应用回归分析第九章部分答案word精品文档7页
(完整word版)应用回归分析,第9章课后习题参考答案

第9章 含定性变量的回归模型思考与练习参考答案9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0—1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么?答:假如这个含有季节定性自变量的回归模型为:t t t t kt k t t D D D X X Y μαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0—1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X ,D)中的第1列可表示成后4列的线性组合,从而(X ,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井",应避免。
当某自变量x j 对其余p —1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型.称Tol j =1—2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0。
0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα9。
2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例9.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
应用技术回归分析第九章部分完整答案

第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。
如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+。
对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。
一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。
9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。
表9.14生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。
(1)二次曲线 SPSS 输出结果如下:Mode l Sum mary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the E stim ateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。
第九章:回归分析-30页文档

Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High
统计学原理第九章(相关与回归)习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
第九章 第四节 相关性、最小二乘估计、回归分析与独立性检验

分析与独立性检验
9/30/2013
9/30/2013
1.相关性 (1)散点图:在考虑两个量的关系时,为了对_____之间的关 变量 系有一个大致的了解,人们通常将___________的点描出来, 变量所对应 这些点就组成了变量之间的一个图,通常称这种图为变量之间 的散点图.
1.利用统计量χ 2来判断“两个变量X,Y有关系”计算公式为:
2
(A)ad-bc越小,说明X与Y关系越弱
(B)ad-bc越大,说明X与Y关系越强 (C)(ad-bc)2越大,说明X与Y关系越强 (D)(ad-bc)2越接近于0,说明X与Y关系越强
a b c d a c b d
1 2
9/30/2013
【拓展提升】线性相关关系与函数关系的区别 (1)函数关系中的两个变量间是一种确定性关系.例如,正 方形面积S与边长x之间的关系S=x2就是函数关系.
(2)相关关系是一种非确定性关系,即相关关系是非随机变
量与随机变量之间的关系.例如,商品的销售额与广告费是相
关关系.两个变量具有相关关系是回归分析的前提.
50 13 20-10 7) ( 4.844, 23 27 20 30
2
因为χ 2≥3.841,所以有
答案:95%
9/30/2013
考向 1
相关关系的判断
【典例1】(1)对变量x,y有观测数据(xi,yi)(i=1,2,„,
10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,
9/30/2013
3.独立性检验
(1)2×2列联表
设A,B为两个变量,每一个变量都可以取两个值,变量A:
第九章 相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。
本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。
【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。
【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。
第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。
这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。
相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。
例如,商品销售额与流通费用率之间的关系就是一种相关关系。
(二)相关关系的特点1、相关关系表现为数量相互依存关系。
2、相关关系在数量上表现为非确定性的相互依存关系。
二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。
其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。
相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。
应用技术回归分析第九章部分完整答案

第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。
如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+。
对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。
一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。
9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。
表9.14生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。
(1)二次曲线 SPSS 输出结果如下:Mode l Sum mary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the E stim ateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。
第九章 变量间的相关关系统计案例

