回归分析方法及其应用中的例子
七种回归分析方法个个经典

七种回归分析方法个个经典什么是回归分析?回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。
这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
回归分析是建模和分析数据的重要工具。
在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。
我会在接下来的部分详细解释这一点。
我们为什么使用回归分析?如上所述,回归分析估计了两个或多个变量之间的关系。
下面,让我们举一个简单的例子来理解它:比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。
现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。
那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。
使用回归分析的好处良多。
具体如下:1.它表明自变量和因变量之间的显著关系;2.它表明多个自变量对一个因变量的影响强度。
回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。
这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。
我们有多少种回归技术?有各种各样的回归技术用于预测。
这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。
我们将在下面的部分详细讨论它们。
对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。
但在你开始之前,先了解如下最常用的回归方法:1.Linear Regression线性回归它是最为人熟知的建模技术之一。
线性回归通常是人们在学习预测模型时首选的技术之一。
在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
回归经典案例

回归经典案例
回归分析是一种统计学方法,用于研究变量之间的关系。
以下是一个经典的回归分析案例:
假设我们有一个数据集,其中包含一个人的身高(height)和体重(weight)信息。
我们想要研究身高和体重之间的关系,以便预测一个人
的体重。
1. 首先,我们使用散点图来可视化身高和体重之间的关系。
从散点图中可以看出,身高和体重之间存在一定的正相关关系,即随着身高的增加,体重也会增加。
2. 接下来,我们使用线性回归模型来拟合数据。
线性回归模型假设身高和体重之间的关系可以用一条直线来表示,即 y = ax + b。
其中,y 是体重,x 是身高,a 和 b 是模型参数。
3. 我们使用最小二乘法来估计模型参数 a 和 b。
最小二乘法是一种优化方法,它通过最小化预测值与实际值之间的平方误差来估计模型参数。
4. 拟合模型后,我们可以使用回归方程来预测一个人的体重。
例如,如果我们知道一个人的身高为米,我们可以使用回归方程来计算他的体重。
5. 最后,我们可以使用残差图来检查模型的拟合效果。
残差图显示了实际值与预测值之间的差异。
如果模型拟合得好,那么残差应该随机分布在零周围。
这个案例是一个简单的线性回归分析案例。
在实际应用中,回归分析可以应用于更复杂的问题,例如预测股票价格、预测疾病发病率等。
回归分析应用实例讲解

回归分析应用实例讲解回归分析是一种用于确定变量之间关系的统计方法,它可以帮助我们预测一个自变量对因变量的影响程度。
在实际应用中,回归分析可以帮助我们解决各种问题。
下面将介绍几个常见的回归分析应用实例。
1.销售预测:回归分析可以帮助企业预测销售额。
通过收集历史销售数据和相关的市场因素(例如广告费用、季节性因素等),可以建立一个回归模型来预测未来的销售额。
这可以帮助企业做出合理的销售计划和预算安排。
2.金融风险管理:在金融领域,回归分析可以用来评估不同因素对金融资产价格的影响,以及它们之间的相关性。
例如,可以使用回归分析来确定利率、通货膨胀率、市场指数等因素对股票价格的影响程度。
这些信息可以帮助投资者制定投资策略和风险管理计划。
3.医学研究:回归分析在医学研究中也有广泛的应用。
例如,可以使用回归分析来确定其中一种药物对患者生存率的影响,或者确定特定因素(例如饮食、运动等)与心血管疾病的关系。
通过建立回归模型,可以帮助医生和研究人员制定更有效的治疗和预防策略。
4.市场调研:回归分析在市场调研中也是一个有用的工具。
例如,可以使用回归分析来确定广告投入与销售额之间的关系,以及其他市场因素(如竞争对手的市场份额、产品价格等)对销售额的影响。
这些信息可以帮助企业优化广告投放策略和市场定位。
5.人力资源管理:在人力资源管理中,回归分析可以用于预测员工绩效。
通过收集员工的个人特征和背景信息(如教育水平、工作经验等),并将其与绩效数据进行回归分析,可以确定哪些因素对员工绩效有着显著影响。
这可以帮助企业优化人员招聘和培训策略,提高人力资源管理的效率。
