第九章 回归分析
第九章 复习-方差分析及回归分析

s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:
j 1 s j 1
s
nj
nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1
( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体
第九章:回归分析-30页文档

Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High
第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析时间序列数据是指按照时间顺序排列的一系列数据观测值。
在实际应用中,时间序列数据广泛存在于经济学、金融学、气象学等领域,对于了解数据的趋势、季节性等特征具有重要意义。
时间序列数据的基本回归分析是通过建立回归模型,来研究时间序列数据中因变量与自变量之间的关系。
时间序列数据的回归分析可以分为简单回归和多元回归。
其中,简单回归是指只含有一个自变量的回归模型,多元回归是指含有多个自变量的回归模型。
下面将分别介绍这两种回归模型及其应用。
简单回归模型简单回归模型是时间序列数据回归分析中最基础的模型,其形式为:Y_t=α+βX_t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_t表示时间为t时的自变量观测值,α和β分别是回归方程的截距项和斜率项,ε_t是误差项。
简单回归模型常用于分析两个变量之间的关系,并通过计算斜率项β的值来判断两个变量之间的线性相关程度。
如果β的值为正,则表示两个变量之间呈正相关关系;如果β为负,则表示两个变量之间呈负相关关系。
同时,可以通过计算误差项ε_t的方差来评估模型的拟合优度。
多元回归模型当考虑到多个自变量对因变量的影响时,可以使用多元回归模型。
其形式为:Y_t=α+β_1X_1,t+β_2X_2,t+...+β_kX_k,t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_1,t,X_2,t,...,X_k,t表示时间为t时的自变量观测值,α和β_1,β_2,...,β_k分别是回归方程的截距项和各自变量的斜率项,ε_t是误差项。
多元回归模型相较于简单回归模型更能够适用于分析多个自变量与因变量之间的复杂关系。
在建模过程中,可以通过检验回归系数的显著性水平,来判断自变量对因变量的影响是否显著。
此外,还可以通过判断方程残差的波动性来评估模型的拟合优度。
时间序列数据的回归分析在实际应用中具有重要意义。
例如,经济学中常使用时间序列数据回归分析来研究GDP与通货膨胀率之间的关系;金融学中,可以利用时间序列数据回归分析来研究股票收益率与市场因素之间的关系。
第9章-方差分析与线性回归

Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.
概率论--线性回归

i =1
=(6050.6-0.632×14047)/9=60.37 2. 一元线性回归的假设检验(相关系数法) 问题:变量Y与X间是否存在线性相关关系? 相关系数法:是基于试验数据检验变量间线性相关关系 是否显著的一种方法。
Chapter 9 回归分析
12
Mathematical Statistics
有
R =
l xz l xx l zz
=-0.996
︱R︱=0.996>0.765=R0.01(8), 可以认为X与Y存在显著的指数相关关系。
Chapter 9 回归分析
21
Mathematical Statistics
2 2 i i
∑xy
− 10 x y = − 24.554
19
Mathematical Statistics
Chapter 9 回归分析
ˆ ˆ a ′ = z − bx = 6.527 + 0.2976 × 5.5 = 8.1642
从而
ˆ z = 8 .1642 − 0 .2976 x
ˆ a′ ˆ bx
Chapter 9 回归分析
5
Mathematical Statistics
记 Y i 为 Y i 的估计值 , 则
Y
Y
i
i
= a + b xi + ε i = Y i + ε i
这可写成 :
ε = Y −Y = Y − ( a + b x ) 这表明 ε 是 Y的实际观测值与
i i i i i
估计值之差,即拟合误 差。
5.42 5.32
18
Mathematical Statistics
第九章 相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。
本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。
【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。
【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。
第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。
这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。
相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。
例如,商品销售额与流通费用率之间的关系就是一种相关关系。
(二)相关关系的特点1、相关关系表现为数量相互依存关系。
2、相关关系在数量上表现为非确定性的相互依存关系。
二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。
其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。
相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。
第九章 回归分析(一元线性回归)(1)