返回
(2)∵ xiyi=3 245, x =25, y =15.43, x2=5 075,7( x )2=4 375,7x y=2 695 i
i= 1 i= 1
7
7
--
y xiyi-7 x ·
i= 1
7
^ ∴b =
≈0.79,
xi2-7 x 2
i= 1
7
^= y -b x =-4.32,∴回归直线方程是y =0.79x-4.32. ^ a (3)进店人数80人时,商品销售的件数y=0.79×80-4.32≈59件.
^ B.y =2x+100 ^ D.y =2x-100
^ 解析:B、D为正相关,C中y 值恒为负,不符合题意.
答案: A
返回
2.两个变量y与x的回归模型中,分别选择了4个不同模
型,它们的相关指数R2如下,其中拟合效果最好的 模型是 A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80 C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.25 解析:相关指数R2越大拟合效果越好. ( )
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该 项运动与性别有关” D.在犯错误的概率不超过0.1%的前提下,认为“爱好该 项运动与性别无关”
返回
[自主解答]
根据独立性检验的定义,由K2≈7.8>6.635
可知我们有99%以上的把握认为“爱好该项运动与性别
^= a
^ y -b x .
n
^ ^ Q= yi-b xi-a 2 的最小值而得到回归直线的方 3.通过求
i= 1
法,即求回归直线,使得样本数据的点到它的距离的平 方和最小,这一方法叫做最小二乘法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。
如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。
一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。
9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。
表9.14 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图:从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。
(1)二次曲线SPSS 输出结果如下:从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。
由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。
(2)指数曲线从上表可以得到回归方程为:0.0002t ˆ 4.003ye = 由参数检验P 值≈0<0.05,得到回归方程的参数都非常显著。
从R2值,σ的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。
9.3 已知变量x与y的样本数据如表9.15,画出散点图,试用αeβ/x来拟合回归模型,假设:(1)乘性误差项,模型形式为y=αeβ/x eε(2)加性误差项,模型形式为y=αeβ/x+ε。
表9.15序号x y 序号x y 序号x y1 4.20 0.086 6 3.20 0.150 11 2.20 0.3502 4.06 0.090 7 3.00 0.170 12 2.00 0.4403 3.80 0.100 8 2.80 0.190 13 1.80 0.6204 3.60 0.120 9 2.60 0.220 14 1.60 0.9405 3.40 0.130 10 2.40 0.240 15 1.40 1.620解:散点图:(1)乘性误差项,模型形式为y=αeβ/x eε线性化:lny=lnα+β/x +ε令y1=lny, a=lnα,x1=1/x .做y1与x1的线性回归,SPSS输出结果如下:从以上结果可以得到回归方程为:y1=-3.856+6.08x1F检验和t检验的P值≈0<0.05,得到回归方程及其参数都非常显著。
回代为原方程为:y=0.021e6.08/x(2)加性误差项,模型形式为y=αeβ/x+ε不能线性化,直接非线性拟合。
给初值α=0.021,β=6.08(线性化结果),NLS结果如下:从以上结果可以得到回归方程为:y=0.021e6.061/x根据R2≈1,参数的区间估计不包括零点且较短,可知回归方程拟合非常好,且其参数都显著。
9.4 Logistic 回归函数常用于拟合某种消费品的拥有率,表8.17(书上239页,此处略)是北京市每百户家庭平均拥有的照相机数,试针对以下两种情况拟合Logistic 回归函数。
(1)已知100u =,用线性化方法拟合,(2)u 未知,用非线性最小二乘法拟合。
根据经济学的意义知道,u 是拥有率的上限,初值可取100;b0>0,0<b1<1初值请读者自己选择。
解:(1),100u =时,的线性拟合。
对0111t y b b u =+函数线性化得到:11ln() 1.8510.264100y -=--0111ln()ln ln 100b t b y -=+,令311ln()100y y =-,作3y 关于t 的线性回归分析,SPSS 输出结果如下:由表Model Summary 得到,0.994R =趋于1,回归方程的拟合优度好,由表ANOVA 得到回归方程显著,由Coefficients 表得到,回归系数都是显著的,得到方程:11ln() 1.8510.264100y -=--,进一步计算得到:00.157b =,10.768b =(100u =)回代变量得到最终方程形式为: 1ˆ0.010.1570.768t y =+⨯ 最后看拟合效果,通过sequence 画图:由图可知回归效果比较令人满意。