总之,回归分析可以在实际应用中帮助我们解决各种问题,从销售预测到金融风险管理,再到医学研究和市场调研,以及人力资源管理等领域。
通过建立回归模型,我们可以了解不同变量之间的关系,并利用这些信息做出更准确的预测和决策。
回归分析实例范文

回归分析实例范文回归分析是一种统计方法,用于研究两个或多个变量之间的关系。
它可以帮助我们了解变量之间的相关性,以及一个变量对另一个变量的影响程度。
以下是一个回归分析的实例,以说明如何运用回归分析来探索变量之间的关系。
假设我们有两个变量:广告费用(x)和销售额(y)。
我们对其中一产品进行了市场调研,收集了一些数据,如下所示:广告费用(万元),销售额(万元)-----------,-----------4,1002,508,2006,15010,250我们的目标是确定广告费用与销售额之间的关系,以及预测未来的销售额。
首先,我们可以通过绘制散点图来观察两个变量之间的关系。
从散点图中可以看出,广告费用与销售额之间存在着正相关关系,即广告费用越高,销售额也越高。
接下来,我们可以使用回归分析来量化这种关系。
在回归分析中,我们假设存在一个线性关系,即销售额(y)与广告费用(x)之间的关系可以用一条直线来表示。
我们希望找到一条最佳拟合线,使得该直线尽可能地通过数据点。
通过回归分析,我们可以得到以下回归方程,用于预测销售额:y=β0+β1*x其中,β0表示截距,β1表示斜率。
回归分析还可以计算出拟合优度(R²),来评估模型的拟合程度。
R²的取值范围为0到1,越接近1表示模型的拟合程度越好。
现在,我们来计算回归方程和拟合优度。
首先,我们需要计算β1和β0。
β1可以通过以下公式来计算:β1 = ∑((xi - x平均)*(yi - y平均)) / ∑((xi - x平均)²)β0可以通过以下公式计算:β0=y平均-β1*x平均其中,x平均和y平均分别表示广告费用和销售额的平均值。
计算得到β1≈20计算得到β0≈5因此,回归方程为:y=5+20*x接下来,我们计算拟合优度(R²)。
拟合优度可以通过以下公式计算:R²=SSR/SSTO其中,SSR(回归平方和)表示拟合线解释的总方差SSR = ∑((yi - y预测)²)SSTO(总平方和)表示实际观测值和实际平均值之间的总方差,可以通过以下公式计算:SSTO = ∑((yi - y平均)²)计算得到SSR≈850计算得到SSTO≈1166.67因此,拟合优度(R²)为:R²=850/1166.67≈0.73拟合优度为0.73,说明回归模型可以解释销售额的73%的变异性。
回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为:123log log P Y βββ++logQ=其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据P ——家庭所在地的住房单位价格 Y ——家庭收入经计算:0.247log 0.96log P Y -+logy=4.17 20.371R =()() ()上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。
但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D :01i D ⎧=⎨⎩黑人家庭白人家庭或其他家庭模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ=例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元)①根据上述数据建立一元线性回归方程:ˆ 1.01610.09357yx =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。
01i D ⎧=⎨⎩19791979i i <≥年年 建立回归方程为: ˆ0.98550.06920.4945yx D =++ ()() ()20.9498R = 0.1751y S = 75.6895F =虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。
3.5.4 岭回归的举例说明企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。
国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下:假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。
财务回归分析案例

财务回归分析案例引言在财务领域中,回归分析是一种常用的统计方法,用于研究变量之间的关系。
通过回归分析,我们可以了解一个或多个自变量如何影响因变量,并得出模型的预测能力。
在本文中,我们将介绍一个财务回归分析的案例,以帮助读者更好地理解该方法在实际应用中的作用。
数据收集首先,我们需要收集相关的数据以进行财务回归分析。
在这个案例中,我们将使用一家零售公司的销售数据作为例子。
我们将收集以下数据:1.每个月的销售额(因变量)2.广告费用3.促销费用4.人力资源费用5.物流费用这些数据将帮助我们了解不同因素对销售额的影响,并建立一个回归模型来预测销售额。