将表中各对数据描在坐标平面上得图
数 据 和 拟 合 直 线
这样的图称为观测数据的散点图。 从图上可以看出,随着温度x的升高, 某化学过程的生产量y的平均值也在增加, 它们大致成一直线关系,但各点不完全在一 条直线上,这是由于y还受到其它一些随机 因素的影响。
温度 xi
为了研究某一化学反应过程中温度 x 对产
品得率 Y 的影响. 测得数据如下:
C 100 110 120 130 140 150 160 170 180 190
45 51 54 61 66 70 74 78 85 89
得率 yi %
为了研究这些数据所蕴藏的规律性, 将温度 x i 作 为横坐标,得率 y i 作为纵坐标, 在 xoy 坐标系中作 散点图 从图易见, 虽然这些点是散乱的, 但大体上散布在 某条直线附近, 即该化学反应过程中温度与产品
回归分析正是研究预报变量之变动对响 应变量之变动的影响程度,其目的在于根据 已知预报变量的变化来估计或预测响应变量 的变化情况。
“回归(regression)”名称的由
来:
回归名称的由来要归功于英国统计学F.高尔顿 (F.Galton:1822~1911),他把这种统计分析方法 应用于研究生物学的遗传问题,指出生物后代有回 复或回归到其上代原有特性的倾向。高尔顿和他的 学生、现代统计学的奠基者之一K.皮尔逊 (K.Pearson:1856~1936)在研究父母身高与其 子女身高的遗传问题时,在观察了1078对夫妇后, 以每对夫妇的平均身高作为x,取他们的一个成年儿 子的身高为y,将结果绘成散点图后发现成一条直线。 计算出回归方程为
统计学第九章 相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系数:
参数a、b的最小二乘估计
A good
line is one that minimizes the sum of squared differences between the points and the line.
根据推导,
a y bx
( x x )( y y ) b (x x)
Multiple Regression
R2adj - “adjusted R-square”
R2是一个受自变量个数与样本规模之比(k:n)影响的系数,一般是1:10 以上为好。当这个比值小于1:5时,R2倾向于高估实际的拟合的程度。 Takes into account the number of regressors in the model
X的变异
r2
Y的变异
Simple Regression
R2 - “Goodness of fit”
For simple regression, R2 is the square of the correlation coefficient
Reflects variance accounted for in data by the best-fit line
第九章 多元回归分析
浙江师范大学教育学院心理系
徐长江 xucj@
纲要
回归分析的基本原理
一元回归分析 多元回归分析
多元回归分析的方法 多元回归分析的实现
回归分析的目的
设法找出变量间的依存(数量)关系, 用函数 关系式表达出来
Example: Height vs Weight
Takes values between 0 (0%) and 1 (100%) Frequently expressed as percentage, rather than decimal
Simple Regression
Low values of R2
300 250 200 150 100 50 0 0 100 200 300
How well does a model explain the variation in the dependent variable?
Effectiveness vs Efficiency
Effectiveness: maximises R2
Drug A (dose in mg)
Drug B (dose in mg)
Good fit R2 high High variance explained
Moderate fit R2 lower Less variance explained
例子
数据t2_1.sav的数据是我国分地区家庭年 人均食品支出与人均年收入的数据。以 食品支出为因变量,人均年收入为自变 量,建立回归方程。
Calculated as:
R2adj = 1 - (1-R2)(n-1)/(n-k-1) where: n = number of data points k = number of regressors Note that R2adj will always be smaller than R2
假设
H0 : 1 0, H1 : 1 0,
如果 H 成立,则不能认为 y 与 0
x 有线性相关关系。
三种检验方法:F检验法、t-检验法、r检验法。
一元线性回归方程的方差分析
ˆ ( y y)
( y y)
ˆ ( y y)
ˆ y a bx
ˆ ˆ ( y y ) ( y y) ( y y )
ˆ ∑(y - y)2表示总平方和(总变异)中已被x与y的线性关系 所说明的那部分,可记为SSR
ˆ ∑(y- y )2即偏离回归线的平方和,用最小二乘法求回归方程时曾 使它极小,一般称这个平方和为误差平方和或剩余平方和,记为SSe
Testing for Significance: F Test 显著性F检验
ˆ y a bx
Where: a = 截距(intercept) (constant) b = 斜率(slope of best-fit line)
200 180 160 140 120 100 80 60 40 20 0 0 50 100 150 200 250
回归系数(regression coefficient)
R2 = 0 (0% - randomly scattered points, no apparent relationship between X and Y) Implies that a best-fit line will be a very poor description of data
ˆ ( y y) ( y y)
2 2
即,相关系数的平方等于回归平方和在总平方和中所占的比率。 是两个变量共同变异部分的比率,叫做决定系数 (Coefficient of determination)( R square)。 表示使
用X去预测Y时的预测释力,即Y变量被自变量所解 释的比率。反映了由自变量与因变量所形成的线性 回归模式的契合度(goodness of fit) 此一数值是否具有统计上的意义,反映了此一回归 分析或预测力是否具有统计上的意义,必须通过F检 验来判断
回归
ˆ- SSR=∑( y y)2 dfR=1
MSR= SSR / dfR
误差
SSe=∑(y-y)2 dfe=N-2 MSe= SSe / dfe ˆ
Total(全体) SSt=∑(y-y)2 dft=N-1
Testing for Significance: t Test 显著性t检验
假设
H0: 1 = 0 H1: 1 0
Multiple Regression
R2 - “Goodness of fit”
For multiple regression, R2 will get larger every time another independent variable (regressor or predictor) is added to the model New regressor may only provide a tiny improvement in amount of variance in the data explained by the model Need to establish the value of each additional regressor in predicting the DV
S ymptom Index
120 100 80 60 40 20 0
100 80 60 40 20 0 0 50 100 150 200 250
Drug A (dose in mg)
Drug B (dose in mg)
Very good fit
Moderate fit
回归方程有效性的检验
对于任何一组数据 ( xi , yi ) (i 1,2,, n),都可按最 小二乘法确定一个线性函数,但变量 y 与 x 之间是否真 有近似于线性函数的相关关系呢?尚需进行假设检验。
Simple Regression
R2 - “Goodness of fit”
180 160 140
160 140 120
S ymptom Index
0 50 100 150 200 250
S ymptom Index
120 100 80 60 40 20 0
100 80 60 40 20 0 0 50 100 150 200 250
Strong positive correlation between height and weight Can see how the relationship works, but cannot predict one from the other
Graph One: Relationship between Height and Weight
Multiple Regression
Establish equation for the best-fit line: y = b1x1 + b2x2 + b3x3 + a
Where: b1 = regression coefficient for variable x1 b2 = regression coefficient for variable x2 b3 = regression coefficient for variable x3 a = constant
Simple Regression
High values of R2
300 250
200
150
100
50
0 0 50 100 150 200 250 300
250 200 150 100 50 0 0 50 100 150 200 250
R2 = 1 (100% - points lie directly on the line - perfect relationship between X and Y) Implies that a best-fit line will be a very good description of data
假设
H0: 1 = 0 H1: 1 0 F = MSR/MSE 拒绝规则 如果F > F ,拒绝 H0 其中 F 是分子自由度为1,分母自由度为n - 2 的 F分布. MSR=SSR/自变量个数, MSE=SSE/n-2
检验统计量
回归方程的方差分析表