(2)非线性最小二乘拟合,取初值100u =,00.157b =,10.768b =: 一共循环迭代8次,得到回归分析结果为:0.995R =>0.994,得到回归效果比线性拟合要好,且:91.062u =,00.211b =,10.727b =,回归方程为:110.211*0.727 91.062ty=+。
最后看拟合效果,由sequence画图:得到回归效果很好,而且较优于线性回归。
9.5表9.17(书上233页,此处略)数据中GDP 和投资额K 都是用定基居民消费价格指数(CPI )缩减后的,以1978年的价格指数为100。
(1) 用线性化乘性误差项模型拟合C-D 生产函数;(2) 用非线性最小二乘拟合加性误差项模型的C-D 生产函数;(3) 对线性化检验自相关,如果存在自相关则用自回归方法改进;(4) 对线性化检验多重共线性,如果存在多重共线性则用岭回归方法改进; 解:(1)对乘法误差项模型可通过两边取对数转化成线性模型。
ln y =ln A + α ln K + β ln L令y ′=ln y ,β0=ln A ,x 1=ln K ,x 2=ln L ,y ′=β0+ α x 1+ βx 2+ ε SPSS 输出结果如下:模型综述表 从模型综述表中可以看到,调整后的为0.993,说明C-D 生产函数拟合效果很好,也说明GDP 的增长是一个指数模型。
方差分析表从方差分析表中可以看到,F 值很大,P 值为零,说明模型通过了检验,这与上述分析结果一致。
系数表根据系数表显示,回归方程为:尽管模型通过了检验,但是也可以看到,常数项没有通过检验,但在这个模型里,当lnK 和lnL 都为零时,lnY 为-1.785,即当K 和L 都为1时,GDP 为0.168,也就是说当投入资本和劳动力都为1个单位时,GDP 将增加0.168个单位,这种解释在我们的承受范围内,可以认为模型可以用。
最终方程结果为:y=0.618K 0.801 L 0.404(2) 用非线性最小二乘法拟合加性误差项模型的C-D 生产函数;上述假设误差是乘性的,现假设误差是加性的情况下使用非线性最小二乘法估计。
初值采用(1)中参数的结果,SPSS 输出结果如下:参数估计表SPSS 经过多步迭代,最终得到的稳定参数值为P=0.407,a=0.868,b=0.270y=0.407K 0.868 L 0.270为了比较这两个方程,我们观察下面两个图线性回归估计拟合曲线图非线性最小二乘估计拟合曲线图我们知道,乘性误差相当于是异方差的,做了对数变换后,乘性误差转为加性误差,这种情况下认为方差是相等的,那么第一种情况(对数变换线性化)就大大低估了GDP数值大的项,因此,它对GDP前期拟合的很好,而在后期偏差就变大了,同时也会受到自变量之间的自相关和多重共线性的综合影响;非线性最小二乘法完全依赖数据,如果自变量之间存在比较严重的异方差、自相关以及多重共线性,将对拟合结果造成很大的影响。
因此,不排除异方差、自相关以及多重共线性的存在。
(3)对线性化回归模型采用DW检验自相关,结果如下:模型综述表DW=0.715<1.27,落在自相关的区间,所以采用迭代法改进将得到的数据再取对数,而后用普通最小二乘法估计,保留DW值模型综述表方差分析表系数表从模型综述表中可以看到,DW=1.618>1.45,认为消除了自相关;方差分析表中可以看到F值很大,P值为零,说明模型通过了检验。
从系数表可得回归方程:再迭代回去,最终得方程为:Lny t-Lny t-1=-1.859+0.755(LnK t-LnK t-1) +0.465(LnL t-LnL t-1)(4)对线性化回归方程通过VIF检验多重共线性:方差分析表系数表多重共线性诊断表直观法:从模型综述表上可以看到,F值很大,而t值很小,这是多重共线性造成的影响;VIF检验法:从系数表上可以看到,VIF=13>10,也说明多重共线性的存在;条件数:从诊断表上可以看到,最大的条件数是429,远远大于了100,所以自变量之间存在较为严重的多重共线性。
利用岭回归改进:R-SQUARE AND BETA COEFFICIENTS FOR ESTIMATED VALUES OF KK RSQ LNK LNL______ ______ ________ ________.00000 .99394 .860706 .141014.05000 .99015 .646381 .330432.10000 .98639 .577758 .375355.15000 .98260 .539715 .390822.20000 .97843 .513383 .395623.25000 .97379 .492922 .395526.30000 .96869 .475918 .392882.35000 .96318 .461184 .388818.40000 .95730 .448063 .383937.45000 .95109 .436158 .378587.50000 .94462 .425211 .372979.55000 .93791 .415047 .367248.60000 .93101 .405541 .361481.65000 .92395 .396598 .355735.70000 .91677 .388147 .350049从岭迹图观察,当k=0.2时,变量基本趋于稳定取k=0.2进行岭回归,SPSS输出结果为:α=0.479,β=1.127从岭回归给出的结果来看,说明劳动力L较资金K对GDP的影响较大,而我国属于人口大国,就业人数对GDP的贡献不一定有显著的影响,相反,资金对GDP的影响按常理来说是非常显著的,这点普通最小二乘法给出了合理的解释,但是,岭回归在理论上很可信的。
总之,影响统计的因素有很多,例如统计员的失误、国家政策等,造成函数系数的不稳定。