.学制:四年,最长学习年限为六年。 2.毕业最低学分:164学分 五、授予学位及要求 符合宁波大学学士学位授予有关规定,授予理学学士学位。 六、各类课程设置及学分分配要求 1.各类课程结构的设置说明 课程设置采用"平台+模块"的结构体系。课程按春季、秋季、短学期安排。本专业课程包括以下几大类: 通识教育类课程:(42学分); 基础类课程:(约30学分):高等数学、线性代数、概率统计、大学物理、大学化学、心理学导论、学习的科学与技术、高级语言程序设计(C)等; 数学类课程:(约40学分):数学分析、高等代数、解析几何、常微分方程、概率论、数理统计、复变函数、实变函数、近世代数、泛函分析、点集拓扑、数学物理方程、微分几何、应数专题讲座与训练、微分方程数值解法、现代控制论基础、数值计算方法、图论及其应用、数学建模、运筹学、组合数学、计算机网络、计算机图形学等; 经济类课程:(约17 学分):数理经济学、计量经济学、精算学概论、SAS统计分析及

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

北京交通大学研究生矩阵分析期末考试试卷(7份)

2004-2005学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一. (12分)3[]R x 表示由次数小于3的多项式组成的线性空间。在 3[]R x 中取两个基:21231,1,(1)x x ααα==-=-; 21232,2,(2)x x βββ==-=-。(1)求123,,βββ到123,,ααα的过度矩阵,(2) 求21x x ++ 在123,,ααα下的坐标。 二. (14分)设T 是n R 的线性映射,对任意12(,, ,)T n n x x x x R =∈满足 11(0,, ,)n Tx x x -=。(1)证明0n T =; (2)求T 的核()N T 及值域 ()R T 的 基和维数。 三. (12分)设1023510224i A i i i -?? ?=++ ? ?-??,120x i -?? ? ?= ? ? ?-?? ,i = 。 计算11, , , Ax Ax A A ∞∞。 四.(10分)求矩阵1123101032160113A -?? ?-- ? = ?- ? ?-? ? 的满秩分解。 五. (12分)求矩阵011110101A ?? ? = ? ??? 的正交三角分解A UR =,其中U

是酉矩阵,R 是正线上三角矩阵。 六. (16分,1、2小题各5分, 3小题6分)证明题: 1. 设A 是n 阶正规矩阵,且满足2320A A E -+=。证明A 是Hermite 矩阵,并写出A 的Jordan 标准形的形式。 2.设A 是正定Hermite 矩阵,且A 是酉矩阵,证明A E =。 3.证明:若A 是Hermite 矩阵,则iA e 是酉矩阵。 七. (24分) 设100011101A ?? ? =- ? ?-?? 。(1)求E A λ-的Smith 标准形; (2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求相似变换矩阵P 使得1P AP J -=;(4)求1P -矩阵函数()f A ,并计算tA e 。 2004-2005学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 两个:123(1,0,1),(1,0,0),(0,1,1)T T T ααα==-=; 123(0,1,1),(1,1,0),(1,0,1)T T T βββ=-=-=。(1)求123,,ααα到 123,,βββ的过度矩阵,(2) 求子空间V ,其中V 中的向量在两个基下的坐标相同。 二. (14分)设线性映射43:T R R →满足:对任意41234(,,,)T x x x x R ∈, 求的核()N T 及值域()R T 的基和维数。

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

高等数学C1-期末考试卷-A-(答案)

一、单项选择题 1. D (解释: ,) 2. A (解释: 在 处连续, 所以 必须存在, 也就是在 处有定义。 ) 3. B (解释: ,可以这样理解: 。) 4. C ,见书P90。) 5. D 就是,定积分是一个常数, 所以它的导数为0 。 , 。 二、填空题 1. 解:由 的定义, 在 处连续,是指: ,也就是: 2. 解:先回顾导数的定义 看作 ,那么原极限可以变为: 计算两部分的极限,其中所以答案为: 。 3. 解:要求法线方程,可以先计算曲线在 处的导数(也就是切线斜率),法 线的导数是切线斜率的负倒数。在点 出导数 ,代入 , 得到 ,所以法线的斜率为 。 4. 解:函数 的正负变化情况 所以极大值: 5. 解:此题可先计算不定积分 计算定积分:

三、求解下列各题 1.解: 2.解: 3.解: 4.解: 5.解:先对原等式两侧求微分,得到: 整理后得到 再计算 即: 并代入点 得到: 6.解:

7. 解:可以令 , 代换原式得到: 8.解:第一步用凑微分的方法,就是 四、应用计算题 1. 的点 ,求得 可知:当 为最小 值。 边际成本函数为 ,代入 。 2.解:此题需要列表讨论函数的一二阶导数,并计算渐进线。 首先计算: , 用使上面两式等于0 : 渐进线: 1.是垂直渐进线; 2.由可知,是其水平渐进线; 3.无斜渐进线。 3.解:先计算,并作图

曲线 方程则为,此线过原点,也就是说:代入 ,所以切线位于曲线的切点坐标为:。 红色区域为所围成的区域,求此区域绕轴旋转一周形成的旋转体体积。 回顾:绕轴旋转一周的旋转体体积公式为: 但此题中不能直接使用该公式,原因是红色区域的上边界(不含轴)不构成一个函数。而应考虑为是一个圆锥体(在区间上绕轴形成)体积减 去其中由抛物线上绕轴形成的旋转体体积,即: 五、证明题 证:构造函数,由条件可知:,且上连续,内可导,满足罗尔中值定理的使用条件,因此:必存在使得,而通过计算我们知道: 所以:,其中,所以.

相关文档
最新文档