数据处理在进行回归分析之前,我们需要对数据进行一些处理。
首先,我们需要将数据进行清洗,删除不完整或错误的数据。
然后,我们可以计算各个自变量之间的相关性,以确定是否存在多重共线性的问题。
如果存在多重共线性,我们需要考虑删除一些自变量或使用其他方法来解决该问题。
回归模型建立在确定了自变量和因变量之后,我们可以建立回归模型来分析它们之间的关系。
在本案例中,我们将使用多元线性回归模型来分析销售额与广告费用、促销费用、人力资源费用和物流费用之间的关系。
回归模型的基本形式如下:销售额= β0 + β1 * 广告费用+ β2 * 促销费用+ β3 * 人力资源费用+ β4 *物流费用+ ε其中,β0、β1、β2、β3、β4为回归系数,ε为误差项。
通过最小二乘法估计回归系数,我们可以得出模型的预测能力。
回归模型分析在得到回归模型后,我们可以进行一些分析以评估模型的有效性。
首先,我们需要评估模型的拟合程度,即模型对观察数据的解释能力。
常用的评价指标包括决定系数(R2)和调整决定系数(adj-R2)。
较高的决定系数表示模型能够较好地解释数据的变异性。
然后,我们可以通过t检验或F检验来判断自变量是否具有显著影响。
统计学上,显著性是指一个变量或模型与随机变量是显著不同的。
如果自变量的p值小于设定的显著性水平(通常为0.05),则可以得出该变量对因变量的影响是显著的。
回归分析方法及其应用实例

回归分析方法及其应用实例环境与规划学院2012级地理科学2014年11月回归分析方法及其应用实例摘要:回归分析方法,就是研究要素之间具体数量关系的一种强有力的工具,运用这种方法能够建立反应地理要素之间具体数量关系的数学模型,即回归模型。
本文首先给出回归分析方法的主要内容及解决问题的一般步骤,简单的介绍了回归分析建模的一般过程,进而引出了基本的一元线性回归分析方法的数学模型。
其次,叙述了多元线性回归理论模型,列举了多元线性回归模型应遵从的假定条件,探讨了多元线性回归模型中未知参数的估计方法及其参数的检验问题。
最后通过具体的案例来总结了多元回归分析的应用。
关键词:多元线性回归模型;模型检验;SPSS;实例应用。
引言:用回归分析建模的一般过程:(1)画散点图(2)设定模型(3)最小二乘估计模型中的参数并写出回归方程(4)拟合优度的测量(5)回归参数的显著性检验及其置信区间(6)残差分析(回归分析的前提假定)(7)预测(点、区间)在利用回归分析解决问题时,首先要建立模型,即函数关系式,其自变量称为回归变量,因变量称为应变量或响应变量。
如果模型中只含有一个回归变量,称为一元回归模型,否则称为多元回归模型(实际中所见到的大都是线性回归模型,非线性的一般可以化为线性的来处理)。
一、一元线性回归模型有一元线性回归模型(统计模型)如下:Y t =β0+β1 x t + u t上式表示变量y t和x t之间的真实关系。
其中yt称被解释变量(因变量),xt称解释变量(自变量),ut称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t) =β0+ β1 x t,(2)随机部分,u t(包含了所有没有考虑在内的影响因素对因变量的影响,越小越好)二、多元线性回归模型2.1 当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归。
设可预测的随机变量为y,它受到k个非随机因素X1,X2,X3``````X k 和不可预测的随机因素ε的影响。
回归分析中的案例分析解读(Ⅲ)

回归分析是一种统计学方法,用于研究自变量和因变量之间的关系。
它可以帮助我们理解和预测变量之间的关联性,对于数据分析和预测具有重要的作用。
在实际应用中,回归分析可以帮助我们解决许多实际问题,比如市场营销、经济预测、医疗研究等领域。
在本文中,我将通过一些案例分析来解读回归分析在实际问题中的应用。
案例一:市场营销假设我们是一家电商平台,我们希望了解用户购买行为与广告投放之间的关系。
我们收集了每位用户的购买金额作为因变量,广告投放金额作为自变量,以及其他可能影响购买行为的因素,比如用户年龄、性别、地理位置等作为控制变量。
通过回归分析,我们可以建立一个模型来预测用户购买金额与广告投放之间的关系。
通过这个模型,我们可以确定投放多少广告才能最大化用户购买金额,以及哪些因素对购买行为有显著的影响。
案例二:经济预测假设我们是一家投资公司,我们希望预测股票价格与宏观经济指标之间的关系。
我们收集了股票价格作为因变量,以及国内生产总值(GDP)、失业率、通货膨胀率等宏观经济指标作为自变量。
通过回归分析,我们可以建立一个模型来预测股票价格与宏观经济指标之间的关系。
通过这个模型,我们可以了解哪些经济指标对股票价格有显著的影响,从而更好地进行投资决策。
案例三:医疗研究假设我们是一家医药公司,我们希望了解药物剂量与治疗效果之间的关系。
我们收集了药物剂量作为自变量,治疗效果作为因变量,以及患者的年龄、性别、疾病严重程度等因素作为控制变量。
通过回归分析,我们可以建立一个模型来预测药物剂量与治疗效果之间的关系。
通过这个模型,我们可以确定最佳的药物剂量,从而更好地指导临床实践。
通过以上案例分析,我们可以看到回归分析在实际问题中的广泛应用。
它不仅可以帮助我们理解变量之间的关系,还可以帮助我们预测未来趋势和制定决策。
当然,回归分析也有一些局限性,比如对数据的假设要求较高,需要充分考虑自变量和因变量之间的因果关系等。
因此,在实际应用中,我们需要结合具体情况,慎重选择合适的回归模型,并进行充分的检验和验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2 虚拟变量的应用例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为:123log log P Y βββ++logQ=其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据P ——家庭所在地的住房单位价格 Y ——家庭收入经计算:0.247log 0.96log P Y -+logy=4.17 20.371R =(0.11)(0.017) (0.026)上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。
但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D :01i D ⎧=⎨⎩黑人家庭白人家庭或其他家庭模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ=例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元)①根据上述数据建立一元线性回归方程:ˆ 1.01610.09357yx =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。
01i D ⎧=⎨⎩19791979i i <≥年年 建立回归方程为: ˆ0.98550.06920.4945yx D =++ (9.2409)(6.3997) (3.2853)20.9498R = 0.1751y S = 75.6895F =虽然上述两个模型都可通过显著性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。
3.5.4 岭回归的举例说明企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。
国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下:假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。
同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。
通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。
例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。
a. 直接进入法显然,这种方法计算的结果中,C 界面不能通过显著性检验,直接利用分析结果是错误的,见表3.5.4.1:表3.5.4.1 强制回归的Coefficientsb.逐步回归法这种方法剔除了一个不能通过统计检验的大的服务界面(C界面),虽然通过了显著性检验,但却遗漏了C界面的信息。
同样,使用强制删除法,C服务界面不能通过显著性检验,向前法和向后法亦剔除了C 界面进入分析。
可以看出,通过以上回归分析我们得到了不同的分析结果,显然这种分析方法存在着较大的偏差,随意选取一种是不负责任的,必须深入研究。
一般来说,满意度分析中涉及到许多因素,而诸多因素间存在着一定的关联,因而在进行回归分析时,各自变量之间的共线性问题导致了直接使用线性回归分析模型时一些因子不能参与分析的现象。
一些市场研究咨询公司常采用舍弃一些变量,遗漏部分信息来求得统计检验通过的方法;有的不顾显著性检验结果而强行使用不合理的分析结果来保证变量不被舍弃,从而虚假地保障了信息不被遗漏。
我们认为这是满意度分析错误的两个极端。
处理的正确方法是,利用SPSS软件中的岭回归分析来解决,既保障信息不被遗漏,同时保障分析具有统计意义。
SPSS软件界面没有直接进行岭回归的命令,我们可以通过SPSS 提供的程序编辑命令,自行编辑程序加以实现。
在SAS软件中可直接进行岭回归分析。
对例3.5.4.1进行岭回归,分析结果和表3.5.4.1的结果对比如下。
可见两者之间有较大差异(下表数据将已将回归系数之和标准化为100%),F界面对总体满意度的作用被缩小了5%左右,而B界面、D界面的作用各被夸大近5%。
表3.5.4.3 强制回归与岭回归结果的比较5 回归分析方法应用的举例说明——怎样作回归分析How本章以一个例子详细说明回归分析方法在实际研究中是如何应用的。
5.1 回归分析变量的数据转换本章举例说明的例子选用39家企业样本数据(见表5.1),带动作用是因变量,其余各变量均为自变量,其中所属产业和员工人数是对该样本企业而言,而接触程度则指该样本企业与本地的龙头企业之间在业务上的接触紧密程度。
接触程度、各自变量和因变量均以Likert五分量表进行度量。
表5.1 例子5.1的样本数据样本编号所属产业员工人数接触程度企业合作公共事务营销努力技术改进资源共享风险分担带动作用1 皮革230 1 1.40 2.60 3.00 3.33 1.50 2.33 1.402 皮革1593 3.40 4.00 4.75 3.67 3.50 3.33 3.203 皮革208 2 3.00 3.20 3.75 3.67 3.33 3.50 3.404 皮革112 1 4.20 4.20 4.50 4.00 2.83 1.17 2.405 皮革100 1 2.20 2.80 2.75 2.67 2.00 2.17 2.006 皮革495 1 2.40 3.60 5.00 3.67 2.50 2.67 3.007 皮革33 3 3.60 3.60 3.75 3.33 3.00 3.33 3.008 皮革 80 1 1.80 1.60 4.50 2.67 1.00 2.00 2.20 9 皮革 100 3 3.00 3.00 3.50 4.00 4.17 3.00 3.20 10 皮革 150 3 2.40 2.00 4.50 4.00 2.83 3.17 2.20 11 皮革 136 1 1.60 2.20 3.00 4.00 3.67 4.00 3.40 12 皮革 61 3 3.80 4.20 3.50 3.67 4.00 4.17 3.80 13 皮革 17 3 3.20 3.80 2.50 3.67 4.00 3.50 3.80 14 皮革 230 3 1.00 1.40 2.50 2.00 1.17 1.17 1.40 15 家电 300 5 2.60 4.00 5.00 4.00 2.50 4.83 4.60 16 家电 250 3 3.00 2.00 3.00 3.67 3.00 2.67 3.40 17 家电 80 5 1.80 4.20 4.75 5.00 1.83 2.00 3.60 18 家电 134 3 2.80 4.60 5.00 4.67 4.33 3.83 4.80 19 家电 428 3 2.40 2.80 2.00 4.33 2.33 2.00 2.80 20 家电 80 3 3.00 3.60 3.75 4.67 3.50 3.17 3.60 21 家电 400 2 3.20 3.80 4.00 3.67 3.33 2.67 3.20 22 家电 20 3 2.60 2.60 4.50 4.00 3.00 3.00 3.80 23 家电 225 4 3.00 2.40 4.00 3.33 2.67 2.83 3.00 24 家电 180 3 1.80 3.20 3.25 3.33 3.33 3.17 3.00 25 家电 90 3 4.60 3.60 4.75 3.67 3.33 2.17 2.80 26 家电 160 1 2.20 2.80 3.25 3.00 3.00 2.67 2.60 27 家电 100 2 2.80 2.80 4.00 3.33 3.33 2.67 3.20 28 家电 350 3 2.80 3.00 3.25 3.67 3.33 3.50 3.40 29 家电 345 3 2.60 4.00 3.50 3.67 4.00 3.33 3.20 30 家电 305 1 2.00 2.00 4.75 3.33 3.50 3.33 4.20 31 家电 400 2 1.00 2.80 3.75 2.67 2.17 2.33 2.00 32 家电 100 3 1.40 1.00 3.75 2.67 3.50 2.33 3.40 33 家电 414 2 1.20 2.80 3.00 3.33 2.67 2.50 2.40 34 家电 324 2 3.40 3.20 5.00 3.00 4.33 3.83 4.20 35 家电 300 4 3.20 2.80 3.75 3.67 3.50 2.83 3.40 36 家电 200 3 3.60 4.20 5.00 4.33 5.00 3.83 4.20 37 家电 85 3 4.00 4.00 4.50 4.00 3.33 3.83 3.20 38 家电 180 1 3.40 4.00 5.00 4.33 2.00 1.67 2.40 39 家电 415 3 2.20 3.20 3.50 4.33 2.83 2.50 2.005.1.1 企业所属产业虚拟变量的引入从表5.1中看到,自变量所属产业为名义变量,在进行多元回归分析之前需要将其转化为虚拟变量进行处理。
而员工人数在一定程度上能够反映企业的规模,因此也将其处理为虚拟变量。
将皮革产业变量定义为变量D 1,则⎩⎨⎧=101D属于皮革产业属于家电产业5.1.2 企业规模虚拟变量的引入首先按照企业员工人数将企业划分为微型、小型、一般型、中型和大型共5种类型企业,具体划分标准见表5.2:表5.2 企业规模的划分和变量说明企业规模小型 中型 大型 员工数 ≤100 >100且≤300 ≥300 变量名D 2 D 3 D 4由此,有:⎩⎨⎧=102D属于小型产业不属于小型产业;⎩⎨⎧=103D 属于中型产业不属于中型产业 当以上D 2、D 3均为0时,则表示该企业属于大型企业。